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S.1 Shifting distributions 22 
 23 
The emergence of a signal can be visualised using shifting normal distributions (Fig. S1). Frame 24 
et al. (2017) described S/N>1 as a shift to an ‘unfamiliar’ climate, S/N>2 as an ‘unusual’ climate 25 
and S/N>3 as an ‘unknown’ climate, in terms of an individual’s lifetime. We add the term 26 
‘inconceivable’ for S/N>5, as the new mean climate would be experienced once every 3 million 27 
years in the old climate.  28 
 29 
Two regional average examples are shown in Fig. S2, for tropical America and northern 30 
America, highlighting the differences in signal and noise characteristics. Even though northern 31 
America has a larger signal, the change is more apparent in tropical America. 32 
 33 

 34 
Figure S1: Shifting a normal distribution by 0 (black) to 6 (dark red) standard deviations.   35 
 36 
 37 

 38 
 39 
Figure S2: Two regional examples of how observed temperature changes have become apparent, 40 
using the Berkeley Earth land-only temperature dataset. The red shaded bands represent 1 and 2 41 
standard deviations of the noise. 42 
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S.2 Using model simulations to test the emergence methodology 43 
 44 
We can test the robustness of the methodology to estimate the S/N using a large ensemble of 45 
model simulations. Maher et al. (2019) describe the 100-member ensemble of the MPI GCM, 46 
from which we use the simulated SAT for the historical period (1850-2005), extended to 2018 47 
with the RCP4.5 scenario. First, we apply the same methodology used for the observations to 48 
each ensemble member individually. The ensemble mean S/N, which is expected to be smoother 49 
than the observed S/N due to averaging, is shown in Fig. S3a, and the spread in S/N across the 50 
ensemble is shown in Fig. S3c. The uncertainty in S/N is generally between 0.2-0.4 over land, 51 
which is typically far smaller than the mean S/N. The maritime continent, North Atlantic and 52 
Southern Ocean are regions with largest uncertainty in this GCM. The percentage uncertainty in 53 
S/N is less than 30% over most land areas (Fig. S3d). A simpler approach, which is not possible 54 
using observations, is to calculate the S/N by averaging the simulated temperature anomaly 55 
patterns in 2018, relative to the mean of 1850-1900, from all ensemble members, and dividing by 56 
the standard deviation of the 2018 anomalies (Fig. S3b). This pattern is virtually identical to Fig. 57 
S3a, highlighting that the regression approach produces S/N estimates that are robust. These 58 
results also demonstrate that the uncertainty in S/N due to simulated internal variability is 59 
relatively small. 60 
 61 
Note that the patterns of simulated S/N in this ensemble are noticeably different from the 62 
observed patterns. One important example is in parts of west Africa where the MPI ensemble 63 
S/N is close to zero but is larger than 5 in the observations. India also has a low S/N in the 64 
ensemble, but significant values in the observations. This finding highlights the benefit of using 65 
the observations alone, as in the current study. 66 
 67 
Fig. S4 shows the same maps for simulated precipitation change in the MPI ensemble. Again, the 68 
two methods produce similar patterns (Fig. S4a, b), with the ensemble method showing slightly 69 
larger values. The simulated uncertainty in S/N due to internal variability is typically 0.3-0.4 70 
over land regions. The patterns are again different from that derived from the observations, 71 
especially in west Africa which is significantly wetter in the simulations but drier in the 72 
observations.  73 



Confidential manuscript submitted to Geophysical Research Letters 

 

