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Abstract27

Biases in aerosol optical depths (AOD) and land surface albedos in the AeroCom28

models are manifested in the top-of-atmosphere (TOA) clear-sky reflected shortwave (SW)29

fluxes. Biases in the SW fluxes from AeroCom models are quantitatively related to bi-30

ases in AOD and land surface albedo by using their radiative kernels. Over ocean, AOD31

contributes about 25% to the 60◦S-60◦N mean SW flux bias for the multi-model mean32

(MMM) result. Over land, AOD and land surface albedo contribute about 40% and 30%,33

respectively, to the 60◦S-60◦N mean SW flux bias for the MMM result. Furthermore,34

the spatial patterns of the SW flux biases derived from the radiative kernels are very sim-35

ilar to those between models and CERES observation, with the correlation coefficient36

of 0.6 over ocean and 0.76 over land for MMM using data of 2010. Satellite data used37

in this evaluation are derived independently from each other, consistencies in their bias38

patterns when compared with model simulations suggest that these patterns are robust.39

This highlights the importance of evaluating related variables in a synergistic manner40

to provide an unambiguous assessment of the models, as results from single parameter41

assessments are often confounded by measurement uncertainty. We also compare the AOD42

trend from three models with the observation-based counterpart. These models repro-43

duce all notable trends in AOD (i.e. decreasing trend over eastern United States and in-44

creasing trend over India) except the decreasing trend over eastern China and the ad-45

jacent oceanic regions due to limitations in the emission dataset.46

Plain Language Summary47

Aerosol optical depths (AOD) from satellite retrievals have been used to evaluate48

the AeroCom models. However, these evaluations are often non-conclusive due to un-49

certainties in the retrievals and the differences among many products. In this study, bi-50

ases in top-of-atmosphere reflected shortwave fluxes are linked to biases in aerosol op-51

tical depth and surface albedo by using their respective radiative kernels. Over ocean,52

AOD contributes about 25% to the 60◦S-60◦N mean SW flux bias for the multi-model53

mean (MMM) result. Over land, AOD and land surface albedo contribute about 40%54

and 30%, respectively, to the 60◦S-60◦N mean SW flux bias for the MMM result. The55

spatial patterns of the SW flux biases derived from the radiative kernels are very sim-56

ilar to the model flux bias relative to satellite observations, with the correlation coeffi-57

cient of 0.6 over ocean and 0.76 over land for MMM using data of 2010. This study high-58

lights the importance of evaluating related variables in a synergistic manner to provide59

an unambiguous assessment of the models, as results from single parameter assessments60

are often confounded by measurement uncertainty.61

1 Introduction62

Atmospheric aerosols play important roles in the climate systems directly by scat-63

tering and absorbing the solar and terrestrial radiation, and indirectly by modifying the64

cloud properties. The direct aerosol radiative effect (DARE) and direct aerosol radia-65

tive forcing (DARF) are often used to quantify aerosols’ impact on climate. DARE is66

defined as the mean radiative flux perturbation due to the presence of aerosols (both nat-67

ural and anthropogenic), while DARF is the anthropogenic component of DARE. Many68

studies used satellite measurements to estimate the DARE (e.g., Loeb & Manalo-Smith,69

2005; Remer & Kaufman, 2006; Yu et al., 2006; Su et al., 2013). However, determining70

DARF from satellite measurements is more challenging because current satellite sensors71

cannot discriminate anthropogenic aerosols from natural aerosols. Our current under-72

standing of DARF relies mostly on the AeroCom model simulations (Schulz et al., 2006;73

Myhre et al., 2013), with a few studies estimating observational constrained DARF (Bellouin74

et al., 2005, 2008; Su et al., 2013; Paulot et al., 2018).75
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As the AeroCom models are vital in advancing our understanding on how aerosols76

are affecting the climate and its future projection, many aspects of the models have been77

examined under prescribed conditions. Stier et al. (2013) assessed the host model un-78

certainties on DARF by prescribing identical aerosol radiative properties in all models79

and found significant model diversity in simulated clear- and all-sky DARF. One of the80

variables that contributed to this diversity was surface albedo which had a global mean81

inter-model relative standard deviation of 4% and significantly larger variability on re-82

gional scale. Randles et al. (2013) examined the performance of radiative transfer schemes83

used in the models and found that diversity among models in the top-of-atmosphere (TOA)84

DARF depended on the solar zenith angle (SZA) and was the largest for purely scatter-85

ing aerosols at low SZAs (∼20%). They also noted that models overestimated the TOA86

clear-sky flux under aerosol-free conditions by about 1.3 to 3.5% depending on the at-87

mospheric profiles and SZAs.88

Aerosol properties from the AeroCom models have been compared against satel-89

lite retrievals and AErosol RObotic NETwork (AERONET, Holben et al., 2001) mea-90

surements extensively (e.g., Kinne et al., 2006; Gliß et al., 2021). However, radiative fluxes91

from the AeroCom models have not been compared with the satellite observations. In92

this study, TOA fluxes from AeroCom phase III 2019 control experiment are compared93

with fluxes from the Clouds and the Earth’s Radiant Energy System (CERES) (Wielicki94

et al., 1996; Loeb et al., 2016). We will focus on clear-sky TOA shortwave (SW) flux com-95

parison, because of the large inter-model differences in cloud fraction (Stier et al., 2013).96

In order to understand the global and regional flux differences between CERES and the97

AeroCom models, differences in aerosol optical depth (AOD) and land surface albedo98

(α) are also presented, as these two variables contribute the most to TOA SW flux un-99

der clear-sky conditions. The observational-based SW flux is independently derived from100

AOD and land surface albedo datasets used in this study based on different satellite in-101

struments and algorithms. When the AOD and surface albedo differences can explain102

the SW flux differences, it is more likely that these differences are robust. Using differ-103

ent observations to evaluate the models synergistically can therefore be beneficial over104

using a single variable and provide more reliable diagnostics for model evaluation. Fur-105

thermore, relying on radiative kernels for AOD and surface albedo, one can tie the AOD106

and land surface albedo differences between models and observations to the flux differ-107

ences. The AeroCom models included in this study are briefly described in section 2. Satel-108

lite observations and datasets are in section 3, and the radiative kernels are described109

in section 4. Results on global and regional comparisons are presented in Section 5, and110

trend comparisons are in Section 6. Discussions and conclusions are in Section 7.111

2 AeroCom Models112

This study uses the AeroCom phase III 2019 control experiment (https://wiki.met.113

no/aerocom/phase3-experiments). For this experiment, models use harmonized anthro-114

pogenic and biomass burning emissions from the Community Emission Data System (CEDS,115

Hoesly et al., 2018) for Coupled Model Intercomparison Project Phase 6 (CMIP6). Mod-116

eling centers are required to submit simulation results for at least 2010 and 1850, using117

2010 meteorology and prescribed sea-surface temperature from input4MIPS (Durack &118

Taylor, 2018). Among the models that participated in this control experiment, 9 mod-119

els provided all necessary variables (i.e. aerosol optical depth, TOA reflected SW flux120

under clear-sky conditions, surface upwelling and downwelling SW flux), and are included121

in this study. Table 1 lists these models, along with their spatial resolution and refer-122

ences describing the details of each model. All model outputs are linearly interpolated123

to a 1◦×1◦ latitude-longitude grid to facilitate comparisons with satellite observational124

data. The global means calculated using the interpolated grid differ less than 0.01% from125

using the original spatial resolutions. A brief description of each model is given in Ap-126

pendix A.127

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Table 1. List of AeroCom models used in this study.

