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Key Points:

o Estimation of flood depth and changes in the water level during Hurricane
Florence

e Observed data from USGS gauges are found to be well correlated with the
estimated depths

e InSAR method gave better accuracy than the DEM and flood extent based
method

Abstract

We studied the temporal and spatial changes in the flood water elevation and
variation in the surface extent due to the flooding resulting from Hurricane Flo-
rence (September 2018) using the observation from an Unmanned Aerial Vehicle
Synthetic Aperture Radar (UAVSAR) and Sentinel-1. The novelty of this study
lies in the estimation of changes in the flood depth during the hurricane and
investigating the best method. Overall, flood depths from SAR were observed
to be well-correlated with the spatially distributed ground-based observations
(RZ = 0.79 to 0.96). The corresponding change in water level ( h/ t) compared
well between the remote sensing approach and the ground observations (R =
0.90). This study highlights the potential use of SAR remote sensing for inun-
dated landscapes (and locations with scarce ground observations), and it em-
phasizes the need for more frequent SAR observations during flood to provide
spatially distributed and high temporal repeat observations of inundation.

Plain Language Summary

Hurricane induced flooding causes damages to property and the environment.
It is important to assess the intensity of damage by estimating flood extent and
depth. It is difficult to estimate the flood extent during the hazard in the forested
and remote areas using in-situ observations, which makes it imperative to assess
real time flooding using satellite data. We assessed the flood characteristics
during Hurricane Florence in September 2018. Flood extent and depth was
observed to be maximum on September 17 and 18, and gradually decreased till
September 24. Flood depths were compared with the in-situ observations from
gauges and the study emphasized the importance of using satellite data that
can help to improve flood management and recovery efforts.



1 Introduction

Extensive flooding causes significant damage to infrastructure and limits access
to natural resources (Kuenzer et al. 2013). Precise information on the flood
extent can help property owners and government agencies to cope with the eco-
nomic losses and for developing mitigation measures (Smith 1994). In order to
provide essential information, it is necessary to assess the full extent of inun-
dation, however, it is difficult to visualize a large flooded area due to several
constraints (Martinis et al. 2009). Remote sensing using Synthetic Aperture
Radar (SAR) is an effective method to monitor inundated areas. The major ad-
vantages are that it is independent of atmospheric conditions and can carry out
mapping even under vegetated conditions (Woodhouse, 2017). Recently, natu-
ral disasters worldwide have shown that remote sensing technology can be used
in different phases of disaster management such as preparedness, prevention,
relief, and reconstruction (van Westen, 2000).

The return period of floods is estimated to decrease (Pall et al., 2011; Arnell and
Gosling, 2016) and studies have already indicated an increase in the extreme
precipitation (Min et al., 2011; Westra et al., 2013). However, there is limited
global evidence regarding the trend in the magnitude of annual maximum floods
and their prediction (Kundzewicz et al., 2014).

The majority of literature on the use of SAR has focused on flood inundation in
forested areas and wetlands (Schlaffer et al., 2015; Twele et al., 2016; Pradhan
et al., 2017; Chini et al., 2017; Amitrano et al., 2018). In addition, most of these
studies focus solely on the areal extent of inundation (Huang and Jin, 2020; Zeng
et al., 2020) and only a handful address changes in water level and dynamics of
flood depth. Alsdorf et al., (2001; 2000) examined water level dynamics along
parts of the Amazon floodplain using Shuttle Imaging Radar (SIR-C) L-band
observations. They found that water level changes in the inundated vegetation
can be measured using the L-band HH polarization observations. Brown et al.
(2016) estimated the flood boundary from the SAR data and flood surface ele-
vation using the digital terrain model derived from LiDAR data to obtain flood
depth. Zhang et al. (2018) mapped the flood extent and change in the water
level during Hurricane Irma using Sentinel-1 data and concluded that the ma-
jority of their study area in South Florida was impacted by flooding. However,
some recent studies have used only SAR or integrated SAR and hydrological
modeling for estimating flood inundation. Dasgupta et al. (2020) have com-
pared SAR derived flood extent to the hydrodynamic modeling in Mahanadi.
Psomiadis et al. (2019) estimated flood depth in Greece using Sentinel-1 and
Digital Elevation Model (DEM). Grimaldi et al., 2020 have used SAR to map
flood under vegetated cover while urban flood inundation and mapping was done
by Bhatt et al. (2019) in Jammu and Kashmir of India using SAR observations.
Urban flood such as the one in Houston in 2017 and Joso of Japan were studied
by Li et al. (2019) using Sentinel-1 and ALOS-2 data and Houston flood caused
by Hurricane Harvey was studied by integrated SAR and hydraulic modeling by
Scotti et al. (2020). Hydraulic model was used here to estimate the flood depth



