References
Adhikari, S., L. Caron, B.
Steinberger, J. T. Reager, K. K. Kjeldsen, B. Marzeion, E. Larour, and
E. R. Ivins (2018), What drives 20th century polar motion?, Earth and
Planetary Science Letters, 502, 126-132,
doi:https://doi.org/10.1016/j.epsl.2018.08.059.
Aschwanden, A., M. A. Fahnestock, M. Truffer, D. J. Brinkerhoff, R.
Hock, C. Khroulev, R. Mottram, and S. A. Khan (2019), Contribution of
the Greenland Ice Sheet to sea level over the next millennium, Science
Advances, 5(6), eaav9396, doi:10.1126/sciadv.aav9396.
Aschwanden, A., T. C. Bartholomaus, D. J. Brinkerhoff, and M. Truffer
(2021), Brief communication: A roadmap towards credible projections of
ice sheet contribution to sea level, The Cryosphere, 15(12), 5705-5715,
doi:10.5194/tc-15-5705-2021.
Bamber, J. L., and W. P. Aspinall (2013), An expert judgement assessment
of future sea level rise from the ice sheets, Nature Clim. Change, 3(4),
424-427, doi:10.1038/nclimate1778.
Bamber, J. L., M. Oppenheimer, R. E. Kopp, W. P. Aspinall, and R. M.
Cooke (2019), Ice sheet contributions to future sea-level rise from
structured expert judgment, Proc. Nat. Acad. Sci., 116(23), 11195-11200,
doi:10.1073/pnas.1817205116.
Bolibar, J., A. Rabatel, I. Gouttevin, H. Zekollari, and C. Galiez
(2022), Nonlinear sensitivity of glacier mass balance to future climate
change unveiled by deep learning, Nat. Comms, 13(1), 409,
doi:10.1038/s41467-022-28033-0.
Box, J. E. (2013), Greenland Ice Sheet Mass Balance Reconstruction. Part
II: Surface Mass Balance (1840-2010), Journal of Climate, 26(18),
6974-6989, doi:10.1175/jcli-d-12-00518.1.
Box, J. E., and W. Colgan (2013), Greenland Ice Sheet Mass Balance
Reconstruction. Part III: Marine Ice Loss and Total Mass Balance
(1840-2010), Journal of Climate, 26(18), 6990-7002,
doi:10.1175/jcli-d-12-00546.1.
Buzzard, S. C., D. L. Feltham, and D. Flocco (2018), A Mathematical
Model of Melt Lake Development on an Ice Shelf, Journal of Advances in
Modeling Earth Systems, 10(2), 262-283,
doi:https://doi.org/10.1002/2017MS001155.
Choi, Y., M. Morlighem, E. Rignot, and M. Wood (2021), Ice dynamics will
remain a primary driver of Greenland ice sheet mass loss over the next
century, Communications Earth & Environment, 2(1), 26,
doi:10.1038/s43247-021-00092-z.
Church, J. A., et al. (2013), Sea Level Change, in Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change,
edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen,
J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, pp.
1137–1216, Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA, doi:10.1017/CBO9781107415324.026.
Clark, P. U., et al. (2016), Consequences of twenty-first-century policy
for multi-millennial climate and sea-level change, Nature Clim. Change,
doi:10.1038/nclimate2923.
Dangendorf, S., M. Marcos, G. Wöppelmann, C. P. Conrad, T. Frederikse,
and R. Riva (2017), Reassessment of 20th century global mean sea level
rise, Proceedings of the National Academy of Sciences, 114(23),
5946-5951, doi:10.1073/pnas.1616007114.
DeConto, R. M., et al. (2021), The Paris Climate Agreement and future
sea-level rise from Antarctica, Nature, 593(7857), 83-+,
doi:10.1038/s41586-021-03427-0.
Edwards, T. L., M. A. Brandon, G. Durand, N. R. Edwards, N. R. Golledge,
P. B. Holden, I. J. Nias, A. J. Payne, C. Ritz, and A. Wernecke (2019),
Revisiting Antarctic ice loss due to marine ice-cliff instability,
Nature, 566(7742), 58-64, doi:10.1038/s41586-019-0901-4.
Edwards, T. L., et al. (2021), Projected land ice contributions to
twenty-first-century sea level rise, Nature, 593(7857), 74-82,
doi:10.1038/s41586-021-03302-y.
