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Background
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Purpose: Algorithmically combine multiple, 
different instrument readings of the same 

potential biosignature to determine whether it is 
indicative or not indicative of life. 



Raman Spectroscopy Basics
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Made with Biorender



Overall Project Workflow
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• Elemental 
abundance

• Isotopic 
fractionation

• VNIR reflectance 
spectra

• Feature 
engineering

• Supervised 
learning

• Calculate 
accuracy, 
confidence, 
etc.

• Collecting 
data on 
various 
materials



• Previous data types: 
‒Elemental abundances, isotopic fractionation, visible and near infrared 
spectroscopy (VNIR)

• Conditions
‒Data collection feasibility in the field
‒Somewhat agnostic

• Data type should not presuppose any specific biochemistry or molecular 
framework

‒Ex: Rover looking specifically for chlorophyll would not be agnostic
‒Ex: Rover looking for molecules that stores energy that ends up 
including ATP could be agnostic

• Would be “putting the answer in the question”
‒Note on elemental abundance: the dataset is not perfectly agnostic because 
information on C, H, O, etc. allows bias towards C and water-based life

• A more agnostic approach was taken to look at elemental distributions; this 
method no longer depends on C-based life and high amounts of water
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1) Data Selection



• Curated indicative vs. non-indicative 
dataset

‒ Distinctions unambiguous
‒ No edge cases (prions, etc.)
‒ Does not require an a priori 
definition of life

• Raman data collection
‒ Assembled from individual 
research articles and public domain 
databases
‒ “Standardized” to similar excitation 
lines (532nm or 514.5nm)
‒ Pre-processing: Savitzsky-Golay
smoothing + interpolation, Polyfit
baseline correction, Standard 
normal variate normalization
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2) Data Collection
Class (subclass) Class Definition Examples

Indicative 
(alive)

Indicative 
sample of only 
alive materials

Vegetation, 
microorganisms, 
biofilm

Indicative (non-
alive)

Indicative 
sample of only 
not-alive 
samples

Coral skeletons, 
coal, calcite

Indicative 
(mixed)

Indicative 
samples mixed 
with non-
indicative

Non-sterilized silt, 
clay, or seawater

Non-indicative Not alive and 
not indicative 
of life

Pure basalt, sand, 
or carbonatite
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3) Feature Engineering & Algorithm 
Implementation

Example Raman Spectra of Hydroxyapophyllite, troughs detected as 
orange X marks



• Accuracy metrics
‒AUC: area under receiver 
operating curve (ROC) 

• Probability of correct 
classification

‒Done with 2,000 50% train-
test-splits

• False negative and false 
positive rates (FNR, FPR)

‒ Important in mission 
contexts where algorithm is 
deciding which samples to 
prioritize to evaluate further –
erring towards more inclusion 
could be better

• Indicated by slightly higher 
FPR than FNR
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4) Testing Metrics & Validation
Sample Receiver Operating Curve (ROC)

Made with Biorender



Raman Only Performance
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Algorithms Raman Only Raman Only, no 
mixed samples

K-nearest neighbors 
(KNN)

0.772 0.789

Logistic regression 
(LR)

0.556 0.684

Support vector 
machine (SVM)

0.522 0.635

Gaussian naïve 
Bayes (GNB)

0.766 0.795

Random Forest (RF) 0.770 0.814

Mean voting 
performance (avg.)

0.808 0.860



Coefficients Feature Importance
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Feature Importance: Raman Data

Decision Trees Feature Importance



• Systems are disproportionally misclassified if they are indicative “mixed” or 
indicative not-alive

‒ Algorithm can more effectively classify between living vs. not living, but not so 
much when non-alive biosignatures are involved

Raman Common Misclassifications
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Combination Classification Performance
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Algorithms Raman Only Combination 
(Element, Isotope, 

Reflectance, Raman)

Combination (Element, 
Isotope, Reflectance, 

Raman)
without mixed samples

K-nearest 
neighbors (KNN)

0.772 0.759 0.798

Logistic 
regression (LR)

0.556 0.743 0.783

Support vector 
machine (SVM)

0.522 0.652 0.717

Gaussian naïve 
Bayes (GNB)

0.766 0.693 0.714

Random Forest 
(RF)

0.770 0.856 0.891

Mean voting 
performance 

(avg.)

0.808 0.826 0.855



Coefficients Feature Importance
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Feature Importance: Combined Data

Decision 
Trees 
Feature 
Importance



• Systems are disproportionally misclassified if they are indicative “mixed” or 
indicative not-alive

‒ Algorithm can more effectively classify between living vs. not living, but not so 
much when non-alive biosignatures are involved

Combined Common Misclassifications
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• Conclusions
‒Manually engineered Raman features not very discriminatory, suggests need 
for other feature methods

• Combined features rely heavily on C and H based life and 13C delta ratio
‒Raman alone and combined performance improves without indicative-mixed 
samples

• Mixed samples are more challenging to classify indicative alive or non 
indicative which suggests these supervised algorithms are better at life-
detection but not so much with not-alive biosignatures

• Future steps
‒ Image classification – automating feature extraction and improving VNIR 
reflectance and Raman classification
‒Further data collection of more “indicative / indicative mixed” raw Raman 
sample data
‒Further agnosticization with elemental abundance data to elemental 
distributions
‒ Investigation into commonly misclassified systems 15

Conclusions & Future Directions
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