and velocity and compared with the SAR derived flood inundation. However,
for large area flooding, hydraulic models may not be appropriate to estimate
flood extent and depths. Recent studies on flood detection using SAR data are
carried out by Wan et al. (2019); Wu et al. (2019), Sharifi (2020). Hultquist and
Cervone (2020) have used SAR product for estimation, Wdowinski et al (2004)
worked on wetland inundation, and Liang and Liu (2020) proposed a method
to estimate daily inundation based on flood map information from multiple
sources. However, in our study difficulties in estimating the hurricane flood was
experienced even while using high quality data of UAVSAR and Sentinel-1. In
this paper both Sentinel-1 and UAVSAR were used and results from both were
presented so that it can be compared and best method with better accuracy can
be indicated. All these studies have observed flood using SAR and integrating
other methods or have used products, but very few have directly estimated and
compared depth from different methods using DEM and interferometry for a
major hurricane.

Most of the remote sensing studies use either L (1-2 GHz) or C (4-8 GHz) fre-
quency to obtain changes in the water level. The L-band is better suited for
identifying water in forested areas as compared to the C-band, however, for
sparsely vegetated areas and in leaf-off conditions, C- or X-band (10 GHz) can
also be used to map flooded vegetation (Lang et al., 2008; Voormansik et al.
2013; Martinis and Rieke 2015; Plank et al., 2017). Lu and Kwoun (2008) used
European Remote Sensing (ERS)-1/ERS-2 with C-band and VV polarization
and found that the Interferometric Synthetic Aperture Radar (InSAR) main-
tained sound coherence and could measure the changes in phase over the wet
forest areas in Southeast Louisiana.

The main aim of the present study is to investigate and assess depths obtained
by two different methods (DEM and InSAR) to provide the best result during
hurricanes with a short duration, where water recedes quickly but results in
extensive damages. Results and analysis of the study has the potential that
can be followed to estimate extensive flood in case of other hurricanes or disas-
ter induced floods, with comprehensive comparison against the observed USGS
ground data. This analysis provides a significant direction to the techniques that
can be best suited in hurricane flood depth estimates. To accomplish this, we
estimated changes in the flood extent and water level in South Carolina during
the passage of Hurricane Florence (September 2018) using two high resolution
data - the C-band (5.405 GHz) Sentinel-1 and L-band (1.25 GHz) Unmanned
Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and compared the results
with the USGS gauge data.

2 Materials and Methods
2.1 Study area

The Pee Dee River Basin covers about 18,702 km? in North and South Carolina,
United States, and drains into the Atlantic Ocean via the Winyah Bay in South
Carolina. The Black River, Waccamaw River, and Pee Dee River are considered



as the largest rivers within the Yadkin Pee Dee River Basin in South Carolina
(Majidzadeh et al., 2017). Our study site is the Pee Dee River basin in South
Carolina with a flooded area of 5,607 km? (Figure 1) on September 18, 22, and
23, 3,486 km? for the September 17 and 4,622 km? for September 24. The study
sites were selected based on the availability of the UAVSAR flight lines and
Sentinel-1 data during the passage of Hurricane Florence between September
17 to September 24, 2018. The Light Detection and Ranging (LiDAR) digital
elevation model (DEM) was used in the Pee Dee River Basin area to obtain
the flood depth. The elevation of the study site is around 132.85 m in the
north. The extreme southeast of our study area has a low elevation near the
coastline and it increases towards the north along both sides of the Pee Dee
River. Observed data from the United States Geological Survey (USGS) gauge
stations in the Pee Dee River Basin were used to compare with the computed
flood depth from the DEM and the differences in the water level inferred from
the interferogram obtained from SAR, during the passage of Hurricane Florence.

