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Key Points: 8 

• The observations of fluctuations in multiphase flow on cm-scale sample differ 9 

markedly from those reported for mm-scale samples 10 

• Viscous forces may play a role in the cm-scale fluid distribution even at low 11 

capillary numbers 12 

• Pore-scale fluctuations can result in non-Darcy like upscaled behavior 13 



Abstract 14 

Representative elementary volumes (REVs) are an important concept in studying subsurface 15 

multiphase flow at the continuum scale. However, fluctuations in multiphase flow are 16 

currently not represented in continuum scale models, and their impact at the REV-scale is 17 

unknown. Previous pore-scale imaging studies on these fluctuations were limited to small 18 

samples with mm-scale diameters and volumes on the order of ~ 0.5 cm3. Here, we image 19 

steady-state co-injection experiments on a one-inch diameter core plug sample, with nearly 20 

two orders of magnitude larger volume (21 cm3), while maintaining a pore-scale resolution 21 

with X-ray micro-computed tomography. This was done for three total flow rates in a series 22 

of drainage fractional flow steps. Our observations differ markedly from those reported for 23 

mm-scale samples in two ways: the macroscopic fluid distribution was less ramified at low 24 

capillary numbers (Ca) of 10-7; and the volume fraction of intermittency initially increased 25 

with increasing Ca (similar to mm-scale observations), but then decreased at Ca of 10-7. Our 26 

results suggest that viscous forces may play a role in the cm-scale fluid distribution, even at 27 

such low Ca, dampening intermittent pathway flow. A REV study of the fluid saturation 28 

showed that this may be missed in smaller-scale samples. Pressure drop measurements 29 

suggest that the observed pore-scale fluctuations resulted in non-Darcy like upscaled 30 

behavior. Overall, we show the importance of large field-of-view high-resolution imaging to 31 

bridge the gap between pore- and continuum-scale multiphase flow studies, in particular of 32 

pore-scale fluctuations.  33 

1 Introduction 34 

Understanding multiphase flow in geological porous materials is central to the safe storage 35 

of CO2 underground (Jeddizahed & Rostami, 2016; Streit & Hillis, 2004) and successful 36 

containment of contaminants in the subsurface (McCarthy, 2018). Complex flow dynamics 37 

arise from fluid-fluid and fluid-solid interactions over multiple length and time scales 38 

(Bultreys et al., 2016; Krevor et al., 2015; Pentland et al., 2011). The underlying pore-scale 39 

physics are considered to be mainly controlled by the competition between capillary forces 40 

and viscous forces (Chen et al., 2018; Panda et al., 2019; Spurin et al., 2019b). The ratio of 41 



these two forces expressed by means of the capillary number (Ca = μv/σ) is commonly used 42 

to differentiate between flow regimes. In the majority of subsurface porous medium 43 

applications, the fluid flow is very slow, resulting in capillary numbers < 10-7 (Bultreys, 44 

2016). 45 

At the Darcy scale, multiphase flow in porous media is described using averaged properties 46 

such as capillary pressure and relative permeability (Lin et al., 2018; Parker, 1989; Zahasky 47 

et al., 2020), ignoring fluctuations at the pore scale. However, recent observations at the 48 

pore-scale have shown that complex interface dynamics occur even during so-called 49 

‘steady-state’ flow, where the average fluid saturation of the system remains constant 50 

