You need to sign in or sign up before continuing. dismiss

Michael W. Liemohn

and 10 more

Ionospheric outflow supplies nearly all of the heavy ions observed within the magnetosphere, as well as a significant fraction of the proton density. While much is known about upflow and outflow energization processes, the full global pattern of outflow and its evolution is only known statistically or through numerical modeling. Because of the dominant role of heavy ions in several key physical processes, this unknown nature of the full outflow pattern leads to significant uncertainty in understanding geospace dynamics, especially surrounding storm intervals. That is, global models risk not accurately reproducing the main features of intense space storms because the amount of ionospheric outflow is poorly specified and thus magnetospheric composition and mass loading could be ill-defined. This study defines a potential mission to observe ionospheric outflow from several platforms, allowing for a reasonable and sufficient reconstruction of the full outflow pattern on an orbital cadence. An observing system simulation experiment is conducted, revealing that four well-placed satellites are sufficient for reasonably accurate outflow reconstructions. The science scope of this mission could include the following: reveal the global structure of ionospheric outflow; relate outflow patterns to geomagnetic activity level; and determine the spatial and temporal nature of outflow composition. The science objectives could be focused to be achieved with minimal instrumentation (only a low-energy ion spectrometer to obtain outflow reconstructions) or with a larger scientific scope by including contextual instrumentation. Note that the upcoming Geospace Dynamics Constellation mission will observe upwelling but not ionospheric outflow.

Michael Liemohn

and 9 more

The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond ~4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.