Systematic Variations in Lava Flow Morphology Along the North and South
Rift Zones of Axial Seamount
Abstract
Meter-scale AUV mapping of 85-km of the summit and rift zones of Axial
Seamount shows systematic variation in morphology of the lava flows with
depth and distance from the caldera. ROV sampling reveals flow age and
chemistry variations. Each rift zone has a steady downward slope of
~2° outside the caldera. In the caldera and first few km
down the rift zones, flows are predominantly channelized sheet flows
with collapses along the channels. Mid-rift, drained inflated hummocky
flows consisting of complex mounds with tumuli and lava lakes, and
narrow ridges of hummocky mounds become common. On the axis of the south
rift, the first cones with craters occur 3.2 km from the caldera at 1600
m depth, and broad inflated hummocky flows emplaced through complex lava
tubes first appear 6 km down-rift at 1715 m. On the north rift, similar
cones and complex flows appear at 10.5 km down-rift at 1725 m depth. The
historical flows exemplify this variation: on the upper south rift as
channelized sheet flows in 1998 and 2011 erupted from fissures that
extended 6.5 km down-rift; on the middle north rift, inflated hummocky
flows up to 126 m thick erupted in 2015 from fissures 17.5 km from the
caldera; and on the distal south rift, a narrow ridge of coalesced
hummocks 160 m tall formed during the 2011 eruption. Older and older
lavas remain exposed at greater distances from the more active summit
and upper rift zones. Deep on the rift zones, stellate and steep cones
with smooth talus slopes occur that did not feed expansive flows,
despite being constructed of hotter, less viscous, near-primary magmas.
These cones are first observed on both rift zones at 1800 m depth and 18
km from the caldera. Deeper still, emanating from both distal rift axes
beginning ~30 km from the caldera, lie voluminous
inflated sheet and inflated hummocky flows 30 to 135 m thick with
combined area of over 150 km2. The plagioclase-phyric voluminous flows
on the south rift erupted ~1250 years ago, and the
aphyric ones on the north rift ~13,000 years ago.
Eruption rate is the most likely cause of the flow morphology changes
since estimated magma viscosity does not correlate with flow morphology.
Lateral transport through long dikes would slow magma delivery unless
dike widths are large. The near-primary magmas may have risen through
narrow conduits from the mantle to the distal rifts.