(Reynolds et al., 2017; Zou et al., 2018). For example, fluid phases can rearrange and 51 

periodically disconnect and reconnect in a process called intermittent pathway flow, or 52 

intermittency (Gao et al., 2019; Reynolds et al., 2017; Spurin et al., 2019a). This influences 53 

the energy dissipation in the system and, therefore, impacts the averaged behavior at larger 54 

scales (Rücker et al., 2021). Thus the assumption of static interfaces in quasi-static models 55 

or continuum frameworks may not be accurate. These phenomena occur even in capillary 56 

dominated flow regimes that are commonly assumed to be quasi-static, especially when the 57 

viscosity ratio (i.e. ratio of nonwetting phase viscosity to wetting phase viscosity) of the two 58 

fluids is very low, as for liquid-gas flows. Previous studies, in small mm-scale samples 59 

found intermittent pathway flow was most common, and important to fluid connectivity, at 60 

capillary numbers around 10-8 - 10-6, with the percentage of intermittently-occupied pores 61 

increasing with capillary number, and heterogeneity of the pore space (Spurin et al., 2019a, 62 

2019b).  63 

However, previous pore-scale observations have been limited to mm-scale samples, as 3D 64 

X-ray imaging has a trade-off between sample size and resolution (Cnudde & Boone, 2013). 65 

These samples are smaller than the typical representative elementary volume (REV) for 66 

multiphase flow, making the upscaling from the pore-scale to the core-scale more difficult 67 

(Jackson et al., 2020, Zahasky et al., 2020). It has been hypothesized that intermittency does 68 

not average out at the REV-scale based on the analysis of fluctuations in the pressure drop 69 



over the sample (Rücker et al., 2021; Spurin et al., 2022), yet pore-scale variations in the 70 

fluid distribution have not been observed and characterized directly in REV-scale samples. 71 

As such, it is currently unclear how intermittency impacts REV-scale multiphase flow. 72 

In this study, we use the “High-Energy µCT scanner optimized for Research” (HECTOR) at 73 

Ghent University’s Center for X-ray Tomography (Masschaele et al., 2013) to study 74 

pore-scale intermittent fluid dynamics at the core-scale in a sample that is 25 mm in 75 

diameter, with a voxel size of 9.6 µm. This sample size - corresponding to a 1 inch drill bit - 76 

is a standard for many (relative) permeability measurements, and is thus the smallest size at 77 

which the REV concept is typically assumed to be valid in practical applications. 78 

We conduct a series of steady-state two-phase flow experiments on a Bentheimer sandstone 79 

sample. Nitrogen and brine were simultaneously injected into the sample at three different 80 

total flow rates, representing capillary numbers from 2.21 × 10-9 to 3.59 × 10-7. At each total 81 

flow rate, the brine fractional flow was decreased while the total flow rate was fixed. The 82 

micro-CT images allowed us to identify variations in the pore-scale fluid distribution in a 83 

time-averaged sense over the course of the scan time (53 minutes) at each fractional flow 84 

step (Gao et al., 2019; Spurin et al., 2021). We first present the observation of fluid 85 

distribution based on the micro-CT images in Section 3.1.1, followed by an analysis of the 86 

influence of capillary number on intermittent pathway flow (Section 3.1.2). The importance 87 

of performing multiphase flow study at core-scale is then illustrated by carrying out the 88 

representative elementary volume (REV) analysis in Section 3.2. The investigation of fluid 89 

distribution in the 3D pore network is shown in Section 3.3 to further understand the 90 

intermittency behavior at the core-scale. Finally, Section 3.4 characterizes the dynamics of 91 

the pressure signal, supplementing the imaging data with information at a time resolution at 92 

the scale of seconds. Overall, the observations discussed in this paper were markedly 93 

different than those previously reported on mm-scale samples. The results provide a link 94 

between scales, and will aid future upscaling research. 95 



2 Materials and methods 96 

2.1 Core flooding experiment 97 

We perform core flooding experiments on a cylindrical Bentheimer sandstone core of 98 

diameter 25 mm and length 42 mm, nearly two orders of magnitude larger volume than 99 

previous experiments looking at intermittency (Figure 1). It is a well-sorted German 100 

sandstone that contains > 90% quartz (Peksa et al., 2015). For Bentheimer sandstones, the 101 

REV for porosity has been observed to be between 1 and 60 mm3 (Halisch, 2013; Herring et 102 

al., 2013). The absolute permeability of the sample measured with deionized water was 1.71 103 