Long name Short name lat × long Reference

CAM5-ATRAS CAM5 1.9◦ × 2.5◦ Matsui2017
ECHAM6.3-HAM2.3-met2010 ECHAM 1.875◦ × 1.875◦ Tegen2019
GFDL-AM4-met2010 GFDLm 1.00◦ × 1.25◦ Zhao2018
GFDL-AM4-fSST GFDLf 1.00◦ × 1.25◦ Zhao2018
GISS-ModelE2.1.1-OMA GISS OMA 2.0◦ × 2.5◦ Tsigaridis2013, Bauer2020
GISS-ModelE2.1.1-MATRIX GISS MATRIX 2.0◦ × 2.5◦ Bauer2008
INCA INCA 2.25◦ × 2.50◦ Balkanski2004, Schulz2009
MIROC-SPRINTARS SPRINTARS 0.55◦ × 0.55◦ Takemura2005
OsloCTM3v1.01-met2010 Oslo 2.25◦ × 2.25◦ Lund2018, Sovde2012

3 Satellite Observations128

3.1 TOA Reflected Shortwave Flux129

Clear-sky TOA radiative fluxes for 1◦×1◦ latitude-longitude regions are from the130

CERES Energy Balanced and Filled (EBAF) Ed4.1 product (Loeb et al., 2018). EBAF131

data takes advantage of the many algorithm improvements that have been made in the132

Edition 4 CERES Level 1-3 data products and it is the only global dataset that can be133

used to study the variations of Earth radiation budget over a range of temporal and spa-134

tial scales. The Earth’s energy imbalance in the CERES EBAF is constrained to be con-135

sistent with ocean heat content (Johnson et al., 2016) by using an objective constrain-136

ment algorithm to adjust SW and longwave (LW) TOA fluxes within their ranges of un-137

certainty to remove the inconsistency between average global net TOA flux and heat stor-138

age in the Earth-atmosphere system (Loeb et al., 2009, 2018). Additionally, because of139

the relatively coarse spatial resolution of the CERES instruments (∼20-km at nadir),140

the standard CERES Level-3 data products have many spatial gaps in monthly mean141

clear-sky TOA flux maps due to the absence of cloud-free areas occurring at the CERES142

footprint scale in some 1◦×1◦ regions. In EBAF, this problem is mitigated by inferring143

clear-sky fluxes from both CERES and MODIS measurements to produce a new clear-144

sky TOA flux climatology for every 1◦×1◦ grid box every month. The uncertainty for145

TOA clear-sky SW flux is estimated as 5 Wm−2 on the grid box level (Loeb et al., 2018).146

EBAF data has been widely used to evaluate global general circulation models (e.g., Pin-147

cus et al., 2008; Su et al., 2010; H. Wang & Su, 2013; Wild et al., 2013; Paulot et al., 2018;148

S. E. Bauer et al., 2020; Loeb et al., 2020).149

3.2 Aerosol Optical Depth150

Aerosol optical depths (AOD) retrieved from Moderate Resolution Imaging Spec-151

troradiometer (MODIS) and Multi-Angle Imaging Spectroradiometer (MISR) are used152

in this study to compare with the model simulations and to help interpreting the SW153

flux biases. The Aqua MODIS collection 6.1 monthly gridded Dark Target and Deep Blue154

merged AOD product (Sayer et al., 2014) combines AODs retrieved from Dark Target155

over-water algorithm with Dark Target and Deep Blue over land algorithms to provide156

more complete AOD spatial coverage over snow-ice-free surfaces. Validations against AERONET157

and Maritime Aerosol Network (MAN) data indicate that MODIS dark target retrievals158

agree well with AERONET over land (high correlation and low bias) (Levy et al., 2013).159

Over ocean, Aqua MODIS AODs are also highly correlated with those from AERONET,160

but biased high at low AODs and the scatter for high AODs is significantly larger than161
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the expected error (Levy et al., 2013; Schutgens et al., 2020). Validations of the deep blue162

retrievals over land also indicate very low bias (Sayer et al., 2014; Schutgens et al., 2020).163

MISR Level 3 gridded AOD product at 0.5◦×0.5◦ spatial resolution is also used in164

this study. The MISR Level 3 product is aggregated from higher spatial resolution ver-165

sion 23 (V23) level 2 data (Garay et al., 2020). Compared to the V22 AOD retrieval, V23166

implemented many changes which resulted in significant reduction in AOD over ocean.167

The 16-year mean AOD is reduced from 0.157 in V22 to 0.114 in V23 over ocean. How-168

ever, the AODs over land agree well between V22 and V23. Validations against the AERONET169

measurements show modest improvement in V23 retrievals over land in comparison to170

V22, with the absolute bias decreases from -0.004 to -0.002 and the percent of retrievals171

that fall within the error envelope, defined as ±(0.03+10%AOD), increases from 59.7%172

to 66.1%. However, V23 retrievals tend to overestimate AOD at low AODs (like MODIS,173

mentioned above) and underestimate AOD at high AODs. Validations against MAN AOD174

derived from handheld Microtops Sun photometers show significant improvement in V23,175

the absolute bias is reduce from 0.037 to 0.0 and the percent of retrievals that fall within176

the error envelope increases from 61% to 87% in comparison to V22.177

3.3 Surface Albedo178

The Terra and Aqua combined MODIS Bidirectional Reflectance Distribution Func-179

tion (BRDF)/albedo product (MCD43C1, Version 6) provides the daily weighting pa-180

rameters to calculate the directional hemispherical reflectance (black-sky albedo) and181

bihemispherical reflectance (white-sky albedo) at a spatial resolution of 0.05◦ over land.182

These parameters are used in polynomial albedo representations to estimate the black-183

sky albedo at any given SZA and the white-sky albedo (Li & Strahler, 1992; Lucht et184

al., 2000). The MODIS broadband surface albedos agree well with the in-situ ground-185

based and airborne measurements, the root mean square errors are less than 0.020 for186

forest during the dormant periods and 0.025 during the snow-covered periods, less than187

0.030 for agriculture and grassland during the dormant periods and 0.050 during the snow-188

covered periods, and less than 0.047 for the snow covered tundra (Z. Wang et al., 2012,189

