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Abstract9

Though thermohaline staircases exist in a large region of the Arctic, the interactions of10

such staircases with shear and turbulence are still largely unexplored. We perform a se-11

ries of two- and three-dimensional simulations with and without shear and demonstrate12

the capacity of shear to both form and disrupt Arctic staircases. Both isotropic shear13

and unidirectional oscillating shear are considered. Shear is shown to disrupt staircases14

when the Richardson number falls below 1/4. For isotropic shear, this process works by15

breaking down layers individually, which leads to the gradual merging of layers, whereas16

the unidirectional shear tends to break down interfaces more evenly. For weaker shear17

(Richardson numbers greater than 2), the spontaneous development of layers is observed.18

Plain Language Summary19

In the Arctic, there exists a large mass of warm water below the sea ice that has20

origins from the Atlantic Ocean. Near the top of this layer, where the temperature de-21

creases rapidly, there exist stacks of layers, each about 1–3m tall, within which temper-22

ature and salinity are uniform. These peculiar structures are known as “staircases,” and23

they tend to form in regions that are deep enough that these layers are shielded from24

the near surface ocean turbulence. Because they exist in regions where temperature rapidly25

changes with depth, the heat fluxes through them could have consequences for the rate26

of sea-ice melt, potentially serving as a gatekeeper protecting the sea ice from the warm27

water of Atlantic origin. We investigate the sensitivity of these structures to wave-induced28

motions both in the capacity of turbulence to destroy these layers and its ability to form29

them.30

1 Introduction31

The origin and stability of thermohaline staircases remain topics of significance and32

mystery in studies of the Arctic Ocean. Thermohaline staircases take the form of lay-33

ers of uniform temperature and salinity separated by thin interfaces with sharp gradi-34

ents and typically exist in regions of the ocean of notable salt and temperature strati-35

fication. Some well-studied examples include the thermocline at mid-latitudes in the west-36

ern Atlantic (Schmitt et al., 1987, 2005) and in the outflow of the Mediterranean (Tait37

& Howe, 1968; Magnell, 1976). The present study examines so-called diffusive staircases38

that are commonly observed in the Arctic. In the Eurasian Basin of the Arctic Ocean,39

warm water enters from the Atlantic and subducts beneath the cooler and fresher wa-40

ters of the upper Arctic generating the Arctic thermocline. This is compounded by brine41

rejection of forming ice, which results in salty water descending along the shelf until it42

reaches neutral buoyancy at the halocline (see, for example, Wells & Wettlaufer, 2007;43

Turner, 2010). At the top of the thermocline, staircases have been observed in a num-44

ber of studies, first by Neal et al. (1969) and most recently by Timmermans et al. (2008)45

and Shibley et al. (2017). One of the important circumstances around these staircases46

is that they exist between the warm water of Atlantic origin and the cooler waters above.47

The heat stored in the Atlantic waters is substantial, enough to melt the entirety of the48

Arctic sea ice (Turner, 2010); thus, it is important to understand the dynamics of this49

region and quantify the heat transport through it.50

One of the aspects of thermohaline staircases that remains largely unknown is the51

nature of their interactions with turbulence and shear. Basic studies (such as that of Flana-52

gan et al., 2013) have typically ignored the effects of shear or turbulence. A recent study53

by Shibley and Timmermans (2019) used a simplified model to explain the fact that stair-54

cases are observed less frequently in more turbulent environments of the Arctic, for ex-55

ample, locations without substantial sea-ice cover. Conversely, Radko (2016) showed that56

weak shear could potentially cause the development of staircases under Arctic conditions.57
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The impact of shear is measured in terms of the Richardson number, defined as58

