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S1 Synthetic streamflow generation

Synthetic streamflow generation by the (Kirsch et al., 2013) generator begins by

log transforming and whitening the record of historical weekly inflows, Qk ∈ R(80×52)

to create a matrix Zk ∈ R(80×52) for each gage k. Next, a matrix of integer indices M ∈

R(1000×52) is generated by sampling with replacement from (1, 2, . . . , 80). Mi,j represents

the historical year that will be used to create the streamflow value for synthetic year i

in week j. M is used to make a matrix of uncorrelated synthetic flows, Ck with entries

Cki,j
= ZkM(i,j),j

. The same matrix M is used to for all sites to preserve spatial cor-

relation for synthetic records. Next, a matrix of historical autocorrelation, pHk = corr(Zk)

is created for each gage and a Cholesky decomposition is used to find an upper trian-

gular matrix Uk ∈ R(52×52) such that pHk = UkU
T
k . Upper triangular matrix Uk is

then used to impose the historical autocorrelation structure on matrix Ck to make a new

synthetic record Sk = Ck·Uk. Finally, Sk is transformed back into real space to gen-
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erate a record of reservoir inflows that preserve the spatial and temporal correlation struc-

tures of the historical record.

To improve the inter-annual correlations of synthetic streamflows, this process is

repeated using a shifted version of historical inflows, Qk′ beginning at week 27 of each

year and ending at week 26 of the following year. Matrices Zk′ , and Uk′ and created based

off this shifted record and Ck′ is created separately shifting matrix Ck. A new matrix

of synthetic inflows, Sk′ is created using the operation Sk′ = Ck′ ·Uk′ and transform-

ing the product back to real space. The final set of synthetic streamflows is comprised

of columns 27-52 of Sk and columns 1-26 of Sk′ . For more details on the synthetic gen-

eration process, refer to Kirsch et al. (2013) and Herman et al. (2016).

The number of streamflow samples used in this paper were chosen based on em-

pirical assessment. (Trindade et al., 2017) empirically assessed the number of the num-

ber of realizations needed to estimate the objective functions for the Research Triangle

test case by examining sample sizes varying from 100 to 5000 realizations. Results of the

empirical assessments showed that 1000 evaluates per modeling run is sufficient to ap-

proximate the mean and variances of the Monte Carlo distributions used to determine

candidate solutions’ objectives. The approach used by (Trindade et al., 2017) is derived

from early studies of metaheuristic search dynamics given noisy objective functions (e.g.

(Miller & Goldberg, 1996; Smalley et al., 2000)) which show that relatively small Monte

Carlo samples per function evaluations can provide good approximations when verified

with much larger samples after search has been completed.

S2 Runtime Diagnostics

Multiple instances of MOEA search are run ensure the algorithm has overcome any

biases in search generated by the initial population (Salazar et al., 2017). In this exper-

iment, a total of 10 random seeds were run, using the multi-master configuration of the

Borg MOEA with two seeds per master. The true Pareto set for this problem is not known,

so to assess the convergence convergence we measure relative hypervolume (Zitzler et al.,

2003), which compares performance of the approximate Pareto sets discovered at set check-

points within search to the final ”reference set”, which contains non-dominated solutions

across all seeds. If the relative hypervolume is found to plateau, we conclude that the

algorithm has converged to a satisfactory approximation of the true Pareto set.
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Runtime diagnostics for all seeds optimizations are shown in Figure S1. There was

very little variance across seeds, and the hypervolume of all defection optimizations plateaued

after around 50,000 function evaluations.

S3 Distribution of Unit Cost objective for the DSFR compromise

Figure S2 shows the distribution of the unit cost of expansion objective for Durham

across the 2,000 SOWs used for DU reevaluation for the DFSR compromise. Of the 2,000

DU SOWs, over 1,900 return unit costs near zero. However, the extreme tail of the unit

cost of expansion increases to over $1,000/kgal. This extreme tail explains the high re-

gional value of the unit cost objective shown in Figure 4a - because DU optimization cal-

culates values in expectation across all sampled futures, extreme values in the tails have

a large impact on the objective value. Future work may reduce the impact of these ex-

treme SOWs by using other summary statistics such as the median or 90th% unit cost.

Figure S1. Runtime diagnostics for 10 random seeds. The plateau of hypervolume across

all seeds for all formulations indicates that number of function evaluations (NFE) were

enough to achieve maximum attainable convergence.

–3–



manuscript submitted to Water Resources Research

Figure S2.Distribution of Unit Cost for Durham across 2,000 DU SOWs
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