2014; Cescatti et al., 2012; Roman et al., 2013). The MODIS broadband surface albe-190

dos also agree with other satellite products to within 0.01 (Taberner et al., 2010; Car-191

rer et al., 2010).192

The actual surface albedo is a combination of black-sky albedo and white-sky albedo193

from the following (Schaaf et al., 2002):194

α(θ0, AOD, φ) = αws × f(θ0, AOD, φ) + αbs(θ0) × (1 − f(θ0, AOD, φ)) (1)

where αws is the white-sky albedo and αbs is the black-sky albedo, f is the fraction of195

diffuse light and depends on the SZA (θ0), AOD, and aerosol types (φ). A look-up ta-196

ble of f (available at https://www.umb.edu/spectralmass/terra aqua modis/modis user tools)197

is provided for continental and maritime aerosol types with AODs ranging from 0 to 0.98198

for SZAs between 0◦ and 89◦.199

For a given month, actual surface albedo is calculated every 10 minutes to take into200

account that black-sky albedo is a function of SZA and the value of f is determined us-201

ing monthly MODIS Dark Target and Deep Blue merged AOD assuming continental aerosol202

type. At every time step within every 1◦×1◦ grid, surface albedo calculated at 0.05◦ res-203

olution are converted to surface upwelling SW fluxes by using the clear-sky surface down-204

welling SW fluxes from CERES Edition 4 synoptic daily hourly product (SYN1deg-1Hour,205

Doelling et al., 2013), then average into the 1◦×1◦ grid. These upwelling SW fluxes are206

averaged over the month, then divided by the monthly mean downwelling SW flux to207

produce the monthly mean surface albedo.208
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Figure 1. The monthly mean TOA shortwave flux radiative kernels (in Wm−2) for aerosol

optical depth (a) April, (b) October, and surface albedo (c) April, (d) October.

4 Radiative Kernels209

Radiative kernels are partial derivatives of TOA SW flux derived by imposing small210

systematic perturbations to the base-state values. Thorsen et al. (2020) derived aerosol211

radiative kernels using 1 year (2007) of 3-hourly MERRA-2 data. Radiative kernels of212

aerosol optical depth, single-scattering albedo (SSA), aerosol asymmetry factor, and sur-213

face albedo are derived for each month. These kernels are able to reproduce the aerosol214

direct radiative effect to within 0.3 Wm−2 when compared to the true aerosol direct ra-215

diative effect calculation in MERRA-2. These kernel calculations are very computational216

costly, thus kernels are only calculated using 2007 data. Although it would be most ac-217

curate to apply these kernels to the same year of measurements and simulations, the im-218

pact of interannual variability on these kernels is expected to be small (Thorsen et al.,219

2020) and they are applied to the AeroCom simulations of 2010 (the output year selected220

by the AeroCom phase III experiment).221

Figure 1 shows the AOD and surface albedo kernels for April and October (differ222

from the annual mean results presented in Thorsen et al. (2020)). Kernels are expressed223

in units of watts per meter squared per unit change in the respective variables. Figures224

1a and 1b show that the TOA SW flux would increase by more than 30 Wm−2 over the225

oceans off the west coast of Africa if the AOD were increased by 1, whereas the incre-226

ment is less than 10 Wm−2 over the Sahara desert because TOA SW flux has smaller227

sensitivity to AOD changes over bright surface than over dark surface. Aerosol compo-228

sition also affects the AOD kernels. For example, the AOD radiative kernel over South229

America is about 25 Wm−2 in April and is reduced to 15 Wm−2 in October (see Fig-230

ure 1b) during the biomass burning season. Figure 1c and 1d shows the regional TOA231

SW flux changes for unit increase in surface albedo, which are mostly sensitive to solar232

insolation and are also sensitive to the initial surface albedo. In this study, we use these233

kernels to assess the contributions of AOD and surface albedo biases to TOA SW flux234

biases in the AeroCom models.235

The clear-sky TOA reflected SW flux bias in the model can be expressed as:236

∆F = Fm − Fo = ∆FAOD + ∆Fα + ∆Fχ, (2)
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Figure 2. TOA clear-sky reflected SW flux comparisons between CERES EBAF, individual

AeroCom models, and the multi-model mean (MMM) over ocean (a) and land (b) between 60◦S

and 60◦N.

where Fm and Fo are the TOA reflected SW flux from models and CERES EBAF, ∆FAOD237

and ∆Fα are the flux biases caused by biases in AOD and surface albedo in models rel-238

ative to MODIS retrievals calculated using their respective radiative kernels, and ∆Fχ239

is the residual in flux bias, which can be attributed to differences in aerosol composition240

and atmospheric state (i.e. water vapor, ozone, etc.), and also to uncertainties in radia-241

tive transfer calculations, satellite retrievals, and kernel calculations.242

5 Comparisons Between Models and Observations243

Figure 2 shows the seasonal cycle of monthly mean clear-sky SW flux calculated244

over ocean and land between 60◦S and 60◦N (60S-60N) from CERES EBAF (black line),245

nine AeroCom models, and the multi-model mean (MMM, black dashed line) result for246

2010. Figure 3 shows the seasonal cycle of monthly mean AOD over 60S-60N ocean and247

land from MODIS, MISR, nine AeroCom models, and the MMM. Over ocean, the sea-248

sonal cycle of SW flux is very similar to that of solar insolation as the AODs remain rel-249

atively constant throughout the year (Figure 3a). Clear-sky SW fluxes from INCA and250

ECHAM-HAM models are greater than those from CERES EBAF throughout the year,251

and AODs from these two models are also on the high end when compared with the satel-252

lite retrievals, consistent with the AOD assessment from Gliß et al. (2021). SW flux from253

Oslo agrees with EBAF almost perfectly, despite its AOD is on the low end when com-254

pared with satellite retrievals. Monthly mean clear-sky SW fluxes from all other mod-255

els are smaller than EBAF by about 2-3 Wm−2, and their AODs are generally smaller256

than the MODIS retrievals as well. It is worth noting that even though AODs from SPRINT-257

ARS are much lower than all other models, its SW fluxes are actually greater than a cou-258

ple of other models because its aerosols are almost non-absorbing (see figure 10). The259

MMM fluxes are about 1-2 Wm−2 smaller than CERES EBAF and the MMM AODs260

lie in between MODIS and MISR AODs. Over land, the GFDL models produce greater261

clear-sky SW fluxes than EBAF, GISS models agree with EBAF fairly well, and all other262

models have low biases. This results in MMM being 1-2 Wm−2 smaller than CERES EBAF.263

AODs from all models are outside the boundaries of satellite retrievals. Thus the MMM264

AODs are smaller than both MODIS and MISR AODs except during the boreal sum-265

mer months. There are no correspondences between flux biases and AOD biases over land,266

as land surface albedo biases from these models also contribute to the flux biases.267

The seasonal cycles of AODs from MODIS and MISR are very similar over both268

ocean and land (Figure 3). However, the AOD seasonal cycles from the AeroCom mod-269

els differ significantly from the observations and from each other, especially over land.270

The MISR AODs are smaller than the MODIS AODs. As mentioned in section 3.2, the271

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 3. Aerosol optical depth comparisons between satellite retrievals (MODIS and

MISR), individual AeroCom models, and the multi-model mean (MMM) over ocean (a) and

land (b)between 60◦S and 60◦N.

Table 2. Annual mean SW flux biases of multi-model mean relative to CERES EBAF (∆F )

over land and ocean, flux biases due to AOD biases ∆FAOD and land surface albedo biases ∆Fα,

and the flux bias residues ∆Fχ.

