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1 Energy balance for the lumped parameter model

The mechanical energy balance can be derived directly from the momentum bal-
ance. First multiply both sides of the momentum balance with piston velocity, u̇:
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which can be written as:
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The above expression has dimensions of energy per unit time. The terms on the left hand
side correspond to rate of change in piston kinetic energy. The terms on the right hand
side correspond to rate of change in gravitational potential, rate of change in elastic strain
energy of chamber + internal energy of magma, and work done against friction, respec-
tively. Integrate both sides in time to get mechanical energy balance:
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2
∆u2
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βV
+ (πR2)p0∆u]− (2πRL)τd∆u = 0 (3)

Note kinetic energy term vanishes because piston velocity is at equilibrium at the be-
ginning and end of the integration. Radiated energy and fracture energy are not included
in this analysis, as discussed in the main text.

2 Sensitivity of simulated waveforms to model parameters

The simulated waveforms are sensitive to variations in each inverted parameters
(Fig. S1). Notably, within a physically plausible range of parameter values, the simu-
lated waveforms are highly sensitive to shear strength drop, ∆τstr, total compressibil-
ity, β, effective magma density, φρf , and piston radius, R. The apparent lack of sensi-
tivity to chamber volume, V , chamber aspect ratio, α, and piston density, ρp, is due to
the relatively small variations in parameter values (within one order of magnitude), as
expected in nature. Note the relative lack of sensitivity to chamber aspect ratio in the
waveforms is partially compensated by the high sensitivity of near-field static displace-
ment to aspect ratios.

The dependence of waveform characteristics on each parameter can also be deduced
from scaling relationships (Eqn. 9a, 9b, B1a-c, B2b in main text). For example, the in-
crease of waveform duration with β, φρf correspond to longer characteristic time, t∗. In-
crease ∆τstr increases Fz,max, resulting in larger peak amplitude of velocity waveforms.
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Figure S1: Sensitivity of simulated VLP waveforms to model parameters. Simulated vertical component

velocity waveforms are shown with corresponding tested parameters. Values in brackets represent the

lower and upper bounds of values tested. 5 evenly-spaced values are chosen within the bounds. Lighter

color waveforms correspond to larger parameter values.

3 Velocity models of Kı̄lauea’s summit

We opt to use a homogeneous half-space velocity model for computing synthetic
seismograms. The reasoning is that common velocity models for Kı̄lauea’s summit re-
gion (e. g. Lin et al., 2014) do not have fine enough resolution in the immediate prox-
imity of the Halema‘uma‘u magma chamber. Thus, seismic velocity models of Kı̄lauea
tend to overestimate the crustal shear modulus due to spatial averaging of low-velocity
zones near the chamber with high-velocity zones much farther away. In the absence of
higher-resolution velocity model, we use a constant shear modulus of 3 GPa (Anderson
et al., 2019), density of 3000 kg ·m−3, and a Poisson’s ratio of 0.25 to compute for spa-
tially uniform p and s wave velocities. At a period > 5 s, the VLP response is likely close
to the quasi-static response of the earth, which justifies the low shear modulus used. Body
wave scaling relationship indicates that increase µ decreases velocity waveform ampli-
tude linearly, which biases estimated chamber pressure increase upwards. It is also shown
that, although making the velocity below 3.5 km significantly faster (Fig. S2) elongates
the simulated waveform in time (more pronounced in vertical component), the overall
waveform shape does not change appreciably.

4 Validation of static limit deformation

The Eshelby solution for a moment tensor representing spheroidal cavities is de-
rived in homogeneous full space (Eshelby, 1957). To ensure that the moment tensor is
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Figure S2: Comparing simulated waveforms with homogeneous half space model (cp = 1.73 km/s and

cs = 1 km/s) and two layer model (cp = 1.73 km/s and cs = 1 km/s down to 3.5 km, below which cp =

5.5 km/s and cs = 3.1 km/s). At the stations’ distances, adding a high velocity layer below 3.5 km elon-

gates the simulated waveform in time.

adequate for centroid depths consistent with typical basaltic chambers, we compare the
static deformation predicted using elasto-dynamic Green’s functions with those predicted
by the semi-analytical Yang-Cervelli model (Fig. S3). The results demonstrate that, for
a large range of chamber aspect ratios, 0.2 − 1.4, the Eshelby solution is adequate at
a chamber centroid depth < 2.5 km.

