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Supporting Information Text

Space Magnetometer Data

The heritage of the space magnetometer data used in this study dates to earlier data

mining (DM) reconstructions of storms (Sitnov et al., 2008). As this DM approach relies

on knowledge of the solar wind plasma and IMF conditions, the start of the magnetometer

archive (January 1995) was chosen to approximately coincide with the advent of contin-

uous long-term L1 monitoring of the upstream solar wind which began in late 1994 with

the launch of the Wind spacecraft. That archive (N. A. Tsyganenko & Sitnov, 2007)

consisted of magnetic field observations from the IMP-8, Geotail, the Geosynchronous

GOES-8, 9, 10, and 12 satellites, Cluster, and Polar missions. The time-resolution of the

magnetometer data provided by the missions is often higher than is necessary for global

scale reconstructions so it is common practice to downsample the original data source to

a regular cadence by time-averaging over multiple measurements, e.g., (N. Tsyganenko

et al., 2021). A decision must then be made for the frequency of the downsampled data.

The archive from (N. A. Tsyganenko & Sitnov, 2007; Sitnov et al., 2008) choose 15 min

averaging cadence except for when spacecraft were located within r < 5RE, in which the

higher spacecraft velocities prompted for a 5 min data cadence. This archive is available

at http://geo.phys.spbu.ru/∼tsyganenko/data sets.html.

The data archive from (N. A. Tsyganenko & Sitnov, 2007) was later augmented for

the DM reconstructions of substorms by updating the Polar and Cluster datasets and by

adding the THEMIS and Van Allen probes magnetometer data (Stephens et al., 2019).

This expansion proved useful in populating the equatorial inner magnetosphere and near-
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tail region with data. In constructing this archive, the data from these four missions

was averaged to a 5 min cadence, but when incorporated into the DM algorithm, it was

downsampled to 15 min when the spacecraft location was r ≥ 5RE to be consistent with

the earlier archive. This database is available on the NASA Space Physics Data Fa-

cility: https://spdf.sci.gsfc.nasa.gov/pub/data/aaa special-purpose-datasets/empirical-

magnetic-field-modeling-database-with-TS07D-coefficients/. This was again extended in

subsequent substorm reconstructions by adding the available MMS data, which at that

time had completed a full season sampling the midtail following the extension of the MMS

apogee to r ≈ 25RE (Sitnov et al., 2019; Stephens & Sitnov, 2021). The addition of MMS

data proved useful in the reconstruction of the mid-tail region including the resolution

of X-line features (Sitnov et al., 2019). For these substorm reconstructions, data beyond

the primary apogee of the Geotail mission, r = 31RE, was filtered. This was performed

primarily to remove data points from the two THEMIS probes as they transitioned to the

ARTEMIS orbit, as the inclusion of this distant data could produce anomalous results

(Stephens et al., 2019).

In this study, the magnetometer data archive has again been updated. Fist, given the

importance of the MMS dataset to this particular investigation, it was extended through

the end of the year 2020, now encompassing three full tail seasons. Further, in February

of 2019, the MMS apogee was raised from r ≈ 25RE to r ≈ 29RE (Williams et al.,

2020), increasing the amount of data in this region. Second, the THEMIS, Cluster, Van

Allen Probes, and MMS datasets were all downsampled to a universal 5 min cadence,

instead of switching between 5 and 15 min based on spacecraft’s radial distance. The
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motivation being that the previous substorm investigations demonstrated that the DM

approach can indeed reconstruct changes in the magnetosphere on the scale approaching

5 min resolution (Stephens et al., 2019; Sitnov et al., 2019). Further, this makes the

cadence of the magnetometer archive consistent with that of the model reconstructions

and the OMNI dataset. The remaining spacecraft datasets (Geotail, IMP-8, and GOES

satellites) retain the 15 min data cadence only because upgrading them would require

additional efforts beyond the scope of this study. The third is that the radial filter was

increased from 31RE to 36RE. Although, as Fig. S1 indicates, the data between 31RE

and 36RE is relatively sparse, its inclusion was found to help stabilize the reconstructions

in the region r ≈ 25–31RE, which was of particular importance for this study. The result

is an archive of 8,649,672 magnetometer data records spanning the years 1995–2020 and

radial distance 1.5 to 36RE. The resulting spatial distribution of the archive is shown in

Fig. S1 while the breakdown of each individual spacecraft’s contribution to the archive is

displayed in Table S1.

The general process for constructing these datasets is as follows. First, the magnetome-

ter data is downloaded from either the mission webpage or a community resource such

as the NASA Space Physics Data Facility. Any anomalous data records are removed.