2.2 Data

The UAVSAR and Sentinel-1 data were used in the study for estimation of
flood extent, depth and changes in the water level. Observed data from the 9
USGS gauges located within the study area were used that recorded the gauge
heights during Hurricane Florence (Table S1). The LiDAR DEM of 3 m spatial
resolution of vertical datum of North American Vertical Datum (NAVDS88) was
used in the analyses. All the USGS gauges used here have NAVDS88 datum
(Table S1, S2, and S3).

Our flood estimates rely on two sets of SAR data - UAVSAR and Sentinel-1.
UAVSAR is a Jet Propulsion Laboratory (JPL) based airborne pod-mounted
polarimetric instrument that provides a repeat-pass interferometric observation
system with a 16 km swath and operates at 1.26 GHz frequency and HH po-
larization. The UAVSAR used in this work has a fine spatial resolution (Table
S2). The horizontal transmit and horizontal receive (HH) polarization of InNSAR
pair of Ground Range Detected (GRD) data of UAVSAR was used to identify
the flooded area as it can penetrate the vegetation canopy and displays a good
contrast between land and water (Brisco et al., 2008; 2009).

Sentinel-1 is a C-band system developed by European Space Agency with a 250
km Interferometric Wide Swath (IW). Sentinel-1 data were obtained from the
Alaska SAR Facility (ASF) EarthData site. The Sentinel-1 data constellation
consists of two satellites in the same orbital plane, Sentinel-1A, and Sentinel-
1B (https://Sentinel.esa.int /web/Sentinel /missions/Sentinel-1/overview). The
Sentinel-1 products are useful for flood mapping and monitoring due to its
frequent revisit time (6 days for the constellation). The level-1 GRD and Single
Look Complex (SLC) data from Sentinel-1A /B were used for September 18 and
24 of 2018 to estimate the difference in the level of flood water between the
two dates. VV polarization (vertical transmit and vertical receive of waves by
the antenna) was selected in this study since it is considered to have better
accuracy than VH (Twele et al. 2016). Co-polarization such as VV has the



ability to detect partially submerged features, which is beneficial in flood damage
assessments (Manjusree et al. 2012). However, HH polarization is preferred for
estimating flood inundation because it is considered to be less sensitive to minor
vertical differences due to waves on the water surface (Martinis et al., 2009, Gan
et al., 2012). Therefore, VV and HH polarization were selected for this study.