 74 

 75 
Figure S3: Testing the S/N methodology using the MPI Large Ensemble (Maher et al. 2019). 76 
(top left) S/N calculated as for the observations in each individual ensemble member, averaged 77 
across the 100-members. (top right) Mean simulated temperature in 2018 minus the average of 78 
1850-1900 across all ensemble members, divided by the standard deviation of simulated 79 
temperature in 2018. (bottom left) Standard deviation in the S/N estimated using the 80 
observational method across the 100-members. (bottom right) The percentage uncertainty in S/N, 81 
i.e. bottom left panel divided by top left. 82 
 83 
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 84 
Figure S4: as Fig. S3 for precipitation. 85 
 86 
  87 
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 88 
S.3 Additional metrics 89 
 90 
Figure S5 shows the fraction of land area which has a S/N for temperature exceeding the value 91 
indicated, using the Berkeley Earth dataset. For the annual mean, around 15% of the land area 92 
has a S/N larger than 5, and 40% shows a S/N larger than 2 for the warmest climatological 93 
month of the year. The warmest months tend to show larger S/N values than the coldest months. 94 
 95 
Figure S6 repeats the S/N temperature analysis using other datasets: HadCRUT4 (Morice et al. 96 
2012), Cowtan & Way (2014, hereafter CW14) infilled version of HadCRUT4, GISTEMP 97 
(Lenssen et al. 2019) and NOAA GlobTemp (Zhang et al. 2019). For this sensitivity test we have 98 
used the same smoothed GMST from Berkeley Earth in all cases. These datasets generally 99 
produce similar patterns to that from Berkeley Earth (Fig. 2c), but with varying amplitudes. 100 
NOAA GlobTemp has larger S/N values in the tropics than the other datasets and Berkeley Earth 101 
has larger S/N for the south-east USA. There are other notable differences for west Africa and 102 
parts of south America, mainly due to different estimates for the signal, rather than the noise (not 103 
shown). There is consistent agreement that the tropical Atlantic and Indian Oceans exhibit the 104 
highest S/N for the ocean areas, and that there has been very little warming overall in the central 105 
North Atlantic. 106 
 107 
Figure S7 shows the S/N patterns for precipitation in different seasons, highlighting that the west 108 
Africa signals are present in all seasons except DJF, and the south-west Australia drying signal is 109 
mainly present in JJA. The wetter northern latitude signal is mainly present in DJF and MAM. 110 
 111 
Figure S8 shows the S/N patterns for UK mean precipitation in different seasons. There are 112 
tendencies towards wetter seasons, except for JJA where the S/N is rarely significant. Note that 113 
the observed signal in southern UK is for drier summers but it has not yet emerged. 114 
 115 
Figure S9 shows the UK mean RX1day time-series with maps for two example years. 116 
  117 
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 119 
Figure S5: The fraction of land area with an observed temperature S/N larger than the ratio 120 
shown, for different seasons, the annual average, and warmest and coldest months (using the 121 
Berkeley Earth dataset). 122 
 123 
  124 
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 126 

 127 

 128 
 129 
Figure S6: Observed S/N for temperature using the CW14 dataset (top left), HadCRUT4 (top 130 
right), GISTEMP (bottom left) and NOAA GlobTemp (bottom right). Stippled cells indicate that 131 
the regression coefficient is not statistically significant. Grey regions are where there is less than 132 
100 years of data in that location for that dataset. 133 
 134 
 135 
 136 
 137 
 138 
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 139 
Figure S7: Signal-to-noise for precipitation in different seasons. Grey regions are either 140 
unobserved (oceans), have a seasonal precipitation of less than 62.5mm or annual precipitation 141 
less than 250mm. Stippled regions denote areas where the regression parameter is not 142 
statistically significant. 143 
 144 
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 146 
Figure S8: Signal-to-noise for UK mean precipitation in different seasons. Stippled regions 147 
denote areas where the regression parameter is not statistically significant. 148 
 149 
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 151 
Figure S9: UK extreme rainfall (RX1day, mm): average across the UK (1891-2017, black line) 152 
with regression on smoothed GMST (red dashed line), and maps for two example years (1968 153 
and 2003). 1968 shows the effect of three significant storm events, in contrast to 2003 which 154 
mainly shows larger rainfall over higher orographic features. 155 
 156 
 157 