Ri =
N∗2(
∂u∗

∂z∗

)2 , (1)

where u∗ is the lateral fluid velocity and N∗ is the Brunt–Väisälä frequency. We use the59

superscript asterisk to distinguish the dimensional quantities used here from their non-60

dimensional counterparts. At very low Richardson numbers (Ri < 1/4), the system be-61

comes dynamically unstable to shear, and it is expected that any fine-scale interfaces will62

be shredded by the ensuing instability. However, shear in the Arctic tends to be much63

weaker (see, for example, Cole et al., 2014) at values closer to Ri = 10. Recently, Brown64

and Radko (2021) showed that shear at Ri = 10 can excite Holmboe waves at these in-65

terfaces, which distorts them appreciably. This raises the question of what the expected66

behavior of staircases might be in between these extremes.67

We investigate how regions characteristic of the Arctic thermocline behave in the68

presence of shear through a series of numerical experiments. Our first set of experiments69

focuses on the effects of shear on pre-existing Arctic staircases, and we find that stair-70

cases appear to be remarkably resilient to shear, becoming disrupted only when Ri <71

1/4 where dynamical instabilities become dominant in the system. In addition, we in-72

vestigate the development of the thermohaline–shear instability in an initially quiescent73

fluid and demonstrate that it can generate staircases.74

The rest of this paper is arranged as follows. Section 2 discusses the governing equa-75

tions and general modeling setup. Section 3 discusses the circumstances under which stair-76

cases are disrupted by shear. Section 4 discusses thermohaline staircase formation via77

shear instabilities. Finally, Section 5 provides conclusions and recommendations for fu-78

ture work.79

2 Methods80

We assume an incompressible, Boussinesq fluid and assert that the effects of plan-81

etary rotation are small. These assumptions are justified by the small scale of the sim-82

ulation (a few meters) and the small variations in temperature and salinity over this re-83

gion. The equations for a two-component fluid under these assumptions are given by (see,84

e.g., Baines & Gill, 1969):85

∂

∂t∗
u∗ + u∗ · ∇∗u∗ = −∇

∗p∗

ρ∗0
− ρ∗g∗

ρ∗0
ez + ν∗∇∗2u∗ + F∗, (2)

∂

∂t∗
T ∗ + u∗ · ∇∗T ∗ + w∗

∂T
∗

∂z∗
= κ∗T∇∗2T ∗, (3)

∂

∂t∗
S∗ + u∗ · ∇∗S∗ + w∗

∂S
∗

∂z∗
= κ∗S∇∗2S∗, (4)

ρ∗ = −ρ∗0
(
α∗
(
T ∗ + T

∗ − T ∗0
)
− β∗

(
S∗ + S

∗ − S∗0
))

(5)

∇∗ · u∗ = 0, (6)

where u∗ is the fluid velocity, p∗ is the pressure anomaly with respect to hydrostatic pres-86

sure, T ∗ is the temperature perturbation with respect to the background field T
∗
, S∗ is87

the salinity concentration with respect to the background field S
∗
, ρ∗ is the density per-88

turbation away from the constant ρ∗0, and F∗ is a forcing function. The quantities ρ∗0,89

T ∗0 , and S∗0 are reference values for density, temperature, and salinity, respectively. The90

symbol g∗ denotes the gravitational acceleration, and ez is the unit vector in the z di-91

rection, antiparallel to gravity. The gradients of the background fields, ∂T
∗
/∂z∗ and ∂S

∗
/∂z∗,92

are assumed uniform. We use the non-dimensionalization from Radko (2013), where the93
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length unit is given by94

[l] =

(
α∗g∗ ∂T

∗

∂z∗

ν∗κ∗T

)− 1
4

, (7)

the time unit is given by [t] = [l]2/κ∗T , the temperature unit by [T ] = [l]∂T
∗
/∂z∗, the95

salinity by [S] = α∗[T ]/β∗, the pressure by [p] = ρ∗0[l]2/[t]2, and the density unit by96

[ρ] = α∗ρ∗0[T ]. This reduces Equations 2–6 to the following:97

1

Pr

(
∂

∂t
u + u · ∇u

)
= −∇p+ (T − S) ez +∇2u + F, (8)

∂

∂t
T + u · ∇T = w +∇2T, (9)

∂

∂t
S + u · ∇S = R0w + τ∇2S, (10)