Forster, P. M., A. C. Maycock, C. M. McKenna, and C. J. Smith (2020),
Latest climate models confirm need for urgent mitigation, Nature Climate
Change, 10(1), 7-10, doi:10.1038/s41558-019-0660-0.
Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S.
Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G. Krinner,
A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A.
Slangen, and Y. Yu, 2021: Ocean, Cryosphere and Sea Level Change. In
Climate Change 2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S.L. Connors,
C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang,
K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O.
Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In
Press.
Frederikse, T., et al. (2020), The causes of sea-level rise since 1900,
Nature, 584(7821), 393-397, doi:10.1038/s41586-020-2591-3.
Frederikse, T., R. Riva, M. Kleinherenbrink, Y. Wada, M. van den Broeke,
and B. Marzeion (2016), Closing the sea level budget on a regional
scale: Trends and variability on the Northwestern European continental
shelf, Geophysical Research Letters, 43(20), 10,864-810,872,
doi:https://doi.org/10.1002/2016GL070750.
Gilford, D. M., Ashe, E. L., DeConto, R. M., Kopp, R. E., Pollard, D.,
& Rovere, A. (2020). Could the Last Interglacial constrain projections
of future Antarctic ice mass loss and sea-level rise?. Journal of
Geophysical Research: Earth Surface, 125, e2019JF005418.
doi:https://doi.org/10.1029/2019JF005418
Goelzer, H., et al. (2018), Design and results of the ice sheet model
initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison,
The Cryosphere, 12(4), 1433-1460, doi:10.5194/tc-12-1433-2018.
Goelzer, H., et al. (2020), The future sea-level contribution of the
Greenland ice sheet: a multi-model ensemble study of ISMIP6, The
Cryosphere, 14(9), 3071-3096, doi:10.5194/tc-14-3071-2020.
Gregory, J. M., and P. Huybrechts (2006), Ice-sheet contributions to
future sea-level change, Philosophical Transactions of the Royal Society
a-Mathematical Physical and Engineering Sciences, 364(1844), 1709-1731.
Grinsted, A., and J. H. Christensen (2021), The transient sensitivity of
sea level rise, Ocean Sci., 17(1), 181-186, doi:10.5194/os-17-181-2021.
Helm, V., A. Humbert, and H. Miller (2014), Elevation and elevation
change of Greenland and Antarctica derived from CryoSat-2, The
Cryosphere, 8(4), 1539-1559, doi:10.5194/tc-8-1539-2014.
Hermans, T. H. J., J. M. Gregory, M. D. Palmer, M. A. Ringer, C. A.
Katsman, and A. B. A. Slangen (2021), Projecting Global Mean Sea-Level
Change Using CMIP6 Models, Geophysical Research Letters, 48(5),
e2020GL092064, doi:https://doi.org/10.1029/2020GL092064.
Hock, R., M. de Woul, V. Radic, and M. Dyurgerov (2009), Mountain
glaciers and ice caps around Antarctica make a large sea-level rise
contribution, Geophysical Research Letters, 36,
doi:10.1029/2008gl037020.
Hofer, S., C. Lang, C. Amory, C. Kittel, A. Delhasse, A. Tedstone, and
X. Fettweis (2020), Greater Greenland Ice Sheet contribution to global
sea level rise in CMIP6, Nature Communications, 11(1), 6289,
doi:10.1038/s41467-020-20011-8.
Holland, P. R., T. J. Bracegirdle, P. Dutrieux, A. Jenkins, and E. J.
Steig (2019), West Antarctic ice loss influenced by internal climate
variability and anthropogenic forcing, Nature Geoscience, 12(9),
718-724, doi:10.1038/s41561-019-0420-9.
Irving, D., W. Hobbs, J. Church, and J. Zika (2021), A Mass and Energy
Conservation Analysis of Drift in the CMIP6 Ensemble, Journal of
Climate, 34(8), 3157-3170, doi:10.1175/jcli-d-20-0281.1.
Jevrejeva, S., H. Palanisamy, and L. P. Jackson (2020), Global mean
thermosteric sea level projections by 2100 in CMIP6 climate models,
Environmental Research Letters, 16(1), 014028,
doi:10.1088/1748-9326/abceea.
Kittel, C., et al. (2021), Diverging future surface mass balance between
the Antarctic ice shelves and grounded ice sheet, The Cryosphere, 15(3),
1215-1236, doi:10.5194/tc-15-1215-2021.
King, M. D., I. M. Howat, S. G. Candela, M. J. Noh, S. Jeong, B. P. Y.