D. The sample was wrapped by a Viton sleeve and placed in an aluminum flow cell (RS 104 

Systems, Norway), which has two injection ports and one outflow port. The flow cell and 105 

flow lines were firmly attached to the rotation stage of the micro-CT scanner, avoiding 106 

effects of the fluid lines tugging or tangling during the imaging. A differential pressure 107 

transducer (Keller PD-33X) was used to monitor the differential pressure over the brine 108 

inlet and the outlet of the sample.  109 

Steady-state co-injection experiments were conducted with nitrogen as the non-wetting 110 

phase and brine (25 wt% potassium iodine) as the wetting phase. The confining pressure 111 

and the back pressure were set to 4000 kPa and 2000 kPa respectively, and kept constant 112 

during the experiment. The sample was first scanned in its dry state to obtain the 113 

geometrical information of the pore structure, this is referred to as the dry scan. Then, brine 114 

was injected through the sample at the set back pressure, and a second high-quality scan 115 

was made to confirm that all the air was displaced out of the sample, this is referred to as 116 

the brine saturated scan. After that, the nitrogen and brine were injected simultaneously 117 

through the two injection lines into the sample at a fixed total volumetric flow rate, while 118 

the fractional flow fw (i.e. the volumetric flow rate of brine over the total flow rate) was 119 

decreased in a series of drainage fractional flow step. At each step, a scan was taken when 120 

the pressure drop across the sample measured by the differential pressure transducer became 121 

stable. In this study, 3 observations were made at the total flow rate of 4 ml/min (for fw = 0.9, 122 

0.7, 0.5); 5 observations at the total flow rate of 1 ml/min (for fw = 0.9, 0.7, 0.5, 0.25, 0); 123 



and 5 observations at the total flow rate of 0.2 ml/min (for fw = 0.9, 0.7, 0.5, 0.25, 0). For 124 

convenience, we will refer to the three total flow rate experiments 4 ml/min, 1 ml/min and 125 

0.2 ml/min as experiments H, M and L (high, middle and low flow rate) and note the fw in 126 

subscript to describe the fractional flow at each experiment in the following sections. For 127 

example, experiment L0.5 represents the two-phase flow experiment at fw = 0.5 for the Q = 128 

0.2 ml/min experiment. 129 

The capillary number (Ca) describes the relative importance of capillary forces to viscous 130 

forces, and is commonly used to categorize flow regimes. Here, we used the following 131 

expression (Spurin et al., 2019b) to quantify the Ca at different fractional flows: 132 𝐶𝑎 = ொ೟ఙቀ೑ೢഋೢାభష೑ೢഋ೙ೢ ቁ          (1) 133 

where Qt is the total flow rate, σ is the interfacial tension, 𝜇 is the fluid viscosity for the 134 

wetting (w) or non-wetting (nw) phase. 135 

The X-ray imaging was performed with the “High Energy micro-CT Optimized for 136 

Research” scanner (HECTOR) at the center for X-ray tomography at Ghent University 137 

(UGCT). The X-ray energy and the power were 150 kV and 10 W respectively. 3201 138 

projections with 1 s integration time per radiograph were acquired to obtain each image. 139 

The voxel size was 9.6 μm for all images, which was the highest resolution the setup could 140 

reach to image the full width of the sample. The Octopus software (Tescan-XRE, Belgium) 141 

was used to perform the image reconstruction.  142 
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and intermittent phases on multiphase scans was also based on the differential imaging 175 

method, i.e. the difference image between the brine saturated and the fractional flow scans 176 

was used to find the location including both nitrogen and intermittent phases in macropore 177 

masked region, then, the nitrogen segmented from the fractional flow scan was subtracted 178 

from this image, and the remaining voxels were identified as having intermittent fluid 179 

occupancy. To remove partial volume effects that might occur at the fluid-fluid interface, a 180 