Land Ocean
Global Tropical Global Tropical

∆F -1.0 -1.7 -1.7 -2.8
∆FAOD -0.4 -0.4 -0.4 -0.8
∆Fα -0.3 -0.9 — —
∆Fχ -0.3 -0.4 -1.3 -2.0

mean AOD over ocean in the recently released MISR V23 is smaller than V22 by about272

0.04, while the mean AOD over land is nearly unchanged. Schutgens et al. (2020) inter-273

compared AOD retrievals from 14 satellite products (MISR was not included) and eval-274

uated them against the AERONET and MAN results. When collocating each individ-275

ual satellite product with either AERONET or MAN, they found that over land Aqua276

MODIS AODs show good agreement with AERONET (high correlation and low bias);277

Aqua MODIS AODs over ocean are also highly correlated with those from AERONET278

and MAN, but are biased high. They also argued that the satellite retrieval diversity can279

be used as a proxy for retrieval uncertainty. Judging from their analysis, it is reasonable280

to assume Aqua MODIS retrievals represent the high end of AODs whereas MISR re-281

trievals represent the low end over ocean. It is also notable that monthly gridded AODs282

from MISR often suffer spatial gaps and incoherent features because of MISR’s narrow283

swath, and the sampling difference also likely contributed to the global mean AOD dif-284

ference seen between MODIS and MISR. Hence, in the following discussion, we only present285

results using MODIS AODs, but the regional difference features with respect to mod-286

els remain the same when MISR AODs are used instead (see Appendix B).287

To understand the contributions of AOD and land surface albedo biases to TOA288

SW flux biases, ∆FAOD is calculated over ocean and land and ∆Fα is calculated over289

land using their respective radiative kernels. Figure 4a shows the monthly mean ∆F for290

MMM over 60S-60N and tropical (30◦S-30◦N) ocean (solid lines), and the flux residu-291

als (∆Fχ) after considering the contribution of AOD biases to ∆F (dashed lines). Flux292

biases are reduced by up to 0.6 Wm−2 over 60S-60N ocean and by up to 1 Wm−2 over293

tropical ocean after accounting for ∆FAOD. Figure 4b shows the monthly mean ∆F for294

MMM over 60S-60N and tropical land (solid line), and after accounting for the contri-295
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Figure 4. Monthly mean multi-model mean SW flux biases relative to CERES EBAF (solid

lines) for 2010 over 60◦S–60◦N and tropical (30◦S–30◦N) ocean (a) and land (b). Over ocean,

the dashed lines are the flux bias residuals (∆Fχ) after accounting for the contributions of AOD

biases to the flux biases. Over land, lines with circles represent(∆F − ∆Fα) and dashed lines

are the flux bias residuals after accounting for the contributions of both AOD and surface albedo

biases to the flux biases.

bution of ∆FAOD (solid lines with circles) and after accounting for both ∆FAOD and296

∆Fα (dashed lines). Flux biases are reduced by up to 3 Wm−2 after accounting for bi-297

ases in AOD, and are reduced further by accounting for biases in surface albedo. Table298

2 summarizes the annual mean ∆F for MMM, and how much AOD and surface albedo299

(only over land) biases contribute to ∆F . Over ocean, accounting for the AOD bias re-300

duces the MMM flux bias by about 25%. Over land, accounting for the AOD and sur-301

face albedo biases reduces the MMM flux bias by about 70%. The residual in flux bias302

can be explained by differences in aerosol composition, radiative transfer calculation un-303

certainties of the models (Randles et al., 2013), and uncertainties in the radiative ker-304

nels and in satellite retrievals.305

The monthly mean ∆F for AeroCom models and their respective ∆Fχ are show306

in Figure 5 for all models listed in Table 1. Over ocean, accounting for the biases in AOD307

reduces flux biases for almost all models, with larger impact over tropical oceans than308

over global oceans. Over land, accounting for the biases in AOD and surface albedo not309

only reduces the flux biases but also minimizes the seasonal dependence for Oslo, SPRINT-310

ARS, INCA and CAM5 models. For the GFDL models, accounting for the biases in AOD311

and surface albedo reverses the models from overestimating to underestimating the flux312

of about the same magnitude. For ECHAM model, ∆Fχ is slightly more negative than313

∆F . For the two GISS models, accounting for the biases in AOD and surface albedo in-314

creases the flux biases by about 5 Wm−2. This is largely due to the flux biases having315

little correspondence with the AOD and albedo biases, particularly over the Amazon,316

central Africa, and the Tibetan Plateau (see Figure 8).317

On a 1◦×1◦ latitude-longitude grid box level, the flux biases due to AOD and sur-318

face albedo biases derived from using the radiative kernels correlate very well with ∆F319

for MMM. Figure 6a shows the relationship between ∆F and ∆FAOD over ocean using320

all gird boxes between 50◦S–40◦N of the entire year of 2010 (approximately 255,000 data321

points used), and the correlation coefficient is 0.6. MODIS retrievals produce some spu-322

riously large AODs over high latitude oceans (possibly due to the presence of sea ice)323

and are therefore excluded in the correlation analysis. Figure 6b shows the relationship324

between ∆F and ∆FAOD+∆Fα over land using all gird boxes between 60◦S–60◦N for325

the entire year of 2010 (approximately 142,000 data points used), and the correlation co-326

efficient is 0.76. Table 3 lists the correlation coefficients for MMM and nine AeroCom327

models between ∆F and ∆FAOD over ocean and between ∆F and ∆FAOD+∆Fα over328

land for four seasonal months and the entire year. Over land, MMM has the highest cor-329
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Figure 5. Monthly mean SW flux biases of the AeroCom models for 2010 over 60◦S–60◦N

ocean (solid blue lines) and land (solid orange lines), and over tropical (30◦S–30◦N) ocean (solid

cyan lines) and land (solid red lines). The dashed lines are the flux bias residuals (∆Fχ) for the

corresponding regions. (a) CAM5, (b) ECHAM, (c) GFDLf, (d) GFDLm, (e) GISS OMA, (f)

GISS MATRIX, (g) INCA, (h) SPRINTARS, and (i) Oslo.

relation in January and the lowest in October; Over ocean, MMM has the highest cor-330

relation in April and the lowest correlation in October. Correlation coefficients for in-331

dividual models vary across the seasons. Over land, the yearly correlation coefficient is332

the highest for SPRINT model (r=0.94) and lowest for GISS models (r=0.78). Over ocean,333

the yearly correlation coefficient is the highest for CAM5 and ECHAM-HAM models (r=0.78)334

and lowest for GISS MATRIX model (r=0.52).335

Figure 7 shows the MMM regional TOA SW flux biases (a), SW flux biases due336

to biases in AOD and surface albedo calculated from their radiative kernels (b), AOD337

biases (c), and land surface albedo biases(d) for April 2010. For this month the 60S-60N338

mean ∆F is -1.8 Wm−2 and -1.2 Wm−2 over ocean and land. The spatial patterns of339

flux bias derived from kernels correspond well with ∆F . Correlation coefficient is 0.66340

between ∆F and ∆FAOD over ocean, and is 0.75 between ∆F and ∆FAOD+∆Fα over341

land. After accounting for the contributions of AOD and land surface albedo to ∆F , the342

60S-60N mean flux bias (∆Fχ) is reduced to -1.3 Wm−2 and 0.1 Wm−2 over ocean and343

land.344

Good correspondence between ∆F and flux biases derived from radiative kernels345

is also observed for all models. Figure 8 shows the regional ∆F (left panels), and SW346

flux biases due to AOD and land surface albedo biases calculated from their radiative347

kernels (right panels) for April 2010. The spatial distributions between the two GFDL348

models are very similar; hence, only the GFDLf (observed SST without wind nudging)349

simulation is shown. The GISS MATRIX model performs better than GISS OMA model350

in terms of simulating sulfate aerosols and AOD (S. E. Bauer et al., 2020). We also find351

that GISS MATRIX model agrees better than GISS OMA when compared to MODIS352

and MISR AODs. Here only results from GISS MATRIX model are shown.353
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Table 3. Correlation coefficients between ∆F and ∆FAOD+∆Fα over land, and between ∆F

and ∆FAOD over ocean for January, April, July, October and the entire year of 2010 for multi-

model mean (MMM) result and the nine AeroCom models.