2.3 Methodology

The remotely-sensed (UAVSAR and Sentinel) amplitude data were corrected
and geo-referenced, and converted to backscatter values to identify the flooded
and non-flooded areas (Manjusree et al., 2012; Liang and Liu, 2020). The
permanent water bodies were identified from the Landsat 8 image during a
non-flooded period (May 2018) using the Normalized Difference Water Index
(NDWTI) method (Chen et al., 2006). NDWT is related to the vegetation water
content based on physical principles (Gao, 1996). Month of May was the dry
month and hence water available during this time remains throughout the year
as permanent water. The permanent water body extracted by this method
was eliminated from the inundated areas to obtain the flooded areas. The
threshold method was used to differentiate between flooded and non-flooded
areas (Zhang et al., 2018) and permanent water features were used as a base
reference for selecting flood thresholds. At the C-band VV polarization, the
backscatter coefficient varies between -6 and -15 dB for water while in VH
polarization it varies between -15 and -24 dB (Manjusree et al., 2012). In our
study also, the threshold values in Sentinel-1 with VV polarization was within
this given limit. Flooded area extraction using backscatter observations relies
on threshold-based methodology, which requires to carefully identify the proper
threshold backscatter value for water body detection (Manjusree et al., 2012;
O’Grady et al., 2013). Interferometric processing was carried out using SLC
data from Sentinel-1 (Alsdorf et al., 2000; Jung et al., 2010) to obtain a change
in the water level (h/t) (Zhang et al., 2018). Preprocessing of the Sentinel-
1 data was carried out in VV polarization with IW mode and along with the
UAVSAR data was used to estimate the extent of floodwater using the threshold
method. Co-polarization like VV and HH are preferred for smooth surfaces
like for flood over cross-polarization (Gan et al., 2012). Use of interferometry
processing of L-band SAR data was demonstrated by Alsdorf et al. (2000) for
the first time to detect changes in the wetland water level. Change in the water
level is recorded between two acquisition dates that shows a change in phase of
interferogram. We have followed the pre-processing instructions of the SAR data
provided by the Sentinel Application Platform (SNAP) of the European Space
Agency including speckle and terrain correction. Additional filtering was not
done to retain the fine pixel resolution of the image. The ground range detected
(GRD) product comprises information for converting digital pixel values into
backscatter intensity. UAVSAR data are high precision aerial data processed
and provided by the JPL lab. To retain the fineness of this data, no speckle
correction was carried out on these images.

The LiDAR DEM was used to determine the flood depth on the different dates



using the extent of the flooded area. LiDAR data were obtained from the
South Carolina Department of Natural Resources (SCDNR). The corresponding
LiDAR DEM-based water depths were then compared against the USGS gauge
data. Estimation of water depth on different flooded days was carried out by
extracting the boundary cells of the flooded area and assigning their DEM
elevations in the surrounding area by iteration (Cohen et al., 2018).

Our analyses use the LIDAR DEM and radar interferometry to estimate the
depth and the difference in the water level between two dates. The water el-
evation changes measured from the interferogram along the direction of the
radar line-of-sight (LOS) was converted to the vertical displacement with the
wavelength and incidence angle (Jung et al., 2012).

3 Results
3.1 Water level during Florence and flood depth estimation

Variation in the gauge heights obtained from the 9 USGS gauges during Hurri-
cane Florence is depicted in Figure S1. The X-axis indicates dates from Septem-
ber 14 to September 24, 2018. Few gauges have data starting from September 17
and gauge 2110802 (A) and 2130561 (F) have missing data. The gauge heights
reach the highest level on September 17 and in some gauges the peak level
was reached on September 20-21, following which there is a gradual decrease
in heights to September 24. 3 gauges - gauge 2130980 (TA), gauge 2130561
(F), and gauge 02130000 (G) showed that the maximum height is reached on
September 17 and one on September 18 (gauge 2130930 i.e. TB); 3 gauges -
gauge 2131010 (C), gauge 2131000 (D), and gauge 2130810 (E) showed grad-
ual increase to a maximum on September 20-21 and the remaining 2 gauges -
gauge 2110802 (A) and gauge 2135200 (B) showed continuous increase up to
September 24.

The spatial distribution of flood depths is shown in Figure 2, which was esti-
mated using the flood extent and the LiDAR DEM. Depth estimation by this
method indicated a range of depths from less than 0.5 m to greater than 4.5 m
over the study area. About 7% of flooded area on September 17, 9% and 8.8%
on September 18 in Sentinel-1 and UAVSAR respectively, 13.5% on Septem-
ber 22 in UAVSAR, 14% on September 23 in UAVSAR, and 15% in Sentinel-1
on September 24, 2018, showed the flooded depth of less than 1 m. Depth
of floodwater was highest on September 17 and 18 and decreased gradually to
September 24. However, errors in the estimation process were observed as neg-
ative values of depth, which imply no flood depth in the area. Negative values
are observed in about 5% of the area on September 17, 2018, 7% of the area
on September 18, 2018, decreasing to about 3% on September 24, 2018. Areas
of high values of more than 15 m are estimated to vary from 0.09 to 0.65% of
the flooded area. Underestimation of flood depth values is observed in most of
the study area, which might be due to error caused by the location of the flood
boundary cells on big water bodies (Cohen et al., 2018).