morphological opening operation (a one-voxel erosion followed by a one-voxel dilation) 181 

was performed on the segmented intermittent voxels.  182 

3 Results and discussion 183 

We present the observation of fluid distributions and intermittent pathway flow in the 184 

micro-CT images (Section 3.1). The results show that the volume of pore space 185 

intermittently occupied by both fluid phases first increases with increasing Ca, and then 186 

decreases as Ca increases further. This differs from a continuously positive correlation 187 

between Ca number and amount of intermittency observed in mm-scale samples (Spurin et 188 

al., 2019b) up to much larger Ca. To understand why, we first show the importance of 189 

performing multiphase flow studies on core-scale samples by calculating the deterministic 190 

REV (dREV) for the nitrogen saturation in Section 3.2. Then the fluid distribution in the 3D 191 

pore network is further analyzed to explain the manifestation of intermittent flow pathways 192 

at a REV-scale (Section 3.3). We also investigate the pressure fluctuations and discuss the 193 

possible relationship between the pressure signal response and the intermittent flow 194 

(Section 3.4). 195 

3.1 Observation of the two-phase flow 196 

3.1.1 Fluid distribution in micro-CT images 197 

In our fractional flow experiments, the Ca ranges from 2.21 × 10-9 to 3.59 × 10-7, indicating 198 

the system is in the capillary-dominated regime (the threshold of this flow regime is 199 

capillary number below Ca < 10-6 (Niu et al., 2015)). Our results confirm previous 200 

pore-scale studies, which showed the occurrence of intermittency even at capillary numbers 201 



below this threshold. 202 

Figure 3 shows the processed greyscale images for the different fractional flows, with the 203 

segmented images shown in Figure 4. For the highest total flow rate experiment 204 

(experiment H), the nitrogen mainly invaded the left half of the sample in the beginning, 205 

and new flow paths in the right part of the sample were gradually built with decreasing 206 

fractional flows, shown in the top panel of Figures 3(a) and 4(a). The fluid distribution for 207 

experiments M and L was more ramified, as expected for the case of capillary fingering. In 208 

co-injection experiments performed on smaller sandstones or carbonate rock samples (5-6 209 

mm in diameter) by Gao et al. (2020), Lin et al. (2018), Spurin et al. (2021) and Zhang et al. 210 

(2021), fluid distributions similar to those in our high flow rate experiment were not 211 

reported. One possible reason is that our sample is much larger, the viscous forces at Q = 4 212 

ml/min on the cm-scale start playing a role in the fluid distribution on this scale. If we zoom 213 

in on a small part (Figures 3(b) and 4(b)), the distribution may still look like a capillary 214 

finger, but globally these fingers are not distributed homogeneously throughout the 215 

cross-section of the whole sample, due to viscous forces (Figure 5(a)). Since the total flow 216 

rates were lower in the experiments M and L, the capillary effect was stronger. The 217 

nonwetting phase therefore generates a ramified fluid distribution like that depicted in 218 

Figure 5(b), dominated by the capillary pressure needed to invade individual pore throats 219 

(Blunt et al., 1992). 220 

Another observation is the amount of intermittently occupied pore space. As shown in 221 

Figure 3, the periodic invasion of nitrogen and brine in specific pores presented 222 

intermediate grayscale values in the micro-CT images. Note that the sub-resolution pores 223 

also result in voxels with averaged grey values, due to partial volume effects, but these 224 

voxels were masked out by the macropore segmentation (as described in Section 2.2). Our 225 

image processing workflow thus avoids the erroneous detection of voxels with partial 226 

volume effects as containing intermittency. Figure 4. shows the segmentation results of 227 

nitrogen, brine and intermittency at different fractional flows. 228 
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Figure 7. Nitrogen (red) distribution in the 3D pore space (grey) in experiment H. Brine is transparent. 268 