The contribution of the internal magnetic field is removed utilizing the International Ge-

omagnetic Reference Field (Alken et al., 2021) (IGRF model). Data collected when the

spacecraft was outside the magnetopause is filtered by either visual determination of mag-

netopause crossings or by application of empirical magnetopause models, e.g., (Shue et

al., 1998). The resulting data are then downsampled to the requisite data cadence using
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boxcar averaging. As one approaches the surface of the Earth, the value of the back-

ground magnetic field, Bint, becomes very large relative to the magnetic field generated

by external current sources, Bext. Thus, distinguishing the external and internal fields

requires attitude knowledge beyond the capacity of many spacecraft missions. For these

reasons data is excluded when r < 1.5RE for equatorial orbiting spacecraft. For polar

orbiting spacecraft (Polar and Cluster), a larger exclusion radius of r < 3.2RE was used

to prevent the large magnetic field deviations due to low-altitude FACs from biasing the

fit.

Storm-Substorm-Solar Wind State-Space

Storms and substorms and their response to solar wind drivers have a tendency to

develop in repeatable and predictable ways as indicated by their manifestation in geo-

magnetic indices, e.g., (Liemohn et al., 2018). This makes their empirical reconstruction

using DM possible. To do this, the storm/substorm state of the magnetosphere is as-

sumed to be characterizable using a low-dimensional state-space (Vassiliadis, 2006). For

example, earlier storm studies formulated a 3D state-space based on the storm-time index

Sym-H, its time derivative, and the solar wind electric field parameter vBIMF
z (Sitnov et

al., 2008) (where v is the X component of the solar wind bulk velocity which is multiplied

by the Z component of the IMF in GSM coordinates), the idea being that these three

parameters are representative of the storm state of the magnetosphere (Burton et al.,

1975; Vassiliadis et al., 1999). At any given moment in time the storm-state of the mag-

netosphere is represented as a state-vector, G(t), within this state-space. As the storm

develops, it will plot a trajectory through this state-space and similar events will trace
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similar trajectories. Subsequent substorm investigations expanded to a 5D state-space by

adding the substorm index AL along with its time derivative (Stephens et al., 2019). For

this study, the AL and Sym-H indices have been replaced by their SuperMAG counter-

parts (Gjerloev, 2012), SML and SMR respectively (Newell & Gjerloev, 2011, 2012). The

primary reason for this change was that, as of the writing of this study, the digital values

for the AL index are not available beyond March of 2018. This would have nullified the

expansion of the MMS dataset discussed in the previous section. Further, although not

officially authorized by the International Association of Geomagnetism and Aeronomy,

the SuperMAG indices are computed using a much higher number of ground magnetome-

ter stations (on the order of ∼ 100 instead of ∼ 10). In particular, the higher density

and smaller gaps between stations allows the SML index to detect substorms that may

be missed by the AL index (Newell & Gjerloev, 2011). As with the earlier studies, the

storm index has been pressure corrected to remove magnetic perturbations caused by the

compression of the magnetopause (Gonzalez et al., 1994). The pressure corrected index,

SMRc, is defined: SMRc = 0.8 ·SMR− 13
√
Pdyn (N. A. Tsyganenko et al., 2021). The 5D

storm/substorm state-space used here is defined:

G
(sst)
1 (t) = ⟨SMRc| ∝

∫ 0

−Πst/2
SMRc(t+ τ) cos (πτ/Πst)dτ (1)

G
(sst)
2 (t) = D⟨SMRc|/Dt ∝

∫ 0

−Πst/2
SMRc(t+ τ) cos (2πτ/Πst)dτ (2)
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G
(sst)
3 (t) = ⟨SML| ∝

∫ 0

−Πsst/2
SML(t+ τ) cos (πτ/Πsst)dτ (3)

G
(sst)
4 (t) = D⟨SML|/Dt ∝

∫ 0

−Πsst/2
SML(t+ τ) cos (2πτ/Πsst)dτ (4)

G
(sst)
5 (t) = ⟨vBIMF

s | ∝
∫ τ∞

0
vBIMF

s (t− τ∞ + τ) exp [(τ − τ∞)/τ0]dτ (5)

The integration convolves the original time-series data with smoothing windows. In the

case of eq. (1) and eq. (3) the windows are half cosines which acts to smooth SMRc and

SML over storm (Πst/2 = 6 h) and substorms scales (Πsst/2 = 1 h) respectively (Stephens

et al., 2019). Meanwhile, their smoothed time derivatives, eq. (2) and eq. (4), are defined

using two half cosine masks as described in (Sitnov et al., 2012). The fifth parameter,

eq. (5), uses an exponential function to smooth over vBIMF
s (where BIMF

s = −BIMF
z

when BIMF
z < 0 and BIMF

s = 0 otherwise). The exponential function not only acts as a

smoothing window but also captures the loading of magnetic flux in the lobes during the

substorm growth phase, thus, the e-folding time, τ0 = 0.5 h, was set based on the typical

duration of the growth phase (Partamies et al., 2013). Six e-foldings were used in the

convolution, τ∞ = 6τ0. Note, the integration only occurs over past data, as indicated by

the limits of integration in eqs. (1)–(5), to prevent non-casual effects, that is, to prevent

G from reacting to changes that have not yet occurred. The scale of each dimension of the

state-space is standardized by dividing the above equations by their standard deviation
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(computed over the entirety of the state-space), as is indicated by the proportionality

signs.