∇ · u = 0, (11)

where R0 = β∗ ∂S
∗

∂z∗ /α
∗ ∂T∗

∂z∗ is the density ratio based on the background temperature98

and salinity gradients, Pr = ν∗/κ∗T is the Prandtl number, taken to be 10 in this study,99

and τ = κ∗S/κ
∗
T is the inverse Lewis number. For seawater, τ is typically 0.01, but since100

the haline diffusivity determines required resolution of the system, it is computationally101

expensive to perform extended simulations at this value. Instead, we take τ = 0.04 in102

our simulations; it has been shown (see, for example Kimura & Smyth, 2007) that chang-103

ing the diffusivity ratio can have a quantitative effect on the fluxes of the system but typ-104

ically does not affect qualitative behaviors.105

We construct a coordinate system that moves along with a background flow, de-106

scribed by107

u = γ(t)z cos (ωt)ex + γ′(t)z cos (ωt+ π/2)ey, (12)

where ex and ey are the unit vectors in the x and y directions, respectively, γ is the shear108

magnitude in the x direction, ω is the angular frequency of the shear oscillations, and109

γ′ is the shear magnitude in the y direction. The temporal variability of shear consists110

of rapid variation in phase, associated with the oscillations of internal waves, and much111

slower variation in the amplitude. This study considers two distinct regimes: one which112

restricts the background shear to the x direction (γ′ = 0), and one with isotropic shear113

(γ′ = γ). The latter case is more representative of internal waves in the ocean (see, e.g.,114

Kunze, 1990). This necessitates the following transformation to an alternate coordinate115

system, designated with tildes:116

x̃ = x− γz

ω
sin (ωt), (13)

ỹ = y − γ′z
ω

sin
(
ωt+

π

2

)
, (14)

z̃ = z, (15)

t̃ = t. (16)

We use these to transform Equations 8–11. To ensure that the background flow satis-117

fies our expression for u, we require the forcing term to take the form118

F =
∂

∂t

(
γz cos (ωt)ex + γ′z cos

(
ωt+

π

2

)
ey

)
. (17)

The resulting equations are solved using a modified version of the code described and119

used in Brown and Radko (2021). This numerical model is pseudospectral, and it de-120

composes the perturbation quantities with Fourier series in all three dimensions in the121

sheared coordinate system, and therefore, the boundaries are periodic. The code uses122

a modified Patterson-Orszag method to ensure incompressibility, and the time stepping123

is conducted with a third-order semi-implicit Adams–Bashforth/backward-differencing124

formula (Canuto et al., 2007; Orszag & Patterson, 1972). The nonlinear terms are cal-125

culated in physical parameter space using a three-dimensional Fourier transform.126
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3 Staircase Disruption127

The domain for these simulations—a cube of side length Γ = 200 resolved by 384128

gridpoints in each dimension—is vertically subdivided into a number of equally sized con-129

vective layers, and the total temperature, T+T , and salinity, S+S, within each of the130

layers are uniform. By construction, T = −z and S = −R0z. These layers are sepa-131

rated by sharp interfaces that are initially smoothed with a boxcar filter to avoid the Gibbs132

phenomenon. We vary the layer height and density ratio across the simulations (see Ta-133

ble 1), but the size and resolution of the simulations do not vary. Each simulation has134

a shear angular frequency given by ω = N/10, where N2 = Pr(R0 − 1) is the non-135

dimensional buoyancy frequency.136

We gradually increase the shear strength by the domain-averaged Richardson num-137

ber and observe the critical Richardson number at which the staircase is disrupted. In138

terms of non-dimensional quantities, the domain-averaged Richardson number is given139

by140

Ri =
Pr (R0 − 1)

γ2
, (18)

for cases with isotropic shear (i.e., γ′ = γ). The shear magnitude, γ is chosen such that141

γ(t) = γ0 + γrt, (19)

γ0 =

√
Pr(R0 − 1)

Ri0
, (20)