Model Land (60◦S–60◦N) Ocean (50◦S–40◦N)
Jan Apr July Oct Year Jan Apr July Oct Year

MMM 0.82 0.75 0.73 0.72 0.76 0.65 0.66 0.53 0.48 0.60
CAM5 0.88 0.81 0.73 0.70 0.81 0.78 0.77 0.79 0.70 0.78
ECHAM 0.84 0.86 0.69 0.71 0.81 0.78 0.78 0.72 0.68 0.78
GFDLm 0.83 0.83 0.72 0.71 0.79 0.62 0.71 0.53 0.54 0.61
GFDLf 0.89 0.86 0.73 0.70 0.84 0.58 0.76 0.53 0.69 0.68
GISS OMA 0.81 0.78 0.75 0.75 0.78 0.74 0.69 0.62 0.68 0.68
GISS MATRIX 0.80 0.78 0.76 0.75 0.78 0.62 0.52 0.44 0.45 0.52
INCA 0.85 0.87 0.84 0.85 0.85 0.70 0.72 0.65 0.59 0.67
SPRINTARS 0.93 0.94 0.95 0.94 0.94 0.55 0.66 0.56 0.54 0.59
Oslo 0.86 0.88 0.85 0.84 0.85 0.74 0.69 0.54 0.51 0.64

height

Figure 6. Relationship between SW flux biases of multi-model mean relative to CERES

EBAF and kernel based flux biases using all grid boxes over ocean between 50◦S–40◦N using all

12 months of 2010 (a), and using all grid boxes over land between 60◦S–60◦N using all 12 months

of 2010 (b). Over land, kernel SW flux biases are ∆FAOD + ∆Fα. Over ocean, kernel SW flux

biases are ∆FAOD. Color bar shows the relative number density.
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Figure 7. TOA clear-sky reflected SW flux biases of multi-model mean (MMM) (a), and TOA

clear-sky reflected SW flux biases due to AOD biases (shown in c) and surface albedo biases

(shown in d) calculated from radiative kernels (b), aerosol optical depth biases of MMM relative

to MODIS (c), and land surface albedo biases of MMM relative to MODIS (d) for April 2010.

Over ocean, the spatial distribution of ∆F corresponds well with ∆FAOD for all354

models. For April, ECHAM-HAM model has the highest correlation coefficient of 0.78355

and GISS MATRIX model has the lowest correlation coefficient of 0.52 (Table 3). A com-356

mon feature for all models is that they underestimate the dust outflow off the west coast357

of Africa (Figure 9), thus also underestimate the TOA SW flux. All models except CAM5358

and SPRINTARS overestimate AOD and SW flux over the Southern Ocean, with INCA359

model has the largest overestimation. It is worth pointing out that several models (i.e.360

ECHAM-HAM, GISS MATRIX, and SPRINTARS) significantly overestimate AOD and361

flux over New Caledonia and surroundings. Over land, the spatial distribution of ∆F362

and ∆FAOD+∆Fα are highly correlated, despite that there are large diversities among363

models in terms of AOD and land surface albedo (Figure 9). The highest correlation co-364

efficient is 0.94 for SPRINTARS model and the lowest is 0.78 for GISS models for April.365

The high correlations between ∆F and kernel-based flux biases indicate that AOD and366

land surface albedo biases can explain most of the SW flux biases. This finding is sig-367

nificant as the MODIS AOD and surface albedo, and the CERES clear-sky flux are de-368

rived independently from each other (i.e., they rely upon different measurements and al-369

gorithms). Consistencies in their biases indicate that the AOD biases shown in this study370

are robust and constraining the modeled AODs by satellite observations and correcting371

the land surface albedo used in the models will improve the SW flux agreement between372

models and CERES EBAF.373

The consistency in spatial distributions between AOD/surface albedo biases and374

SW flux biases demonstrates that independently derived satellite products are valuable375

in diagnosing model deficiencies when used jointly. Consistency in regional features of376

these variables can be helpful in identifying the particular processes and/or parameter-377

izations that are responsible for these biases. For example, when comparing AODs off378

the west coast of Africa from MODIS with AODs from the models, it is unclear if the379

MODIS retrieval overestimates the dust outflow from Africa or if the models underes-380

timate the dust outflow. Only by comparing the clear-sky TOA SW fluxes from CERES381

with those from the models confirms that the models indeed underestimate the dust out-382

flow there which result in low biases of SW flux. One may argue that overestimating dust383
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Figure 8. TOA clear-sky reflected SW flux biases fo AeroCom models relative to CERES

EBAF for April 2010 (left panels). Right panels use radiative kernel calculations to determine the

flux biases associated with AOD and surface albedo biases.
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Figure 9. AOD biases (left panels) and land surface albedo biases (right panels) of AeroCom

models relative to MODIS retrievals for April 2010.
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Figure 10. Single-scattering albedo for (a) MERRA-2, (b) CAM5, (c) ECHAM, (d) GFDLf,

(e) GISS MATRIX, (f) INCA, (g) SPRINTARS, (h) Oslo, and (i) multi-model mean for April.

MERRA-2 result is for 2007, and all others are for 2010.

aerosol absorption can also contribute to the flux biases. However, to explain the mag-384

nitude of flux bias shown in Figure 8, biases of dust aerosol SSA need to be on the or-385

der of 0.25 based on the SSA radiative kernels from Thorsen et al. (2020). We thus con-386

clude that the flux biases over the west coast of Africa are mostly due to AOD biases.387

Additionally, accounting for the impact of AOD and surface albedo biases on SW flux388

using radiative kernels of these variables significantly improves the regional flux agree-389

ment between models and CERES EBAF. The agreements of monthly global and trop-390

ical means over ocean and land are also improved for all models except for the GISS mod-391

els.392

As mentioned before, differences in aerosol composition, radiative transfer calcu-393

lation uncertainties of the models (Randles et al., 2013), and uncertainties in the radia-394

tive kernels and in satellite retrievals can all contribute to ∆Fχ. The radiative kernels395

that we use in this study are based on MERRA-2 reanalysis, whose base-state aerosols396

are different from the AeroCom models. Over ocean, aerosols in MERRA-2 are gener-397

ally more absorbing than the AeroCom models (Figure 10). Thus the AOD kernels over398

ocean are less sensitive to changes in AOD than if an AeroCom model (less absorbing)399

is used as the base state. Over land, single scattering albedo (SSA) from many AeroCom400

models agree reasonable well with that from MERRA-2 (global mean SSA difference is401

about 0.02-0.03), except that GISS MATRIX model has much lower SSA than MERRA-402