The solar wind plasma and IMF measurements were obtained from the NASA Space

Physics Data Facility through OMNIWeb (https://omniweb.gsfc.nasa.gov/ow min.html).

OMNIWeb utilizes solar wind measurements from the ACE, Wind, IMP 8, and Geo-

tail mission’s magnetic field and plasma instruments applying a time delay to propagate

them to the bow shock nose. The 5-min cadence OMNI products were used throughout

this study, including the values for the solar wind velocity, flow pressure, and the IMF.

The SML and SMR 1-min indices were downloaded through the SuperMAG webpage

(https://supermag.jhuapl.edu/indices).

Mining Data Using k-Nearest Neighbors

Our approach resembles the k-Nearest Neighbor (kNN) method of data mining (DM)

(Vassiliadis et al., 1995; Wettschereck et al., 1997), but also has important distinctions

(Sitnov et al., 2008; Stephens et al., 2019). First, while the kNN subsets are first identified

in the state-space, the magnetic field reconstruction is performed in the real space using

magnetometer observations that occurred during those kNN moments. The choice of the

number of kNN must be ample enough to fit flexible magnetic field models with high

degrees of freedom (N. A. Tsyganenko & Sitnov, 2007; Stephens et al., 2019) while at

the same time sufficiently small, 1 ≪ kNN ≪ kSS where kSS is the number of points

in the whole state-space, as to provide adequate sensitivity to the storm and substorm

phases. Second, the state-space includes the smoothed time derivatives of the activity
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indices to increase the sensitivity of the DM procedure to these phases and to capture

memory effects of the magnetosphere as a dynamic system (Sitnov et al., 2001).

In the DM method the state and input variables eqs. (1)–(5) are used to define the

distance R(i)
q < RNN of kNN nearest neighbors from the query point G

(q)
k (k = 1, ..., 5):

R(i)
q =

√√√√ 5∑
k=1

(
G

(i)
k −G

(q)
k

)2
/σ2

Gk
, (6)

where each component is normalized by its standard deviation σGk
. Then the spatial

reconstruction of the magnetic field for the event of interest is made using only a small

kNN ≪ kSS part of the state-space with kSS ∼ 4 · 106 points. Since the number of state-

space points, kSS, is quite large, the number of our instance-based subset kNN can also be

made sufficiently large to use for the magnetic field reconstruction a sufficiently flexible

model with many degrees of freedom, which is described in the next section. The specific

value of kNN = 32, 000 used in this study was found before (Stephens et al., 2019; Sitnov

et al., 2019) to provide good validation results and resolve the spatial structure of the

magnetic field and its evolution during substorms without overfitting.

Fitting the magnetic field data from the kNN subset is made by minimizing the distance

in another, magnetic field vector space:

M (NN)
err =

√√√√ ∑
j∈SNN

∑
i=x,y,z

wjw(0)(r)
[
B

(mod)
i (r(j))−Bj,obs

i

]2
, (7)

where Bj,obs
i is the magnetic field record from the kNN subset SNN (note that the number

of observations in that subset is in general different from the number kNN , because its de-

pends on the number of probes available at any moment in time averaged over the subset;
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the data structure of the database by mission is described in Table S1) and B
(mod)
i (r(j))

is the value of the j th magnetic field component of the model in the point of observation

r(j).

Note that the data points in the objective function eq. (7) are additionally weighted by

the factor w(0) to mitigate the inhomogeneity of magnetometer records in the real space,

which is seen from Fig. S1. In this weighting procedure, which is described in more detail

in (N. A. Tsyganenko & Sitnov, 2007), the data is binned into 0.5RE intervals of the geo-

centric distance r. Then the weight w(0)(r) is calculated as ⟨∆N⟩/max {0.2⟨∆N⟩,∆Ni},

where ∆Ni is the number of data points in the ith bin and ⟨∆N⟩ is the average number

per bin over the entire set.

