Florine Enengl

and 6 more

We investigate the role of auroral particle precipitation in small-scale (below hundreds of meters) plasma structuring in the auroral ionosphere over the Arctic. To the scope, we together analyse data recorded by an Ionospheric Scintillation Monitor Receiver (ISMR) of Global Navigation Satellite System (GNSS) signals and by an All-Sky Camera located in Longyearbyen, Svalbard (Norway). We leverage on the raw GNSS samples provided at 50 Hz by the ISMR to evaluate amplitude and phase scintillation indices at 1 s time resolution and the Ionosphere-Free Linear Combination at 20 ms time resolution. The simultaneous use of the 1 s GNSS-based scintillation indices allows identifying the scale size of the irregularities involved in plasma structuring in the range of small (up to few hundreds of meters) and medium-scale size ranges (up to few kilometers) for GNSS frequencies and observational geometry. Additionally, they allow identifying the diffractive and refractive nature of the found fluctuations on the recorded GNSS signals. Six strong auroral events and their effects on plasma structuring are studied. Plasma structuring down to scales of hundreds of meters are seen when strong gradients in auroral emissions at 557.7 nm cross the line of sight between the GNSS satellite and receiver. Local magnetic field measurements confirm small-scale structuring processes coinciding with intensification of ionospheric currents. Since 557.7 nm emissions primarily originate from the ionospheric E-region, plasma instabilities from particle precipitation at E-region altitudes are considered to be responsible for the signatures of small-scale plasma structuring highlighted in the GNSS scintillation data.

Motoharu Nowada

and 4 more

The ultraviolet imager (UVI) of the Polar spacecraft and an all-sky camera at Longyearbyen contemporaneously detected an auroral vortex structure (so-called “auroral spiral”) on 10 January 1997. From space, the auroral spiral was observed as a “small spot” (one of an azimuthally-aligned chain of similar spots) in the poleward region of the main auroral oval from 18 h to 24 h magnetic local time. These auroral spots were formed while the substorm-associated auroral bulge was subsiding and several poleward-elongated auroral streak-like structures appeared during the late substorm recovery phase. During the spiral interval, the geomagnetically north-south and east-west components of the geomagnetic field, which were observed at several ground magnetic stations around Svalbard island, showed significant negative and positive bays caused by the field-aligned currents related with the aurora spiral appearance. The negative bays were reflected in the variations of local geomagnetic activity index (SML) which was provided from the SuperMAG magnetometer network at high latitudes. To pursue the spiral source region in the magnetotail, we trace each UVI image along field lines to the magnetic equatorial plane of the nightside magnetosphere using an empirical magnetic field model. Interestingly, the magnetotail region corresponding to the auroral spiral covered a broad region from Xgsm ~ -40 to -70 RE at Ygsm ~ 8 to 12 RE. The appearance of this auroral spiral suggests that extensive areas of the magnetotail (but local regions in the ionosphere) remain active even when the substorm almost ceases, and geomagnetic conditions are almost stable.

Evgeny Gordeev

and 7 more