5 Prior constraints

The characteristics of the simulated waveforms are dictated by both source dynam-
ics and Green’s functions, the latter of which are fixed to the assumed homogeneous ve-
locity model. The dynamics of collapse is fully described by the dimensionless number
π0, and characteristic scales t∗, p∗, l∗. The simulated ground motions are also predicated
on the crustal shear modulus µ, the Poisson’s ratio, ν, and the chamber aspect ratio, α.
A careful examination on the inter-dependence of the aforementioned parameters indi-
cate that inverting the following parameters minimizes redundancy: ∆τstr, V , β, ρp, φρf ,
R, and α. In particular, the piston length, L, is not independent of chamber volume, V ,
and the chamber centroid depth, ∆z: L = ∆z−( 3V

4π α
2)1/3, due to the assumption that

the caldera block is directly situated above the chamber.

The choice of bounds on the uniform portion of Gaussian prior distributions is in-
formed by previous studies. Surface expressions of the ring fault delineate a caldera block
diameter varying between ∼ 1.6 and 2.7 km. To account for uncertainties in subsurface
ring fault geometry, we allow a prior range on ring fault radius, R, to vary between 0.5
and 1.3 km. The bulk density of typical basaltic rock in Hawaii averages at 2550 kg ·m−3
(Moore, 2001), so we consider ρp = 2400 − 2800 kg ·m−3. The ratio φ = 1/3 is the
upper bound on the percentage of magma in the chamber contributing to the total in-
ertia of the system. Assuming that typical basaltic magma density is ∼ 2600 kg ·m−3
and φ = 1/12− 1/3, we use an effective density of magma, φρf = 210− 870 kg ·m−3.
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Figure S3: Simulated static surface displacements at various aspect ratios. left: (a) vertical and radial

displacements at HMLE. (b) vertical and radial displacement at UWE. Vertical displacement in black;

radial displacement in gray. Static limit of dynamic displacement in solid lines and Yang-Cervelli displace-

ment in dashed lines. The results are computed with a pressure increase of 6.92 MPa, a chamber depth of

2.18 km, a chamber volume of 4 km3, a crustal shear modulus of 3 GPa, and a Poisson’s ratio of 0.25.

For the chamber volume, a 68% confidence interval, V = 2.5− 7.2 km3, estimated by
Anderson et al. (2019), is used. We use a total reservoir compressibility of β = 10−9.70−
10−8.88 Pa−1, where the upper bound is the upper 68% bound estimated by Anderson
et al. (2019). Based on previous geodetic studies of the Halema‘uma‘u reservoir, the cham-
ber is expected to be a near spherical body, with an aspect ratio of α = 1− 1.4.

Total shear strength drop can be estimated from the pressure increase in the cham-
ber after each collapse:

|∆τstr| =
1

2

πR2∆p

2πRL
=
R∆p

4L
(4)

where the shear strength drop is half of the total drop in stress, in the full dynamic over-
shoot limit. Co-collapse pressure increase, ∆p, has been estimated to be 1−3 MPa (Segall
et al., 2019). For a piston radius, R = 500−1300 m, and L = 750−1200 m, the shear
strength drop needed to return the piston to static equilibrium is 0.1− 1.3 MPa.

6 Data covariance matrices

We assume that the data errors are normally distributed such that the likelihood
function is:

P (d|m) =
∏

i=GNSS,V LP

(2π)−Ni/2det(Ci)
−1/2×exp[−1

2
(di−G(m))TC−1i (di−G(m))] (5)

where the likelihood of both GNSS displacement offsets and VLP velocity waveforms are
accounted for in the inversion. Here, N is the number of data points in each data set,
C is the data covariance matrix, and G is the forward model operator.

The covariance matrices for both data sets are assumed to be diagonal (uncorre-
lated noise). GNSS uncertainties are propagated through stacking time series and dif-
ferencing positions (Segall et al., 2020). VLP waveform uncertainties are set to a mag-
nitude ensuring that, the weighted sum of squared residuals, (di −G(m))TC−1i (di −
G(m)), is of order N−M , given a sampling rate (the weighted sum of square residu-
als follow a χ2 distribution with N−M degree of freedom, where N is the number of
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data points and M is the number of estimated parameters). Such an approach ensures
that the magnitude of data uncertainties are not significantly under- or over- estimated.
To account for the large number of waveform data points versus GNSS static offset data
points, a trial-and-error weight is applied to the likelihood for the static offsets.

7 Parameter correlations

By design, the inverted parameters are rather independent of each other, and thereby
lack correlations (Fig. S4). There is a weak, positive correlation between chamber vol-
ume, V , and total compressibility, β, the reason of which may not be immediately clear,
given the typical trade off between V and β in volumetric sources. However, such be-
havior is explained by noting the nonlinear dependence of the characteristic scales (Eqn.
B1a - B1c) on V , given m′ = m + φρfV . The positive correlation between piston ra-
dius R, and β (or V ) potentially explains the apparent small radii estimated from in-
version.
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Figure S4: Correlation of inverted parameters. Parameters are mostly independent of each other, except

chamber volume-compressibility and chamber volume-piston radius.
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