γr =

√
Pr(R0 − 1)

tf

(
1√
Ri0
− 1√

Rif

)
, (21)

where Ri0 = 1 is the initial Richardson number of the simulation and Rif = 0.15 is142

the Richardson number at t = tf = 100. To determine the critical Richardson num-143

ber at which staircases are disrupted, we simulate three background density ratios R0 =144

[2, 3, 5] with nl = [2, 3, 4] starting layers, as listed in Table 1, for a total of nine simu-145

lations with isotropic shear. For comparison, we also include a simulation with R0 =146

3, nl = 3, and unidirectional shear (i.e., γ′ = 0).147

The typical early state of a simulation with γ′ = γ, R0 = 3, and nl = 3 is shown148

in Figure 1a. Figure 1 depicts the non-dimensional density, defined as149

ρ = −(T − z) + (S −R0z). (22)

At the start of the simulation, temperature and salinity begin diffusing across the inter-150

faces. Because temperature diffuses faster, this results in a convectively unstable bound-151

ary forming above and below the interface, which prompts convection. Convection is fully152

developed by approximately t = 20, which corresponds to a few convective overturn-153

ing times. The mixing caused by convection results in the steepening of the interface gra-154

dients, and these two processes would typically compete until they reach an equilibrium155

in the absence of shear. However, convection also mixes the velocity in the convective156

layers, resulting in strong shear at the interfaces. As the simulation progresses, the Richard-157

son number gradually decreases, eventually disrupting the interfaces by shearing insta-158

bilities as is shown in Figure 1b.159

The evolution of the temperature fluxes is shown in Figure 2 for simulations with160

R0 = 3, though the flux evolution is qualitatively comparable for all cases. We mea-161

sure the turbulent heat flux with the domain-averaged thermal dissipation, which is given162

by163

FT = 〈(∇T )2〉, (23)

F ∗T = ρ∗0c
∗
pFT

[l]

[t]
[T ], (24)
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Figure 1. (a) A volume rendering of the density field in a simulation with nl = 3, R0 = 3,

and isotropic shear at an early time, just after the simulation has begun. (b) The same rendering

at a later stage, once the shear has disrupted the initial interfaces. (c) The same rendering for a

unidirectional simulations with the same density ratio and number of layers.
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Figure 2. The evolution of the domain-averaged turbulent heat flux for simulations with

R0 = 3. The dimensional heat fluxes are shown on the right axis, and the Richardson number for

the isotropic cases is shown on the top axis. The red curve shows the evolution of the case with

unidirectional shear.

in non-dimensional and dimensional quantities, respectively. The angled brackets indi-164

cate the spatial average over the entire domain and c∗p = 4200J/kg◦C is the specific heat165

capacity of seawater. Initially, the fluxes are low prior to the onset of convection, which166

is fully realized by t = 20. After this point, the fluxes reach a temporary quasi-steady167

equilibrium; however, as shear continues to increase, the forced shear begins to impart168

energy to the convection, which is evidenced by the increasing fluxes. Eventually the flux169

rapidly increases due to a large mixing event in all cases, which is connected to the even-170

tual disruption of the staircase.171

Figure 2 also highlights the difference between those simulations with isotropic shear172

and those with unidirectional shear. It should be noted that because the shear magni-173

tude oscillates in the unidirectional-shear simulation, the Richardson numbers given are174

associated with the temporal maximum of shear. Both classes of simulation begin with175

low heat fluxes that increase as the magnitude of the shear forcing increases. However,176

the unidirectional-shear simulation shows a strongly oscillatory heat flux at the shear177

frequency while the multidirectional-shear case does not. In addition, the peak fluxes for178

the unidirectional-shear case tend to be significantly higher (by about a factor of two)179

than in the comparable isotropic-shear case prior to the complete destruction of the in-180

terface. Though the interfaces are destroyed in all of these cases by the time that the181

Richardson number falls below 0.2, there is no analogous strong mixing event in the unidirectional-182

shear case. This may be due to the intermittency of the shear, and unlike in the case with183

isotropic shear (shown in Figure 1b), the unidirectional shear case only shows small lo-184

calized bursts of turbulence in Figure 1c associated with the mixing peaks in Figure 2.185