3.2 Representative elementary volume 269 

Linking pore-scale flow behavior to macro-scale or continuum-scale characteristics of 270 

porous materials relies on the determination of REV (Singh et al., 2020). A REV is defined 271 

as the minimum volume for which the average of a microscopic property first become 272 

independent of the averaging volume (Bear, 1972). The size of the REV is not universal and 273 

can be different for different properties (e.g. porosity, permeability, saturation, capillary 274 

pressure, etc.) of a rock under consideration. In this study, the REV analysis was performed 275 

by increasing a cubic domain size from the center of the sample (also called deterministic 276 

REV, dREV), calculating the average porosity and nitrogen saturation of the cube calculated 277 

at each incremental step. The porosity shows an increasing trend with the cubic volume 278 

increasing, and reaches a plateau at around 2 mm linear length (Figure 8(a)). This compares 279 

well with the porosity REV size for Bentheimer of >1.75 mm suggested by Halisch (2013) 280 

and ≈ 1.25 mm by Jackson et al. (2020). However, the REVs for saturation depend on the 281 

flow regime. As seen in Figures 8(b)-8(d), for Ca < 10-7 (experiments H0.5, M and L), the 282 

nitrogen saturation (Snw) continues to slowly decrease even at the largest scale shown, 283 

implying that the values of REV exceed the maximum domain size (18 mm) investigated 284 

here. This is because the flow paths have a high degree of channeling: if the volume size is 285 

increased past the typical cross-sectional size of these channels (past ~ 5-7 mm), the global 286 

saturation decreases. The effect may thus go unnoticed in experiments on 5 mm diameter 287 

samples. Based on the convergence trend, it appears that for the same fractional flow, a 288 

smaller Ca results in a larger REV. In the flow regime for Ca > 10-7, the Snw shows less 289 

variance for subvolumes larger than 10 mm linear dimension in experiment H0.7, indicating 290 

that the REV in this regime is approximately 10 mm. This is similar to the observation by 291 

Jackson et al. (2020), in which the REV for saturation was larger than the maximum image 292 

size (8 mm).  293 

The above analysis indicates that most of the current studies of pore-scale dynamics 294 
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permeability of fluids. To quantify fluid occupancy in the pore space, a pore network 310 

extraction (PNE) algorithm (Raeini et al., 2017) was used to extract and simplify the 311 

complex pore morphology into spherical pores (i.e. local dilations in the geometry) 312 

connected by throats (i.e. local constrictions in the geometry). The inscribed spheres for the 313 

pores were overlaid on the segmented multiphase images to determine which phase (i.e. 314 

brine, nitrogen or intermittent fluid) occupied the majority of its voxels. This way, the 315 

relationship between pore size and fluid occupancy at each fractional flow step was 316 

characterized. As shown in Figure 10, almost all smaller-size pores (< 20 μm) were filled 317 

with brine and remained uninvaded. The intermittent phase mainly occupied the 318 

intermediate-sized pores (20-40 μm), where the wetting and nonwetting fluids showed more 319 

competition. For experiment H (Figure 9(a)), the percentage of nitrogen in pores with 25-45 320 

μm radius showed a notably increase with the decrease of fw, while that in large pores (>50 321 

μm) was lower than the percentage of brine in all fractional flows. This is contrary to the 322 

expectation of capillary-dominated drainage, where the large pores tend to be invaded by 323 

the nonwetting fluid first, followed by the invasion of smaller-sized pores due to their 324 

correlation with small throats and high entry pressures. This suggests that the fluid invasion 325 

behavior is significantly affected by viscous forces, having the effect of causing less 326 

intermittency. For experiments M and L (Figures 9(b) and 9(c)), the nitrogen was mainly 327 

distributed in pores with 35-45 μm radius. The fraction of nitrogen in large pores (>50 μm) 328 

became higher than brine when the fw was lower than 0.7, indicating that the capillary effect 329 

was stronger. This supports our hypothesis that viscous forces are playing an important role 330 

in fluid distribution. 331 

Table 1 presents the average coordination numbers (CN) for the pores that remained brine 332 

filled, the pores that contained intermittency and the pores that remained nitrogen filled. The 333 

coordination measures the number of surrounding pores that are connected via throats to the 334 

pore in question. As expected, pores with higher CN are more likely to provide more flow 335 

pathways for the invading nitrogen, and are therefore prone to be occupied by nitrogen. 336 