2 (global mean SSA difference exceeds 0.06) whereas SPRINTARS model has much higher403

SSA than MERRA-2 (global mean SSA difference is about 0.04). The differences in aerosol404

composition affects the magnitude of kernel derived flux biases from AOD and surface405

albedo biases and are part of ∆Fχ. Although accounting for the biases in AOD and sur-406

face albedo between AeroCom models and satellite retrievals does not entirely eliminate407

the TOA SW flux bias, it certainly reduces the global mean biases (except for GISS mod-408

els over land potentially due to its aerosols are very absorbing) and mitigates large re-409

gional biases for all models. Currently no aerosol composition observations on the global410

scales are available for constraining the model simulations, but correcting the aerosol load-411
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Figure 11. Aerosol optical depth trends (per decade) calculated using satellite retrievals from

Aqua MODIS (a) and using ECHAM-HAM (b), GFDL (c), and Oslo (d) model simulations.

Data from July 2002 to December 2017 are used here. All models use emissions from CEDS until

2014, but use different emissions between 2015 and 2017.

ing and land surface albedo in the models then adjusting the aerosol composition, size412

distribution, effective refractive indices, and aerosol hygroscopic growth to minimize the413

residual fluxes can further improve the TOA SW flux agreement between models and414

observation. Radiative kernels of each model can be developed to achieve maximum con-415

sistency to guide the model development.416

6 Regional Trends417

ECHAM-HAM, GFDL (AMIP run), and Oslo models also provide historical sim-418

ulations which can be used to calculate the regional trends in aerosol distributions. Here419

we compare the regional trends in AODs derived from these models with those from Aqua420

MODIS retrievals using the time period (July 2002 to December 2017) common to both.421

All three models use emissions from CEDS until 2014. However, each model handles the422

emissions between 2015 and 2017 differently. ECHAM-HAM used the CMIP6 Shared423

Socioeconomic Pathways (SSP) 3-7.0 emission scenario (Gidden et al., 2019). Oslo used424

the SSP2-4.5 middle of the road emission scenario (Fricko et al., 2017). GFDL used CEDS425

anthropogenic and biomass burning emissions of 2014 for 2015-2017, and the dust and426

sea-salt emissions are calculated using the actual wind speed produced by the model. Fig-427

ure 11 shows the AOD trend per decade calculated from Aqua MODIS and from model428

simulations, and areas with stipplings indicate the trend is significant at the 95% con-429

fidence interval. All three models reproduce the decreasing aerosol trends over Europe,430

eastern United States and the Atlantic Ocean, and the increasing trends over India, In-431

dian Ocean, Arabian Peninsular, and Central Africa. The most notable difference among432

the models is over eastern China and the adjacent oceanic regions where MODIS indi-433

cates a decreasing trend. The vastly different trends among the models are due to dif-434

ferent emission data used between 2015-2017 for the three models, and the fact that some435

pathway scenarios significantly underestimate the recent decline in anthropogenic aerosol436

emissions over China (Z. Wang et al., 2021).437
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The direct aerosol radiative effect (DARE) is the difference between the TOA SW438

flux for a pristine atmosphere with no aerosols and the actual atmosphere with aerosols439

(Loeb et al., 2021):440

DARE = F (0, α,X) − F (AOD,α,X) (3)

where α is the surface albedo and X represents other atmospheric variables that influ-441

ence TOA SW flux. The deseasonalized anomaly in DARE is:442

δDARE = δF (0, α,X) − δF (AOD,α,X) (4)

Deseasonalized DARE anomaly and trend can be readily calculated from model outputs.443

However, it is more challenging to derive DARE from observations as pristine conditions444

cannot be observed directly. Assuming the contribution of other atmospheric variables445

to δF (0, α,X) is negligible, then δDARE can be expressed as follows:446

δDARE = δF (α) − δF (AOD,α,X) (5)

Here δF (α) is the TOA flux anomaly due to surface albedo change, and can be derived447

from surface albedo anomaly and radiative kernel (Paulot et al., 2018). Over land, sur-448

face albedo is based on MCD43C1 described in section 3.3. Over ocean, surface albedo449

is specified from a look-up table based on the Coupled Ocean Atmosphere Radiation Trans-450

fer model (Jin et al., 2004; Rutan et al., 2009). We can derive δF (AOD,α,X) directly451

from EBAF data.452

Figure 12 shows DARE trend (Wm−2 per decade) calculated from CERES EBAF453

and the surface albedo datasets, and from model simulations. Both observation-based454

and model simulations show increasing trends over eastern United States and the At-455

lantic Ocean (DARE becomes less negative), and decreasing trends over central Africa,456

India, and Indian Ocean (DARE becomes more negative). These DARE trends are con-457

sistent with the AOD trends over these regions. The increasing trend off the coast of east-458

ern China in EBAF data is largely absent in the models, as is in the AOD trend. ECHAM-459

HAM model shows a strong increasing trend over eastern China, whereas trends from460

EBAF, GFDL, and Oslo are very muted. The observational-based DARE trend and AOD461

trends show good agreement over many regions, which adds confidence in both products.462

Figure 13 further exams the deseasonalized anomalies of SW DARE over three land463

regions listed in Table 4. Over eastern China, DARE from EBAF shows a small increas-464

ing trend (Table 4), whereas model simulations show very different trends. The strong465

increasing trend from ECHAM-HAM is partly due to the large emission reduction in-466

troduced by SSP3-7.0 starting in 2015. Over India, both EBAF and model simulations467

show decreasing trends, with EBAF shows the sharpest decline. This could be partly due468

to the decreasing trend in surface albedo over India that results in larger radiative ef-469

ficiency. Over eastern USA, anomalies and trends from EBAF and model simulations470

show excellent agreement.471

7 Conclusions472

AeroCom models have played an essential role in advancing our understanding of473

DARF, though large diversity still exists among the models. To improve the model per-474

formance and to understand the root causes of the large diversity among them, the mod-475

els have been evaluated against in-site and satellite observations. To date, evaluations476

have been mainly focusing on aerosol optical depth. In this study, we evaluate TOA clear-477

sky reflected SW fluxes from the AeroCom models against the SW fluxes from CERES478

EBAF. Additionally, AODs and land surface albedo from AeroCom models are also eval-479

uated against satellite retrievals in order to explain the SW flux biases.480

To quantify how much the SW flux biases can be explained by the biases in AOD481

and land surface albedo, we use the radiative kernels of AOD and land surface albedo482
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Figure 12. TOA SW direct aerosol radiative effect trends (Wm−2 per decade) calculated us-

ing CERES EBAF (a) and using ECHAM-HAM (b), GFDL (c), and Oslo (d) model simulations.

Data from July 2002 to December 2017 are used here.