Another weighting wj has been applied to mitigate the inhomogeneity of data in the

state-space eqs. (1)–(5), with stronger data density for weaker solar wind/IMF input,

storm and substorm activity (Stephens et al., 2020):

wj = exp
[
−

(
R(j)

q /σRNN

)2
/2

]
, (8)

where RNN is the radius of the NN sphere. The specific value of the weighting parameter

σ = 0.3 used in this study was found in earlier studies to improve the spatial reconstruction

and avoid overfitting for the chosen value of kNN (Stephens et al., 2020).

Model Magnetic Field Architecture and Fitting Features

The analytical description of the magnetospheric magnetic field used in this study

is nearly identical to that of earlier empirical reconstructions of substorms and is de-

scribed in more detail in (Stephens et al., 2019). The total magnetospheric magnetic
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field, Btot can be described as a summation of fields owing to individual current systems:

Btot = Bint + BFAC + Beq + BMP . The internal field, Bint, is fundamentally different

than the external fields as it is generated by currents deep in the Earth’s interior, pos-

sesses a relatively slow rate of change (on the order of years), and is readily measured by

ground based magnetometers. For these reasons, Bint is not considered within the scope

of magnetospheric research and is represented by the IGRF model (Alken et al., 2021). Of

interest are the magnetic fields generated by currents flowing within geospace, termed the

external field, Bext. Specifically here, assuming the magnetopause as a perfectly conduct-

ing layer, the set of current systems is limited to those flowing within the magnetopause,

the field-aligned currents BFAC and equatorial currents Beq, and on the magnetopause

BMP .

The building block for the equatorial current systems is the general solution of an

infinitely thin arbitrarily distributed current sheet as detailed by (N. A. Tsyganenko &

Sitnov, 2007). Solved in cylindrical coordinates (ρ,ϕ,z), the solution is composed of a

Fourier series in ϕ and a Fourier-Bessel series in ρ, and the resulting magnetic field,

Bsheet, is given by a basis function expansion having the form:

Bsheet(ρ, ϕ, z) =
N∑

n=1

a
(s)
0nB

(s)
0n +

M∑
m=1

N∑
n=1

(a(o)mnB
(o)
mn + a(e)mnB

(e)
mn). (9)

where B0n, B
(o)
mn, and B(e)

mn are basis functions with axially symmetry, odd (sine), and

even (cosine) symmetry respectively; while amn are the amplitude coefficients.

Note, although this yields an arbitrary description in ρ and ϕ, its structure in z is rigidly

defined to be an infinitely thin current sheet at z = 0. However, the Dirac delta profile of
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the current density in z can be broadened into a realistic finite distribution by performing

the variable substitution ζ =
√
z2 +D2, introducing the parameter D as the current sheet

half-thickness. The thickness parameter D need not be a constant but can take the form

of any differentiable function D = D(ρ, ϕ).

A distinctive feature of the tail is the formation of multiscale current sheets in the

substorm growth phase with an ion-scale thin current sheet (TCS) embedded into a much

thicker current sheet (Sergeev et al., 2011). In order to capture this feature, (Stephens et

al., 2019) used two such expansions to describe the equatorial field:

B(eq)(ρ, ϕ, z) = B(eq)(ρ, ϕ, z;D) +B(eq)(ρ, ϕ, z;DTCS), (10)

where DTCS is constrained to be DTCS < D. Further studies (Stephens et al., 2019;

Sitnov et al., 2019) confirmed the buildup of TCS in the growth phase of substorms and

their decay during the expansion and recovery phases.

Earlier studies assumed a spatially constant TCS thickness, DTCS = const, although it

was allowed to vary in time (Stephens et al., 2019). Here, the embedded TCS structure has

been further generalized to verify the possible physical mechanisms of the TCS formation.

It can be explained, e.g., (Sitnov et al., 2006), by figure-eight like (Speiser) proton orbits

(Speiser, 1965). If this is the case, the parameter DTCS of the magnetic field model should

depend on the distance ρ from the Earth because the Speiser orbit size, ρSi, is inversely

proportional to the magnetic field outside the sheet, BL, which itself depends on ρ (Wang

et al., 2004). To take this effect into account, the magnetic field architecture was further
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generalized using the approximation eq. (11) with free parameters α, β and D0 and x0 to

be inferred from data.

DTCS(x, y) =
(
αe−βρ′ +D−1

0

)−1
, ρ′ =

√
(x− x0)

2 + y2. (11)

The results of the fitting the TCS thickness model eq. (11) with data within the frame-

work of the DM-based global magnetic field reconstruction using a generalization of the

basis-function expansion eq. (9) for variable TCS thickness (eqs.(15)-(17) in (N. A. Tsy-

ganenko & Sitnov, 2007)) are presented in Fig. S2 for the main group of IDR events, G,

M, W, and Y. Similar profiles of the lobe field BL and the inverse TCS thickness DTCS

seen in this figure suggest that the TCS thickness scales as the thermal ion gyroradius

in the field BL and hence its is likely formed by quasi-adiabatic (Speiser) ions (Speiser,

1965; Sitnov et al., 2006). The value of DTCS asymptotically approaches D0 at increasing

distance, with the constraint D0 ≤ D, so that DTCS cannot exceeds the thickness of the

thick sheet.