This could have substantial implications for stochastic changes in shear direction in the186

ocean.187
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In order to determine the time at which the staircase is disrupted, we character-188

ize the state of the simulation through the use of a “steppiness” parameter denoted as189

σ. This parameter is generated by constructing a histogram of the density for each time,190

which has a value of h(ρi, t) for the ith density bin, such that
∑M
i=1 h(ρi, t) = 1 for all191

t, where M is the number of density bins (here chosen to be 400), ρ1 = (1−R0)L, and192

ρM = 0. Due to the periodic nature of the domain, any values of the density outside193

of this range can be brought inside it by adding or subtracting some multiple of (1 −194

R0)L, which is the constant density difference between the top and bottom of the do-195

main. This avoids mischaracterizing fluid that has crossed the vertical boundary dur-196

ing the simulation. A uniform gradient density field would necessarily have h(ρi, t) =197

1/M for all i. We choose to evaluate the steppiness as198

σ(t) =

M∑
i=1

{
h(ρi, t), if h(ρi, t) >

δ
M ,

0, otherwise,
(25)

where δ is a constant that was calibrated to δ = 1.5 by requiring that staircase disrup-199

tion occurs at σ < 0.5. This measures the fraction of the domain that is unrepresen-200

tative of a uniform density gradient in terms of the overabundance of any particular den-201

sity value.202

Figure 3 shows σ values for all 10 simulations grouped by density ratio. Each sim-203

ulation begins with σ near 1, indicating a nearly perfectly non-uniform density distri-204

bution. As the simulation progresses, shear continues to degrade the interfaces and sub-205

sequently, σ decreases towards 0 as the fluid becomes more uniformly distributed. It is206

apparent that in general, systems that begin with layers of greater height are more dif-207

ficult to disrupt, with those simulations with nl = 2 crossing the σ = 0.5 threshold208

last for all density ratios. This effect is due to the relationship between step height and209

interface stratification for fixed density ratio—i.e., if there are fewer interfaces, the strat-210

ification of those interfaces is greater and thus, those interfaces are more difficult to dis-211

rupt. In some cases, most notably those with nl = 2, the steppiness parameter begins212

to increase at later times, and this corresponds to layer merger events, when the shear213

disrupts only some of the interfaces. The steppiness of the system initially decreases as214

the turbulent breakdown of the interface leads to an initially heterogenous layer, but as215

this convective layer gradually mixes, the steppiness recovers. The layer merging pro-216

cess results in more robust staircases. The effect is particularly prevalent in the case of217

R0 = 5, nl = 2, where the first layer disruption happens prior to the steppiness falling218

below 0.5 and thus leads to a deceptively long timescale of disruption. Generally, the stair-219

case evolution in the unidirectional shear case is analogous to those with isotropic shear,220

but there is no evidence of layer merging in the unidirectional shear case.221

Table 1. Critical Richardson Numbers for Simulations with Isotropic Shear

R0 nl = 4 nl = 3 nl = 2

2 0.24 0.20 0.19
γ0 = 3.1623, γr = 0.05

3 0.22 0.21 0.20
γ0 = 4.4721, γr = 0.0707 (0.24†)

5 0.24 0.21 0.13
γ0 = 6.3246, γr = 0.1

†Unidirectional shear simulation.
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Figure 3. The evolution of the steppiness paramenter over time of simulations with (top)

R0 = 2, (center) R0 = 3, and (bottom) R0 = 5.
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4 Staircase Formation222

We also model staircase creation via shear instabilities through a series of two-dimensional223

simulations with an oceanographic value of τ . We simulated two cases with different Richard-224

son numbers in a square box of side length L = 100 resolved by 3072 grid points in each225

dimension. Both simulations have Pr = 10, τ = 0.01, R0 = 2, and ω = 0.3. We char-226

acterize the simulations in terms of the mean Richardson number, given by227

Ri = 2
Pr (R0 − 1)