Table S4 shows the distribution of flood depth with respect to the total flooded



area for each day during Hurricane Florence computed from the flood extent
and DEM. As observed from the data, September 17 and 18 of 2018 experienced
maximum area (>4.5 m) under high flood water depth (4.64% on September
17, and 2.53% and 5.83% on September 18 for Sentinel-1 and UAVSAR respec-
tively), and September 22 and 23 showed lowest percentage areas of maximum
flood depth (0.14 and 0.12% respectively). From September 17 to 24, areas of
low flood depth (<1 m) increased while areas of maximum flood depth (>4.5
m) decreased. The peak flood was observed on September 18 of 2018.

The water depths are obtained by differencing water surface elevation and land
surface elevation (i.e., DEM), which were then compared with the observed data
from USGS gauges (Figure 3A). The Pearson correlation (R?) for all dates for
this comparison varies from 0.79 on September 22 to the highest R? of 0.96
on September 18, 2018 (UAVSAR). For other dates we observe that R? varied
between 0.86 to 0.95. The root mean square error (RMSE) varies from 1.69
m on September 17 to 13.59 m on September 24. The depths estimated from
UAVSAR and Sentinel underestimated the observed depth from the USGS gauge
data but for a few exceptions. We observe that the USGS gauge F (Pee Dee
River near Bennettsville) displays overestimation for September 18, 22, and 23
of 2018 (UAVSAR) and slight overestimation was also observed in the USGS
gauge of A (Waccamaw River at Bucksport) for September 17 and 18, 2018.

3.2 Estimation of the difference in water level using interferogram

The temporal variation of the water heights ( h/ t) between September 18 and
24 of 2018 obtained from the USGS gauge data were compared with that ob-
tained from the interferogram using the Sentinel-1 data (Figure 3B). The two
dates of September 18, which corresponded to the peak flood, and September
24 corresponding to the lowest floodwater were used to show the changes in ele-
vation of the water level. A correlation of 0.9 was observed between the USGS
gauges and the h/t of the interferogram. Sentinel-1 images do not cover the
entire study area on September 24, therefore only the 6 USGS gauge stations
within the available study area were used.

Comparison of errors of two methods in change of water level between two dates
is illustrated in Figure 3C. 6 gauges are indicated here, where change of flood
water level is negative in gauges D and E. Similar results are observed in the
water level change obtained from the interferogram, but the change in water
level obtained from DEM are positive. In gauge F, the change in water level is
underestimated in DEM, while it is overestimated in interferogram in respect
to the observed data. In gauge G, the interferogram underestimated the change
more than the result obtained from DEM. In gauges TA and TB, change in level
obtained from both the methods are overestimated, however overestimation is
more in gauge TB by DEM than interferogram. Analysis of daily change in
depth during hurricanes is very crucial. UAVSAR and Sentinel-1 data indicated
change in the flood level with gradual recession in the entire hurricane duration.

However, the peak of the flood occurs on September 18 after the precipitation



declines - as observed from gauge heights of different gauge stations, precipita-
tion was high between September 14 to 16, 2018 in the study area. The gauge
height increases between September 17 and thereafter declines from September
21, 2018. A similar observation in Figure 3 implies a rise in the flood water to
peak on September 18 and the study area remained submerged till September
22-24, 2018.