A further complication is that the equatorial current system rarely lies in a plane cen-

tered about z = 0. The Earth’s dipole axis is not generally orthogonal to the direction

of the solar wind flow. The angle that the dipole axis makes with the Z axis of the

Geocentric Solar Magnetic (GSM) coordinate system is the “dipole tilt angle”. Its finite

value may cause bending and warping of the tail current sheet while changes in the IMF

clock angle (the angle between geomagnetic north and the projection of the IMF vector

onto the GSM Y-Z plane) may twist the current sheet (N. A. Tsyganenko & Fairfield,

2004). These effects can be accounted for by application of the general deformation tech-
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nique (N. A. Tsyganenko, 1998). Specifically, here the “bowl-shaped” deformation from

(N. A. Tsyganenko, 2014) is used, introducing three additional free parameters which

define the center of the current sheet; the hinging distance RH , the warping parameter G,

and the twisting parameter TW .

The values of M and N determine the number of azimuthal and radial expansions in

equation (9) and thus the resolution of the equatorial currents in ϕ and ρ respectively.

Here, as with previous substorm investigations (Stephens et al., 2019), (M,N) = (6, 8)

as this was determined a sufficient resolution to resolve current structure throughout the

near and mid-tail without overfitting to data (Stephens & Sitnov, 2021). Further, as with

the prior investigations, in order to account for potential dynamical pressure effects on

the structure of equatorial currents, each of the amplitude coefficient terms in eq. (9) are

made explicit functions of Pdyn: a
(γ)
αβ → a

(γ)
0,αβ + a

(γ)
1,αβ

√
Pdyn, doubling their number. The

end result is a total of 416 amplitude coefficients which determine the spatial structure of

the equatorial current sheet.

The FAC magnetic field, BFAC , module used in this study is identical to that of

(Stephens et al., 2019). The foundation of their analytical description are the radially

flowing conical current systems developed in (N. Tsyganenko, 1991), which are then bent

to follow approximately dipolar field lines using the general deformation technique which

also accounts for the day-night asymmetry (N. A. Tsyganenko, 2002a). The azimuthal

dependence of the conical currents utilizes a Fourier series, giving them flexibility to recon-

struct the magnetic local time variations of the FACs but at the expense of having a very

rigid latitudinal structure. In order to mimic expansion like flexibility in latitude, four

July 20, 2022, 6:59pm



: X - 15

such conical current systems are placed at overlapping latitudes. The first four Fourier

terms are used for each of the four latitudinal varying conical currents resulting in a to-

tal of 16 linear amplitude coefficients that determine the FACs spatial structure. Global

rescaling parameters were introduced to allow the FACs to shrink and grow in response

to storm and substorm phases. Instead of allowing each of the four current systems to

rescale independently, the two higher latitude systems were tied to one parameter κR1 and

the two lower to another κR2. The values of κR1 and κR2 were constrained so that they

approximated the region-1 and region-2 current systems respectively. This formulation

was shown to successfully reproduce the more complex spiral like FAC pattern observed

in the AMPERE data (Sitnov et al., 2017).

Unlike the other external fields, in which the magnetic field sought is consistent with

some conceptualization of a current system, the magnetopause magnetic field, BMP , does

not attempt to represent a current. Instead, the domain of validity of the model is re-

stricted to just inside the magnetopause current layer, where jMP = 0. Thus, BMP is

irrotational and can be represented by a magnetic scalar potential, BMP = −∇U and

its formulation is simply the solution to Laplace’s equation: ∇2U = 0 (N. A. Tsyga-

nenko, 2014). In this context, BMP is termed a shielding field in that it ensures the

magnetosphere is closed, that is, that field lines do not cross the magnetopause. A closed

magnetosphere is represented by the condition Btot ·n|S = 0, where S is the modeled mag-

netopause boundary and n is the normal to that surface. Here, as with previous studies,