γ2
, (26)

where the additional factor of two accounts for the temporally averaged shear magni-228

tude squared in 2D equalling γ2/2. For the two cases considered here, the mean Richard-229

son numbers are Ri = 2 and Ri = 3. Each simulation begins with uniform gradients230

of temperature, salinity, and velocity, of which the temperature and salinity begin with231

small random perturbations.232

Figure 4 shows a series of density perturbation snapshots of both simulations. Fig-233

ures 4a,e,f show the initial development of the thermohaline—shear instability, which takes234

the form of exponentially growing plane waves in the sheared coordinate system, as is235

predicted by the linear model of Radko (2019). As these plane waves intensify, the small-236

scale shear in between the waves grows until the non-linear terms of the equations be-237

come important, and the system begins to develop small-scale overturns akin to Kelvin–238

Helmholtz instabilities, as seen in Figures 4b,g. The overturns mix the temperature and239

salinity locally, and the system develops into a stack of convective layers in Figures 4c,h,240

which is the first stage that resembles a staircase. These layers intensify over time and241

eventually merge to form larger layers as in Figure 4d. These systems do form layers de-242

spite being outside of the nominal range of the traditional diffusive convection instabil-243

ity.244

The steppiness parameter is also shown for both of the staircase formation simu-245

lations in Figure 4. For these, the steppiness begins at 0, indicating a uniform density246

gradient. As the turbulence increases and layers begin to form, the steppiness param-247

eter gradually increases and eventually crosses the σ = 0.5 threshold. Notably, the Ri =248

2 simulation crosses that threshold earlier due to the higher thermohaline–shear insta-249

bility growth rate for cases with lower Richardson numbers (Radko, 2019). Note that250

even though the number of layers in the simulation is decreasing with time (as shown251

in Figure 4), σ reaches a plateau at approximately 0.6. This suggests that the steppi-252

ness parameter is a relatively robust measure of the presence of a staircase and is not253

sensitive to the layer height in the system.254

5 Discussion255

Shear, isotropic or unidirectional, can have substantial impacts on the formation256

and disruption of themohaline staircases in the Arctic. Staircases are typically disrupted257

when the mean Richardson number falls below Ri = 1/4, which is consistent with the258

development of dynamic instabilities at the interface. Staircases with larger layer heights259

are more difficult to disrupt than those with relatively thin layers. Weaker shear—Richardson260

numbers of 2 or more—is shown instead to have the capacity to generate layers spon-261

taneously in a manner analogous to those of Radko (2016) and Brown and Radko (2019).262

The thermohaline–shear instability initially develops and amplifies, leading to the for-263

mation of layers. These layers merge in time to form large-scale staircases. We have also264

developed a metric to characterize staircase development in a so-called “steppiness” pa-265

rameter, which uses a histogram of the density field to identify densities that are sta-266

tistically overrepresented and may be interpreted as signatures of mixed layer formation.267

This study supports the findings of Shibley et al. (2017) and Shibley and Timmer-268

mans (2019). Shibley et al. (2017) showed that staircases are less likely to be found in269
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regions where the Arctic thermocline is closer to the surface where wind forcing can lead270

to more turbulence. In addition, Shibley and Timmermans (2019) presented a 1-D model271

in which weak turbulence was shown to promote the development of convective layers,272

which is confirmed in our 2-D simulations. Together, these results emphasize that shear273

plays an important role in double-diffusive processes and that the complex interplay be-274

tween these processes can have far-reaching consequences for accurately modeling the275

Arctic thermocline.276

This research promotes a number of interesting avenues for further research. With277

the numerical tools that have been developed, it would be possible to find observational278

data of regions in the Arctic with staircases and evaluate whether these regions would279

develop staircases spontaneously by the thermohaline–shear instability. Conversely, it280

would be possible to find regions of the upper Arctic thermocline without staircases and281

perform numerical experiments to determine whether shear in these regions is substan-282

tial enough to disrupt any existing staircases.283
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