4 Conclusions

This study includes the combined approach of determination of flood depth
and the difference in water level ( h/ t) using Sentinel-1, UAVSAR, and LiDAR
DEM. The analyses provide a noteworthy direction to the type of data and tech-
niques used that would give precise result in estimating hurricane flood depth,
and also for storms where water recedes quickly. Previous studies of inundation
by radar remote sensing typically focused on flood mapping and do not include
depth analysis that determines the intensity and damage from a major flood
event induced by the hurricane. Use of modeling is time exhausting and is not
always suitable for large areas. This study provides a breakthrough, firstly, by
estimating daily changes in the flood depth, which is difficult to obtain due
to absence of high quality daily SAR data, and secondly, we endeavored at
highlighting the method that would be precise in hurricane flood depth estima-
tion with short duration. We observed the maximum inundation with a higher
range of depth (>2m) due to flooding on September 18 using Sentinel-1 and
UAVSAR data. We also found good correlation in the water level variation
- h/t from USGS gauge height and that generated by interferometry. Inter-
ferometry indicated a comparatively better accuracy when compared with the
gauge data. Therefore, short duration hurricane floods, which are difficult to
assess can follow this using high quality data. This approach is particularly use-
ful in locations with little or no ground observations as this can help to schedule
relief operations and help in land use management.
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Figure 1. The SAR image in the left plot shows the geographic extent of
the study domain. The red boundary in the left plot indicates Pee Dee River
basin and the shaded portion inside the basin boundary indicates the study
area (aircraft flight domain). Hydrograph in the left plot shows the discharge
at gauge B and red dots in it indicate the dates used in the analysis. The right
plot displays a LiDAR-based DEM of the study area along with locations of
USGS gauge points and approximate distance from the river mouth.

Gauge IDs:  A=02110802; B=02135200; C=02131010; D=02131000;
E=02130810; F=02130561; G=02130000 TA=02130980; and TB=02130930
(T=tributary)

Figure 2. Spatial plots of the estimated flood depth with LiDAR DEM and
flood extent using Sentinel-1 and UAVSAR data

Figure3. A) Daily scatter plots showing the agreement between the estimated
flood depth using LiDAR DEM and flood extent and the USGS gauge data. The
Correlation coefficient R? between calculated and observed depth varies from
0.79 and 0.96 for the different dates and RMSE varies from 1.69 to 13.59 B)
Scatter plots showing the change in water surface depth between September 18
and September 24, 2018 for the calculated using Sentinel-1 versus that observed
using USGS gages. The correlation between the two is 0.9. (C) The (right)
figure indicates change in water level between 18 and 24 September obtained
from two different methods and their differences from the observed gauge data.
The black column indicates difference in observed gauge data between two dates,
light blue column indicates difference in depth obtained from DEM, and dark
blue column indicates difference obtained from InSAR.
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Figure 1 The SAR image in the left plot shows the geographic extent
of the study domain. The red boundary in the left plot indicates Pee
Dee River basin and the shaded portion inside the basin boundary
indicates the study area (aircraft flight domain). Hydrograph in the
left plot shows the discharge at gauge B and red dots in it indicate
the dates used in the analysis. The right plot displays a LiDAR-based
DEM of the study area along with locations of USGS gauge points
and approximate distance from the river mouth.

Gauge IDs: A=02110802; B=02135200; C=02131010; D=02131000;
E=02130810; F=02130561; G=02130000 TA=02130980; and
TB=02130930 (T=tributary)
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Figure 2 Spatial plots of the estimated flood depth with LIDAR DEM
and flood extent using Sentinel-1 and UAVSAR data.
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Figure 3. A) Daily scatter plots showing the agreement between the estimated
flood depth using LIiDAR DEM and flood extent and the USGS gauge data. The
Correlation coefficient R? between calculated and observed depth varies from
0.79 and 0.96 for the different dates and RMSE varies from 1.69 to 13.59 B)
Scatter plots showing the change in water surface depth between September 18
and September 24, 2018 for the calculated using Sentinel-1 versus that observed
using USGS gages. The correlation between the two is 0.9. (C) The (right)
figure indicates change in water level between 18 and 24 September obtained

from two different methods and their differences from the observed gauge data.

The black column indicates difference in observed gauge data between two dates,
light blue column indicates difference in depth obtained from DEM, and dark
blue column indicates difference obtained from InSAR.

17