S is defined as the Shue magnetopause (Shue et al., 1998). In practice it is more tractable

to represent BMP as a combination of shielding fields: BMP = B
(sh)
int +B

(sh)
FAC +B(sh)

eq ; that
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way, each shielding field can be formulated independently using a coordinate system and

geometry that makes sense for that particular system. For example, owing to the cylin-

drical geometry of Beq, Ueq is represented by an expansion of Fourier-Bessel harmonics,

eq. 20 of (N. A. Tsyganenko & Sitnov, 2007), while Uint and UFAC utilize an expansion

of “Box” harmonics, appendix of (N. A. Tsyganenko, 1998) and eq. 34 of (N. A. Tsyga-

nenko, 1995) respectively. S is then sampled to a distance of r ∼ 50RE and the shielding

field expansion (e.g., B(sh)
eq = −∇Ueq) and the shielded field (e.g., Beq) are evaluated at

the location of each sample. This allows the coefficients of the shielding field expansion

(e.g. Ueq) to be found by minimizing the normal component of the combined field at the

magnetopause boundary, e.g., min
[
(Beq,j +B

(sh)
eq,j ) · nj

]
. For a more thorough discussion

on this topic see (N. A. Tsyganenko, 2014).

One more consideration built into the structure of the model is the magnetosphere’s

expansion and contraction in response to changes in the solar wind dynamical pressure,

Pdyn. It is well established from observations of magnetopause crossings that the magne-

topause responds to decreases/increases in the solar wind dynamical pressure, Pdyn, by

expanding/contracting in a self-similar way, that is, its size changes but not its shape,

e.g., (Sibeck et al., 1991; Shue et al., 1998). This self-similarity is easily represented by

rescaling the position vector as a function of Pdyn. Using simple pressure balance consid-

erations the functional form of this rescaling is r′ = Pdyn
−κ, where κ = 1/6 for a perfect

dipole (Mead & Beard, 1964). Here, as with many previous empirical studies, all current

systems are assumed to possess the same self-similarity rescaling, that is they all take the

same functional form and same value of κ (N. A. Tsyganenko, 2014). This assumption
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simplifies the shielding of these fields as both the shielded and the shielding fields rescale

together. κ could be treated as a free parameter when the model is fit to data, however,

previous studies have shown κ to be relatively stable (N. A. Tsyganenko, 2002b), so here

a constant value of κ = 0.155 from (N. A. Tsyganenko & Sitnov, 2007) was used.

The final magnetic field model configuration includes 432 linear amplitude coefficients

and 10 free non-linear parameters D,α,β,D0,x0,RH ,G,TW ,κR1,κR2 which are determined

by fitting them to the identified subset of magnetometer data. The linear coefficients

are determined by applying the singular value decomposition pseudo-inversion method to

the overdetermined linear least squares problem (Jackson, 1972; Press et al., 1992). The

non-linear parameters are found by embedding the linear solver within the Nelder-Mead

downhill simplex algorithm (Nelder & Mead, 1965).

Ion Diffusion Region Alphabet

The whole set of 26 IDR events detected by MMS in 2017–2020 (A. J. Rogers et al.,

2019; A. Rogers et al., 2021) (labeled in our study by letters A-Z) are listed in Table S2.

The second column in the table lists the starting date and time of each IDR interval

suggested by MMS (A. J. Rogers et al., 2019; A. Rogers et al., 2021), while the third col-

umn indicates the corresponding model time resulting from the adopted 5-min cadence.

The forth and fifth columns show the distances between the MMS tetrahedron and re-

constructed contours Bz = 0 nT and Bz = 2 nT. The distance is found as the minimum

radius of the 3D sphere, which crosses the corresponding Bz = const contour.

Based on this, we can categorize our 16 “Hits” as D0nT < 2.0RE, which includes 11

X-lines (A, C, D, E, G, Q, S, V, W, X, Y) and 5 O-lines (H, L, M, O, R). “Near hits”

July 20, 2022, 6:59pm



X - 18 :

would then be events that miss the 0 nT contour, but instead hit the 2 nT, D2nT < 2.2RE

(< 2 nT for all events except N). This would give us 8 more “Near hits” (I, J, K, N,

P, T, U, Z). Our 2 “Misses” (B, F) are then events where both D0nT ≥ 2.0RE and

D2nT ≥ 2.2RE. These quantitative estimates support the qualitative characterization of

the DM fidelity in the Bz = 0 contour reconstruction provided in the main text of the

paper. The sixth column indicates the figures where the corresponding IDRs are plotted

against the corresponding equatorial Bz and meridional current distributions.

Additional IDR Hits

Figs. S3–S8 and S9–S14 show the results of the comparison of the equatorial and

meridional magnetic field distributions with the locations of MMS IDRs (A. J. Rogers et

al., 2019; A. Rogers et al., 2021) in the formats similar to Figs. 2 and 3 for the rest of the

IDR alphabet.