Noël, M. R. van den Broeke, B. Wouters, and A. Negrete (2020), Dynamic
ice loss from the Greenland Ice Sheet driven by sustained glacier
retreat, Communications Earth & Environment, 1(1), 1,
doi:10.1038/s43247-020-0001-2.
Kjeldsen, K. K., et al. (2015), Spatial and temporal distribution of
mass loss from the Greenland Ice Sheet since AD 1900, Nature, 528(7582),
396-+, doi:10.1038/nature16183.
Knutti, R., G. Abramowitz, M. Collins, V. Eyring, P. J. Gleckler, B.
Hewitson, and L. Mearns (2010), Good Practice Guidance Paper on
Assessing and Combining Multi Model Climate Projections, paper presented
at IPCC Expert Meeting on Assessing and Combining Multi Model Climate
Projections: National Center for Atmospheric Research: Boulder,
Colorado, USA: 25-27 January 2010: Meeting Report, IPCC Working Group I
Technical Support Unit, University of Bern.
Kopp, R. E., A. C. Kemp, K. Bittermann, B. P. Horton, J. P. Donnelly, W.
R. Gehrels, C. C. Hay, J. X. Mitrovica, E. D. Morrow, and S. Rahmstorf
(2016), Temperature-driven global sea-level variability in the Common
Era, Proceedings of the National Academy of Sciences, 113(11),
E1434-E1441, doi:10.1073/pnas.1517056113.
Leclercq, P. W., J. Oerlemans, and J. G. Cogley (2011), Estimating the
Glacier Contribution to Sea-Level Rise for the Period 1800–2005,
Surveys in Geophysics, 32(4), 519, doi:10.1007/s10712-011-9121-7.
Lenaerts, J. T. M., M. Vizcaino, J. Fyke, L. van Kampenhout, and M. R.
van den Broeke (2016), Present-day and future Antarctic ice sheet
climate and surface mass balance in the Community Earth System Model,
Climate Dynamics, 47(5), 1367-1381, doi:10.1007/s00382-015-2907-4.
Levermann, A., et al. (2020), Projecting Antarctica’s contribution to
future sea level rise from basal ice shelf melt using linear response
functions of 16 ice sheet models (LARMIP-2), Earth Syst. Dynam., 11(1),
35-76, doi:10.5194/esd-11-35-2020.
Lowry, D. P., M. Krapp, N. R. Golledge, and A. Alevropoulos-Borrill
(2021), The influence of emissions scenarios on future Antarctic ice
loss is unlikely to emerge this century, Communications Earth &
Environment, 2(1), 221, doi:10.1038/s43247-021-00289-2.
Lyu, K., Zhang, X., & Church, J. A. (2020). Regional dynamic sea level
simulated in the CMIP5 and CMIP6 models: mean biases, future
projections, and their linkages. Journal of Climate, 33(15), 6377-6398.
Marzeion, B., et al. (2020), Partitioning the Uncertainty of Ensemble
Projections of Global Glacier Mass Change, Earth’s Future, 8(7),
e2019EF001470, doi:https://doi.org/10.1029/2019EF001470.
Marzeion, B., P. W. Leclercq, J. G. Cogley, and A. H. Jarosch (2015),
Brief Communication: Global reconstructions of glacier mass change
during the 20th century are consistent, Cryosphere, 9(6), 2399-2404,
doi:10.5194/tc-9-2399-2015.
Moore, J. C., A. Grinsted, T. Zwinger, and S. Jevrejeva (2013),
Semi-empirical and process-based global sea level projections, Reviews
of Geophysics, 51(3), 484-522,
doi:https://doi.org/10.1002/rog.20015.
Morice, C. P., J. J. Kennedy, N. A. Rayner, J. P. Winn, E. Hogan, R. E.
Killick, R. J. H. Dunn, T. J. Osborn, P. D. Jones, and I. R. Simpson
(2021), An Updated Assessment of Near-Surface Temperature Change From
1850: The HadCRUT5 Data Set, Journal of Geophysical Research:
Atmospheres, 126(3), e2019JD032361,
doi:https://doi.org/10.1029/2019JD032361.
Nowicki, S., et al. (2020), Experimental protocol for sea level
projections from ISMIP6 stand-alone ice sheet models, The Cryosphere,
14(7), 2331-2368, doi:10.5194/tc-14-2331-2020.