Table 4. Aerosol direct radiative effect trends (Wm−2 per decade) over China, India, and

USA. Only land areas in the indicated latitude and longitude ranges are included in the regional

trend calculation.

China India USA
(25-40◦N, 110-120◦) (7-22◦N, 70-90◦) (30-42◦N, 265-283◦)

EBAF 0.4±0.3 -1.9±0.3 1.2±0.3
ECHAM 1.8±0.8 -0.7±0.3 1.6±0.3
GFDL 0.0±0.3 -0.8±0.2 1.3±0.2
USA 0.2±0.2 -1.1±0.3 1.0±0.2
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Figure 13. Deseasonalized anomalies (Wm−2) of TOA SW direct aerosol radiative effect over

eastern China (a), India (b), and eastern USA (c) calculated using CERES EBAF (black lines),

ECHAM-HAM (orange line), GFDL (blue lines), and Oslo (purple) model simulations. Data

from July 2002 to December 2017 are used here.
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developed from MERRA-2 reanalysis to attribute their contributions to SW flux biases.483

Over ocean, the 60S-60N mean TOA SW flux bias in MMM is reduced by 25% after ac-484

counting for the contribution from AOD bias. Over land, the 60S-60N mean TOA SW485

flux bias in MMM is reduced by 70% after accounting for the contribution from biases486

in AOD and land surface albedo. Furthermore, the spatial patterns of the flux bias de-487

rived from the radiative kernels are very similar to those between models and CERES488

EBAF, with the correlation coefficient of 0.6 over ocean and 0.76 over land for MMM489

using data of 2010. The correlation coefficients for all models considered in this study490

are also high, ranging from 0.52 to 0.78 over ocean and from 0.78 to 0.95 over land. The491

high correlation indicates that most of the SW flux biases can be explained by the bi-492

ases in AOD and surface albedo between models and observations. Given that the CERES493

EBAF TOA SW flux is independently derived from MODIS AOD and land surface albedo,494

consistencies in their bias patterns when compared with model simulations suggest that495

these features are robust. In addition, the regional patterns of flux bias are unique to496

each model, which point to the deficiency in each model in simulating the specific aerosols497

in different source regions.498

The AOD and DARE trends from ECHAM-HAM, GFDL, and Oslo model are com-499

pared with the observation-based counterparts. All three models reproduce the decreas-500

ing trends in MODIS AOD over Europe, eastern United States and the Atlantic Ocean,501

and central South America, and the increasing trends over India, Indian Ocean, Arabian502

Peninsular, and Central Africa. The models fail to reproduce the decreasing trend in AOD503

over eastern China and the adjacent oceanic regions due to limitations in the emission504

dataset.505

Using independently derived satellite datasets (TOA reflected SW flux, AOD, and506

surface albedo) to assess the AeroCom models provide an opportunity to evaluate re-507

lated variables in a synergistic manner, thus provide an unambiguous assessment of the508

model performance and point to ways that can improve the aerosol simulations. Regional509

bias patterns in these variables, when they corroborate each other, offer a more convinc-510

ing assessment of the model performance and possibly the cause of the differences. Ra-511

diative kernels provide a convenient way to link the AOD and surface albedo biases to512

TOA SW flux biases, which can be used as a diagnostic tool for model development. All513

models should correct their land surface albedo by using satellite derived product as in-514

puts and constrain AODs using satellite retrievals. Implementing these changes will im-515

prove the global and regional SW flux agreement between models and satellite observa-516

tions, and reduce the diversity among the models.517

Appendix A518

A brief description of each model used in this paper is provided below.519

A1 CAM5520

The Community Atmosphere Model version 5 (CAM5) with the Aerosol Two-dimensional521

bin module for foRmation and Aging Simulation (ATRAS) uses a two-dimensional sec-522

tional aerosol representation with 12 particle size bins (from 1 to 10000 nm in dry di-523

ameter) and 8 black carbon mixing state bins (Matsui, 2017). The CAM5-ATRAS model524

considers the following atmospheric aerosol processes: emissions, new particle formation,525

condensation of sulfate, nitrate, and organic aerosols, coagulation, activation, aqueous-526

phase formation, dry and wet deposition, and aerosol-radiation-cloud interactions. Aerosol527

optical properties are calculated based on the Mie theory code (Bohren & Huffman, 1998),528

and radiative transfer for shortwave and longwave is calculated by the Rapid Radiative529

Transfer Method for GCMs (Iacono et al., 2008). CAM5-ATRAS aerosol simulations have530

been evaluated by surface, aircraft, and satellite observations in our previous studies (e.g.,531

Matsui & Mahowald, 2017; Matsui et al., 2018; Matsui & Moteki, 2020).532
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A2 ECHAM6.3533

ECHAM6.3-HAM2.3 is the combination of the global climate model ECHAM6.3534

(Mauritsen et al., 2019) and the Hamburg Aerosol Module (HAM2.3, Tegen et al., 2019).535

It uses the PSRad (Pincus & Stevens, 2013) two-stream radiative transfer scheme with536

16 shortwave and 14 longwave bands. The Monte Carlo independent column approxi-537

mation is used for cloud overlap. Aerosol radiative properties are pre-computed using538

Mie theory and read from a look-up table based on Mie size-parameter and volume weighted539

real and imaginary refractive index for seven aerosol modes containing up to five aerosol540

species (sulfate, black carbon, particulate organic matter, sea salt and dust) and aerosol541

water. Aerosol water uptake is based on kappa-Koehler theory (O’Donnell et al., 2011).542

In subtropical oceans where shallow convective clouds are prevalent, AOD is overesti-543

mated likely because precipitation from shallow convective clouds is only allowed if the544

clouds reach a certain thickness (Muench & Lohmann, 2020). Furthermore, black car-545

bon and organic carbon concentrations are underestimated to some extent, which may546

be due to underestimated biomass burning emissions and cause to low AOD in biomass547

burning regions (Tegen et al., 2019).548

A3 GFDL549

The Geophysical Fluid Dynamics Laboratory Atmospheric Model version 4 (AM4)550

has cubed-sphere topology with 96 × 96 grid boxes per cube face (C96; approximately551

100 km grid size) and 33 levels in the vertical, contains an aerosol bulk model that gen-552

erates mass concentration of aerosol fields (sulphate, carbonaceous aerosols, sea salt and553

dust) from emissions and a “light” chemistry mechanism designed to support the aerosol554

model but with prescribed ozone and radicals (Zhao et al., 2018). Simulations up to the555

year 2014 are driven by time-varying boundary conditions, and natural and anthropogenic556

forcings developed in support of CMIP6 (Eyring et al., 2016), except for ship emission557

of SO2 (black carbon ship emission is included). For the following simulated years, the558

anthropogenic emissions for 2014 are repeated. The dust emission is driven by the sim-559

ulated winds from constant sources with their erodibility expressed as a function of sur-560

rounding topography (Ginoux et al., 2001). The sea salt emissions are based on Martensson561

et al. (2003) and Monahan et al. (1986) for fine and coarse mode particles, respectively.562