Special considerations were taken in regards to events R and T. In the first case, the

initial reconstruction placed the location of the central plasma sheet ∼ 3RE below the

MMS spacecraft during the IDR observation. Upon further inspection, the event was

found to have an anomalously large value of BIMF
y over the preceding 30-min, with a

value of 8nT . Large magnitudes of y component of the IMF are known to significantly

impact the shape of the magnetotail specifically through the twisting of the plasma sheet

(N. A. Tsyganenko & Fairfield, 2004). Although this feature is included in the structure

of the model through the warping and twisting deformation equations, specifically via the

parameter TW in (N. A. Tsyganenko, 1998), its impact is presumably not captured in the

storm/substorm state-space represented by eqs. (1)–(5). Indeed, computing TW using
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the empirical relationship from (N. A. Tsyganenko & Fairfield, 2004) (see their eq. 1

and eq. 5), results in TW = 1.11× 10−2, the largest magnitude across all 26 events and

being a factor of two larger than the next highest and a factor of five higher than the

average event. Thus, event R was reconstructed using this empirical value and not the

value obtained during the fit (TW = 2.64 × 10−3). As earlier studies using the SST19

model were primarily concerned with the inner magnetosphere and/or the near-tail region,

they probably neglected to observe this inconsistency. In future studies, particularly of

the mid-tail, this issue should be remedied. One potential solution is to explicitly add a

dimension to the state-space that correlates to the twisting effect, for instance the value

of BIMF
y itself or the IMF clock angle. However, owing to the “curse of dimensionality”

(Verleysen & François, 2005), expanding the state-space may dilute its sensitivity to the

storm and substorm features sought. Another solution that is potentially more robust is

to exclude TW from the set of free parameters that is determined when fitting to data

and instead replace it with an ad-hoc functional form such as the empirical relationship

from (N. A. Tsyganenko & Fairfield, 2004).

In event T, the original reconstruction with σ = 0.3 underresolved the X-line, apparently

because of the unusual IMF structure (|Bz| ∼ |Bx| ∼ |By| ∼ 6 nT ). To mitigate this issue,

we slightly reduced the weighting parameter to σ = 0.25.
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Figure S1. Distribution of data points in the archive of space magnetometer Data. (A,

B, and D) A 2D histogram displaying the spatial distribution a data points projected into the

meridional (A), equatorial (B), and Y -Z (C) planes in the GSM coordinate system. The color

indicates the number of points in each 0.5RE by 0.5RE bin using a logarithmic scale, with

red/purple corresponding to regions with a dense/sparse density of data points. Black regions

contain zero data points. (D) A 1D histogram showing the number of data points in 0.5RE radial

bins (spherical shells) using a logarithmic scale with the total archive in blue and just the MMS

dataset in red.
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Figure S2. Profiles of the lobe field BL and current sheet thicknesses along the tail. (A-D) 1D

profiles of the for BL (black line) and the inverse TCS thickness 1/DTCS (orange line) sampled at

midnight (y = 0) along the tail for four IDR events, G, M, W, and Y. BL is evaluated at a height

of z = 5RE above the center of the current sheet. The inset panels (A’-D’) show the value 1D

profiles of the current sheet thickness for the thick sheet (black constant line) and DTCS (orange

line).
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Figure S3. Ion diffusion regions and the equatorial magnetic field landscape. The format is

similar to Fig. 2 except for a different group of IDR events: A, C, D, and E, which are marked

here by purple dots. These four events are considered ”hits” as the Bz = 0 contour is within

< 2RE of the observed MMS IDR.
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Figure S4. Ion diffusion regions and the equatorial magnetic field landscape. The format is

similar to Fig. S3 except for a different group of IDR events: H, L, O, and Q. These four events

are considered ”hits” as the Bz = 0 contour is within < 2RE of the observed MMS IDR.
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Figure S5. Ion diffusion regions and the equatorial magnetic field landscape. The format is

similar to Fig. S3 except for a different group of IDR events: R, S, V, and X. These four events

are considered ”hits” as the Bz = 0 contour is within < 2RE of the observed MMS IDR.
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Figure S6. Ion diffusion regions and the equatorial magnetic field landscape. The format is

similar to Fig. S3 except for a different group of IDR events: I, J, K, and N. These four events

are not as consistent as the 16 ”hits”, however, the Bz = 2 nT is close to the observed MMS IDR

for events I, J, and K and is within several RE for of the Bz = 0 contour for events K and N.
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Figure S7. Ion diffusion regions and the equatorial magnetic field landscape. The format is

similar to Fig. S3 except for a different group of IDR events, P, T, U, and Z. These four events

are considered ”near hits” as the Bz = 2 nT contour is within < 2RE of the observed MMS IDR.
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Figure S8. Ion diffusion regions and the equatorial magnetic field landscape. The format is

similar to Fig. S3 except for a different group of IDR events B and F when the contours Bz = 0