Nowicki, S. M. J., A. Payne, E. Larour, H. Seroussi, H. Goelzer, W.
Lipscomb, J. Gregory, A. Abe-Ouchi, and A. Shepherd (2016), Ice Sheet
Model Intercomparison Project (ISMIP6) contribution to CMIP6, Geosci.
Model Dev., 9(12), 4521-4545, doi:10.5194/gmd-9-4521-2016.
Oppenheimer, M., B.C. Glavovic , J. Hinkel, R. van de Wal, A.K. Magnan,
A. Abd-Elgawad, R. Cai, M. CifuentesJara, R.M. DeConto, T. Ghosh, J.
Hay, F. Isla, B. Marzeion, B. Meyssignac, and Z. Sebesvari (2019), Sea
Level Rise and Implications for Low-Lying Islands, Coasts and
Communities, in IPCC Special Report on the Ocean and Cryosphere in a
Changing Climate, edited by D. C. R. H.-O. Pörtner, V. Masson-Delmotte,
P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M.
Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer, IPCC, Berne.
Parkes, D., and B. Marzeion (2018), Twentieth-century contribution to
sea-level rise from uncharted glaciers, Nature, 563(7732), 551-554,
doi:10.1038/s41586-018-0687-9.
Payne, A. J., et al. (2021), Future Sea Level Change Under Coupled Model
Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland
and Antarctic Ice Sheets, Geophysical Research Letters, 48(16),
e2020GL091741, doi:https://doi.org/10.1029/2020GL091741.
Sasgen, I., B. Wouters, A. S. Gardner, M. D. King, M. Tedesco, F. W.
Landerer, C. Dahle, H. Save, and X. Fettweis (2020), Return to rapid ice
loss in Greenland and record loss in 2019 detected by the GRACE-FO
satellites, Communications Earth & Environment, 1(1), 8,
doi:10.1038/s43247-020-0010-1.
Seroussi, H., et al. (2020), ISMIP6 Antarctica: a multi-model ensemble
of the Antarctic ice sheet evolution over the 21st century, The
Cryosphere Discuss., 2020, 1-54, doi:10.5194/tc-2019-324.
Shepherd, A., et al. (2018), Mass balance of the Antarctic Ice Sheet
from 1992 to 2017, Nature, 558(7709), 219-222,
doi:10.1038/s41586-018-0179-y.
Slangen, A. B. A., J. A. Church, C. Agosta, X. Fettweis, B. Marzeion,
and K. Richter (2016), Anthropogenic forcing dominates global mean
sea-level rise since 1970, Nature Climate Change, 6(7), 701-705,
doi:10.1038/nclimate2991.
Slater, D. A., F. Straneo, D. Felikson, C. M. Little, H. Goelzer, X.
Fettweis, and J. Holte (2019), Estimating Greenland tidewater glacier
retreat driven by submarine melting, The Cryosphere, 13(9), 2489-2509,
doi:10.5194/tc-13-2489-2019.
Smith, C. J., P. M. Forster, M. Allen, N. Leach, R. J. Millar, G. A.
Passerello, and L. A. Regayre (2018), FAIR v1.3: a simple
emissions-based impulse response and carbon cycle model, Geosci. Model
Dev., 11(6), 2273-2297, doi:10.5194/gmd-11-2273-2018.
Swart, N. C., et al. (2019), The Canadian Earth System Model version 5
(CanESM5.0.3), Geosci. Model Dev., 12(11), 4823-4873,
doi:10.5194/gmd-12-4823-2019.
Vishwakarma, B. D., S. Royston, R. E. M. Riva, R. M. Westaway, and J. L.
Bamber (2020), Sea Level Budgets Should Account for Ocean Bottom
Deformation, Geophysical Research Letters, 47(3), e2019GL086492,
doi:10.1029/2019gl086492.
Wouters, B., A. Martin-Espanol, V. Helm, T. Flament, J. M. Van Wessem,
S. R. M. Ligtenberg, M. Van den Broeke, and J. L. Bamber (2015), Dynamic
thinning of glaciers on the Southern Antarctic Peninsula, Science,
348(6237), 899-903, doi:10.1126/science.aaa5727.
Zanna, L., S. Khatiwala, J. M. Gregory, J. Ison, and P. Heimbach (2019),
Global reconstruction of historical ocean heat storage and transport,
Proceedings of the National Academy of Sciences, 116(4), 1126-1131,
doi:10.1073/pnas.1808838115.