Aerosols are externally mixed except for black carbon, which is internally mixed with563

sulphate. The optical properties of the mixture are calculated by volume weighting of564

their refractive indices using a Mie code. The GFDL-AM4-met2010 (GFDLm) and GFDL-565

AM4-fSST (GFDLf) models are run with observed sea surface temperature and sea-ice566

distribution. In addition for GFDLm, the wind components are nudged, with a 6-hour567

relaxation time, towards the NCEP-NCAR re-analysis (Kalnay et al., 1996). The diag-568

nostics are projected from the C96 cubed-sphere to equally spaced 1◦ latitude and 1.25◦569

longitude grid using first order conservative method. In GFDL model, the aerosol effect570

is estimated by calling the radiative transfer scheme twice, with and without aerosols571

in the absence of clouds. The radiative time step is 1 hour for shortwave and 3 hour for572

longwave. The shortwave code is an update of the 18 band formulation of Freidenreich573

and Ramaswamy (2005). These updates are described in detail by Zhao et al. (2018).574

They are related to H2O, CO2, and O2 formulations, and shortwave absorption by CH4575

and N2O. In addition, the effects of the shortwave water self continuum and the O2 and576

N2 continua have been updated.577

A4 GISS578

The GISS model hosts two aerosol schemes, the GISS One-Moment Aerosol (OMA)579

and the Multiconfiguration Aerosol TRacker of mIXing state (MATRIX) models use the580

same aerosol emissions. Sea salt, dimethyl sulfide, isoprene, and dust emission fluxes are581

calculated interactively. Anthropogenic dust sources are not represented in ModelE2.1.582

Dust emissions vary spatially and temporally only with the evolution of climate variables583
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like wind speed and soil moisture (Miller et al., 2006). OMA is a mass-based scheme in-584

cluding sea salt, dust, sulfate, nitrate, ammonium, carbonaceous aerosols (BC and OC)585

aerosols (Tsigaridis et al., 2013). Aerosols are externally mixed and assumed to have a586

prescribed constant size distribution. Aerosol hydration in OMA is calculated in the ra-587

diation code following Tang and Munkelwitz (1994). MATRIX (S. Bauer et al., 2008)588

is an aerosol microphysics scheme that tracks aerosol mixing state, based on the quadra-589

ture method of moments, in which the amount of water in aerosol is calculated with the590

aerosol thermodynamics module EQSAM (Metzger et al., 2002), using the phase state591

of an ammonia-sulfate-nitrate-water inorganic aerosol (OA) in thermodynamic equilib-592

rium for metastable aerosols, except for sea salt where the Lewis parameterization is used593

(Lewis & Schwartz, 2013). As such, hygroscopic swelling of aerosol is already considered594

and does not need to be recalculated during the radiative calculations.595

A5 INCA596

INCA (INteraction with Chemistry and Aerosols) is a chemistry-aerosol model cou-597

pled to a land surface and a dynamical model. INCA simulates dust, sea salt, black car-598

bon (BC), NO3, SO4, SO2, and organic aerosol (OA) with a combination of accumula-599

tion, coarse, and super-coarse modes, as well as soluble and insoluble components (Schulz600

et al., 2009). Because of the simplified chemistry scheme, DMS emissions are prescribed601

and not interactively calculated, and the secondary organic aerosols are not simulated602

therefore this specific run is underestimating the OA. In the current version BC solu-603

ble mode is internally mixed with sulphate (R. Wang et al., 2016), for which the refrac-604

tive index is estimated using the Maxwell-Garnett method, improving the accuracy of605

the BC optical absorption properties.606

The radiative transfer model for the calculations with aerosols relies on the RRTM607

model as implemented by the European Centre for Medium-Range Weather Forecasts,608

a model that we used for SW and LW calculations. The number of spectral bands used609

for aerosols is 6 for SW and 16 for LW spectrum. The spectral dependence of optical prop-610

erties of each aerosol species has been estimated with Mie theory of spherical particles611

with log-normal distribution.612

A6 MIROC-SPRINTARS613

An aerosol climate model, Spectral Radiation Transport Model for Aerosol Species614

(SPRINTARS, Takemura et al., 2005, 2009), is incorporated into a coupled atmosphere-615

ocean general circulation model, MIROC6 (Tatebe et al., 2019). The horizontal and ver-616

tical resolutions are T213 (∼0.5625◦× 0.5625◦ in longitude and latitude) and L56, re-617

spectively. SPRINTARS calculates the aerosol-radiation and aerosol-cloud interactions618

by coupling the radiation and cloud-precipitation schemes, respectively as well as aerosol619

transport processes. The radiative transfer scheme, mstrnX, adopt a two-stream discrete-620

ordinate method with a correlated k-distribution method (Sekiguchi & Nakajima, 2008).621

Scattering and absorption of solar and terrestrial radiation by aerosols are calculated as-622

suming the Mie theory with refractive indices of dry aerosols and water from d’Almeida623

et al. (1991). The volume-weighted refractive indices are assumed for internally-mixed624

particles between black carbon and organic aerosols as well as aerosols and water.625

A7 Oslo626

The OsloCTM3 is a global, offline chemical transport model (CTM) driven by 3-627

hourly meteorological data from the European Centre for Medium Range Weather Fore-628

cast (ECMWF) Integrated Forecast System (IFS) model (Lund et al., 2018; Søvde et al.,629

2012). The model is run in a 2.25◦ × 2.25◦ horizontal resolution, with 60 vertical lev-630

els (the uppermost centered at 0.1 hPa). The treatment of transport and scavenging, as631

well as individual aerosol modules, is described in detail in Lund et al. (2018) and ref-632
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erences therein. The aerosol optical properties in OsloCTM3 are described in Myhre et633

al. (2007) with some recent updates, where the BC mass absorption coefficient (MAC)634

is following the formula in Zanatta et al. (2016) and a weak absorption implemented for635

OA (Lund et al., 2018).636

Appendix B637

Figure B1 shows the regional AOD biases of the AeroCom models relative to MISR638

retrievals (left panels) and the regional SW flux biases due to AOD biases (relative to639

MISR retrievals) and land surface albedo biases (relative to MODIS retrievals) calcu-640

lated from their radiative kernels (right panels) for April 2010. Many of the regional AOD641

bias patterns shown here are very similar to the AOD biases shown in Figure 9. The SW642

flux biases calculated from the radiative kernels using MISR AODs also resemble those643

shown in Figure 8. However, the biases over the tropical oceans are much muted when644

MISR AOD is used. The correlation coefficients between ∆F and ∆FAOD+∆Fα range645

from 0.79 to 0.94 over land, which is very similar to those derived when MODIS AOD646

is used. The correlation coefficients between ∆F and ∆FAOD range from 0.26 to 0.63647

over ocean, not as high as when MODIS AOD is used. The reduced correlation over ocean648

is partly due to retrieval differences between MODIS and MISR, but largely due to MISR649

sampling issue as evident in the stripping features of the AOD bias plots.650
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Figure B1. The monthly mean aerosol optical depth biases of AeroCom models relative to

MISR retrieval (left panels), TOA SW flux biases due to AOD biases (models – MISR) and land

surface albedo biases (models – MODIS) calculated from their respective radiative kernels (right

panels) for April 2010.
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