nT and Bz = 2 nT are not close to the observed MMS IDR locations.
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Figure S9. Ion diffusion regions against the meridional current and magnetic field distributions

for events A, C, D, and E. The format is similar to Fig. 3, although the MMS IDR locations are

marked by the purple dots.
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Figure S10. Ion diffusion regions against the meridional current and magnetic field distribu-

tions for events H, L, O, and Q. The format is similar to Fig. S9.
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Figure S11. Ion diffusion regions against the meridional current and magnetic field distribu-

tions for events R, S, V, and X. The format is similar to Fig. S9.
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Figure S12. Ion diffusion regions against the meridional current and magnetic field distribu-

tions for events I, J, K, and N. The format is similar to Fig. S9.
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Figure S13. Ion diffusion regions against the meridional current and magnetic field distribu-

tions for events P, T, U, and Z. The format is similar to Fig. S9.
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Figure S14. Ion diffusion regions against the meridional current and magnetic field distribu-

tions for events B and F. The format is similar to Fig. S9.
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Figure S15. 3D global picture of the magnetosphere with more field lines near the expected

magnetic nulls (orange tadpole marks), which are defined as intersections of the surface By = 0

with the equatorial Bz = 0 loop shown in Fig. 1. According to the null nomenclature (Li et al.,

2021), the near-Earth and more distant null areas correspond to radial and spiral nulls.
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Table S1. The Archive of Space Magnetometer Data.

Spacecraft Number Period Cadence (min)
Cluster 1 756,822 2001–2015 5
Cluster 2 753,580 2001–2015 5
Cluster 3 748,084 2001–2015 5
Cluster 4 561,497 2001–2015 5
Geotail 133,107 1995–2005 15
Polar 844,212 1996–2006 5
IMP-8 10,177 1995–2000 15
GOES-8 233,674 1995–2003 15
GOES-9 84,951 1995–1998 15
GOES-10 213,295 1999–2005 15
GOES-12 79,569 2003–2005 15
THEMIS-A 702,043 2008–2015 5
THEMIS-B 78,523 2008–2011 5
THEMIS-C 115,459 2008–2011 5
THEMIS-D 702,388 2008–2015 5
THEMIS-E 711,441 2008–2015 5
Van Allen A 337,582 2012–2016 5
Van Allen B 337,610 2012–2016 5

MMS 1 312,040 2015–2020 5
MMS 2 312,050 2015–2020 5
MMS 3 311,349 2015–2020 5
MMS 4 310,219 2015–2020 5
Total 8,649,672 1995–2020 5/15
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Table S2. The MMS IDR Alphabet.

Event Start Date/Time Model Date/Time D0nT (RE) D2nT (RE) Figures
A 2017-05-28T03:57 03:55 1.94 1.40 S3 S9
B 2017-07-03T05:26 05:25 4.72 3.23 S8 S14
C 2017-07-06T15:34 15:35 0.58 3.77 S3 S9
D 2017-07-06T15:45 15:45 1.72 2.54 S3 S9
E 2017-07-11T22:33 22:35 1.37 1.46 S3 S9
F 2017-07-17T07:48 07:50 8.62 5.78 S8 S14
G 2017-07-26T00:02 00:00 1.44 1.24 F2 F3
H 2017-07-26T07:00 07:00 1.91 1.63 S4 S10
I 2017-07-26T07:27 07:25 5.18 0.39 S6 S12
J 2017-08-06T05:13 05:15 7.70 0.63 S6 S12
K 2017-08-07T15:37 15:35 3.22 1.57 S6 S12
L 2017-08-23T17:53 17:55 1.88 0.54 S4 S10
M 2018-08-15T11:57 11:55 1.47 0.70 F2 F3
N 2018-08-26T06:38 06:40 2.85 2.17 S6 S12
O 2018-08-27T11:39 11:40 0.95 1.65 S4 S10
P 2018-08-27T12:14 12:15 7.43 1.19 S7 S13
Q 2018-09-10T17:14 17:15 0.78 1.02 S4 S10
R 2018-09-10T23:57 23:55 0.88 1.64 S5 S11
S 2019-07-25T21:40 21:40 1.45 4.26 S5 S11
T 2019-08-31T12:01 12:00 1.88 0.68 S7 S13
U 2019-09-06T04:38 04:40 3.57 0.77 S7 S13
V 2020-08-02T16:58 17:00 1.06 0.61 S5 S11
W 2020-08-02T17:09 17:10 0.65 0.55 F2 F3
X 2020-08-03T01:04 01:05 1.03 2.11 S5 S11
Y 2020-08-05T14:19 14:20 1.13 3.94 F2 F3
Z 2020-08-29T09:56 09:55 3.26 1.73 S7 S13
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