Most of the intermittent pores had CN around 4-6 (Figure 10(a)), implying that the 337 



intermittency was favorable in pores with less neighbors. As the brine saturation for 338 

experiments H0.5, M0.9 and L0.9 was similar, we compared the CN of intermittent pores and 339 

their neighboring pores occupied by different fluids in these three cases (Figure 10(b)). This 340 

indicates that the intermittent pores with a large number of CN were likely to be surrounded 341 

by brine-filled pores. A possible reason is that if a pore has many neighboring pores and 342 

most of them are all filled with nitrogen, they may create a connected flow path directly to 343 

perform the displacement. In contrast, if the surrounding pores are brine-filled, they will 344 

have more possibilities to reenter the nitrogen-filled pores in a cooperative filling manner, 345 

and the intermittent fluid-fluid interface provides the only path for nonwetting fluid to keep 346 

the connectivity, which lead to periodic occupancy of both fluids (Spurin et al., 2019a). In 347 

addition, Figure 10(b) shows that for the intermittent pores with the same CN, the 348 

percentage of nitrogen-occupied neighboring pores in the experiment M0.9 case was lower 349 

than the other two counterparts, this means that the gas was better connected for the highest 350 

and lowest total flow rate cases and there would be fewer potential locations for the water to 351 

snap the gas off, which may explain why we observed more intermittency in experiment M.  352 
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for each fractional flow.  375 

We first investigate how the measured time-averaged pressure measurements relate to the 376 

imposed Ca, investigating the meaning of our observations for large-scale modeling of 377 

multiphase flow. According to Darcy’s law, the Ca is proportional to ∇P (i.e. ∇P ~ Ca) in 378 

the capillary-dominated regime. This linear relation is known to break down when viscous 379 

forces become comparable to capillary forces at a threshold value around Ca ~ 10-3 (Blunt, 380 

2017). Recent research has however shown that complex dynamics (e.g. intermittency) that 381 

already occur at low Ca induce a transition regime for which a power-law relation has been 382 

proposed: ∇P ~ Caa (Zhang et al., 2021). This represents a reduction in the resistance to 383 

flow compared to Darcy’s law, as the fluid distributions (intermittently) change in a way 384 

that reduces viscous dissipation. The exponent a has been found to be in a range of 0.3 to 385 

0.6, both from theoretical arguments as experimental measurements on small samples and 386 

simplified systems (e.g. micromodels and bead packs) (Rassi et al., 2014; Sinha et al., 2017; 387 

Tallakstad et al., 2009). Figure 12 shows the measured pressure gradients ∇P as a function 388 

of Ca for our experiments. While there are only three datapoints for each fractional flow, the 389 

curves do appear to show a non-Darcy dependence (a < 1), illustrating the relevance of the 390 

observed fluctuations towards large-scale simulations. A rough estimate of the exponent a 391 

from the limited datapoints available is in the range of 0.62 - 0.8, which is higher than 392 

values between 0.42 and 0.6 reported for 6 mm diameter Bentheimer samples (Gao et al., 393 

2020; Zhang et al., 2021). The threshold capillary number (Cai) for the onset of 394 

intermittency derived from Figure 12 is ~ 10-8 for fw > 0.5, compared to ~ 10-5 in (Gao et al., 395 

2020; Zhang et al., 2021), indicating that the Cai for REV-scale sample might be much 396 

lower than that defined at the mm-scale. This provides evidence for theoretical analyses on 397 

how the effective rheology during multiphase flow scales with length (Roy et al., 2019). 398 

