Zachary M. Labe

and 1 more

Zachary M. Labe

and 1 more

It remains difficult to disentangle the relative influences of aerosols and greenhouse gases on regional surface temperature trends in the context of global climate change. To address this issue, we use a new collection of initial-condition large ensembles from the Community Earth System Model version 1 that are prescribed with different combinations of industrial aerosol and greenhouse gas forcing. To compare the climate response to these external forcings, we adopt an artificial neural network (ANN) architecture from previous work that predicts the year by training on maps of near-surface temperature. We then utilize layer-wise relevance propagation (LRP) to visualize the regional temperature signals that are important for the ANN’s prediction in each climate model experiment. To mask noise when extracting only the most robust climate patterns from LRP, we introduce a simple uncertainty metric that can be adopted to other explainable artificial intelligence (AI) problems. We find that the North Atlantic, Southern Ocean, and Southeast Asia are key regions of importance for the neural network to make its prediction, especially prior to the early-21st century. Notably, we also find that the ANN predictions based on maps of observations correlate higher to the actual year after training on the large ensemble experiment with industrial aerosols held fixed to 1920 levels. This work illustrates the sensitivity of regional temperature signals to changes in aerosol forcing in historical simulations. By using explainable AI methods, we have the opportunity to improve our understanding of (non)linear combinations of anthropogenic forcings in state-of-the-art global climate models.

Jamin Kurtis Rader

and 3 more

Assessing forced climate change requires the extraction of the forced signal from the background of climate noise. Traditionally, tools for extracting forced climate change signals have focused on one atmospheric variable at a time, however, using multiple variables can reduce noise and allow for easier detection of the forced response. Following previous work, we train artificial neural networks to predict the year of single- and multi-variable maps from forced climate model simulations. To perform this task, the neural networks learn patterns that allow them to discriminate between maps from different years—that is, the neural networks learn the patterns of the forced signal amidst the shroud of internal variability and climate model disagreement. When presented with combined input fields (multiple seasons, variables, or both), the neural networks are able to detect the signal of forced change earlier than when given single fields alone by utilizing complex, nonlinear relationships between multiple variables and seasons. We use layer-wise relevance propagation, a neural network explainability tool, to identify the multivariate patterns learned by the neural networks that serve as reliable indicators of the forced response. These “indicator patterns” vary in time and between climate models, providing a template for investigating inter-model differences in the time evolution of the forced response. This work demonstrates how neural networks and their explainability tools can be harnessed to identify patterns of the forced signal within combined fields.