Further research with more data points is needed to investigate the results presented here.  399 

Next, we investigate the fluctuations in the pressure signal. The amplitude of these 400 

fluctuations was lower in experiment H than in the other experiments, and fluctuations in 401 

experiments M and L showed notable periodicity. To differentiate the pressure fluctuations 402 
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Spurin et al. (2022) asserted that the longest time-scales in this spectrum correspond to 435 

repetitive filling of the largest intermittent pores. They showed that the gas connectivity 436 

changed for intermittency with a time scale of 8-10 minutes as gas ganglia repeatedly 437 

connected and disconnected, while the intermittent gas occupancy with shorter time scales 438 

(i.e. 30 s to 2 minutes) were associated with fluctuations without connectivity change, but 439 

which may still affect the energy dissipation. 440 

We investigated the spectral properties for our experiments by performing a Fourier 441 

transformation on pressure data from the H and M experiments, with the results shown in 442 

Figure 14. Experiment L was discounted from this analysis as the pressure drop was small, 443 

and close to the resolution of the pressure transducer. As can been seen in Figure 14, the 1/f2 444 

scaling (red noise) fitted well for all fractional flow cases in experiment M, where the 445 

percentage of intermittently-occupied pores was higher than 3.5%. However, in experiment 446 

H, it matched only the fw = 0.9 case, which had an intermittency volume of 2.6%. For fw = 447 

0.7 and 0.5, with intermittency volumes around 1.5%, the power associated to the longer 448 

timescales was significantly below red noise scaling, and thus differed from mm-scale 449 

observations by Spurin et al. (2022). Since lower frequencies relate to larger sized fluid 450 

redistribution events, this may be further evidence for the need to study multiphase 451 

dynamics at the core-scale rather than in smaller samples. 452 

For experiment M, the highest amplitudes were at frequencies that correspond to timescales 453 

of 10-20 mins. This is the same for H0.9, but for H0.7 and H0.5 the peak is for timescale of 454 

around 20 s. Therefore, we would expect that the intermittently-occupied pores had a large 455 

contribution to the non-wetting fluid connectivity in experiment H0.9. With the decrease of 456 

brine fractional flow, the intermittency may still have played an important role in energy 457 

dissipation in experiments H0.7 and H0.5 – leading to the non-Darcy like behaviour in Figure 458 

12. 459 
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fluid dynamics impact the flow resistance, confirming previous studies that found a 479 

non-Darcy-like scaling of the pressure drop with the capillary number, yet finding a larger 480 

than expected slope for the Ca ~ 10-7 case (i.e. the case with the less ramified distribution). 481 

A spectral analysis of the pressure drop showed that the red noise scaling observed in 482 

mm-scale samples was only valid for core-scale cases where the percentage of 483 

intermittently-occupied pores was relatively high. At higher Ca, the spectral slope in our 484 

measurements (i.e. experiments H0.7 and H0.5) became flatter for timescales > 20 s. We 485 

suggest that the intermittency may still play an important role in energy dissipation in these 486 

two cases, leading to the non-Darcy like behaviour.  487 

Overall, our research shows the need to study pore-scale dynamics in samples that approach 488 

the REV scale – or, from a practical point of view, at least the scale at which continuum 489 

properties such as capillary pressure and (relative) permeability curves are typically 490 

measured, in case a true REV does not exist. However, the limited time resolution of the 491 

laboratory-based micro-CT scanner for such samples did not allow us to further track the 492 

fluid dynamics at different time scales. Our findings need to be confirmed by more 493 

experiments on cm-scale samples with different fluids, rock types, wettability and pore 494 

structures. This may provide us a deeper understanding of fluid flow from small scale to 495 

large scale, which could be important for the design of secure subsurface storage of carbon 496 

dioxide and energy, as well as for ground-water studies. 497 
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