
Supporting Information for “Embracing Data Incompleteness

for Better Earthquake Forecasting”

L. Mizrahi1, S. Nandan1, and S. Wiemer1

1Swiss Seismological Service, ETH Zurich

Contents of this file

• Text S1 Branching ratio (η) and corrected productivity exponent (α)

• Text S2 Estimation of β and tR, given ETAS parameters and current rates

• Text S3 Catalog simulation

• Text S4 Comments on parameters inverted from the Californian catalog

• Text S5 Comments on computational time

• Text S6 Parameter transformation for reference magnitude changes

• Text S7 Forecast evaluation

• Figure S1 Log likelihood of observing the test data for different values of tR and b-value,
when current rate is known

• Figure S2 Flow diagram of PETAI inversion

• Figure S3 Evolution of ETAS and PETAI parameter estimates with increasing training
catalog

1



Text S1 Branching ratio (η) and corrected productivity exponent (α)

Branching ratio (η)

The branching ratio η is defined as the expected number of direct aftershocks (larger than mref )
of any earthquake larger than mref ,

η =

∫ ∞
mref

fGR(m) ·G(m) dm, (S1)

where fGR = β · e−β·(m−mref ) is the probability density function of magnitudes according to the
GR law, and G(m) =

∫∞
0

∫∫
R
g(m, t, x, y) dx dy dt is the total number of expected aftershocks of

an event of magnitude m. We make the simplifying assumption that the considered region R
extends infinitely in all directions, allowing a facilitated, asymptotically unbiased estimation of
ETAS parameters (Schoenberg, 2013). It follows easily that

η =
β · k0 · π · d−ρ · τ−ω · ec/τ · Γ(−ω, c/τ)

ρ · (β − (a− ργ))
, (S2)

if β > a− ρ · γ, where Γ(s, x) =
∫∞
x
ts−1e−t dt is the upper incomplete gamma function.

Corrected productivity exponent (α)

Due to the magnitude dependency of the spatial triggering kernel, our parameter a does not strictly
correspond to a as described in Veen and Schoenberg (2008). For comparability, we define the
productivity exponent α := a− ρ · γ. We fix α′ = 2.0 and from this derive new values for a and k0,
keeping the branching ratio η constant. In particular, we define

a′ := α′ + ρ · γ, (S3)

k0
′ := k0 ·

β − (a′ − ρ · γ)

β − (a− ρ · γ)
. (S4)

It can be easily shown that in this way, the branching ratio η remains the same as long as
β − (a − ρ · γ) < 0. Note that the condition β < α for Equation S2, where α is the productivity
exponent, is generally fulfilled in naturally observed catalogs.

Text S2 Estimation of β and tR, given ETAS parameters and current
rates

In the case when the true ETAS parameters, as well as the current event rates λ(ti) for all events ei
in the primary catalog {e1, . . . , en}, are known, the GR-law exponent β and the network recovery
time tR can be estimated by optimizing the log-likelihood LL of observing the catalog at hand.

LL =

n∑
i=1

(ln (νi + 1)− lnN) (S5)

+

n∑
i=1

(
νi · ln (1− e−β·(mi−mref ))

)
(S6)

+

n∑
i=1

(lnβ − β · (mi −mref )) , (S7)
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where N =
∑n
i=1(νi + 1), and νi = tR ·λ(ti) is the expected number of events blocking the network

at time ti. The expression for LL given above is valid in general for alternative exponents νi in the
definition of detection probability (Equation 16 in the article). LL is derived from the likelihood Li
of an event of magnitude mi to occur and to be observed during a current event rate of λi = λ(ti),

Li = femp(λi) · fGR(mi) · fdet(mi, λi), (S8)

where fGR(m) is the probability density function of magnitudes given by the GR law, fdet(m,λ) is
the detection probability as defined in Equation 16 in the article, and

femp(λ) =

{
tR·λ+1∑
i(tR·λi+1) , if λ ∈ {λ1, . . . , λn}

0, otherwise
(S9)

is the empirical density function of event rates. femp(λ) is defined such that

n∑
i=1

femp(λi) = 1 (S10)

and

femp(λi) ∝
1∫∞

mref
fGR(m) · fdet(m,λi) dm

= λi · tR + 1, ∀i = 1, . . . , n. (S11)

Without the latter condition (Equation S11), we would wrongly assume that the values λ(ti) were
uniformly drawn from the true distribution of event rates. However, in our sample of λi, large
values of λ are underrepresented, because during times t when λ(t) is high, events are less likely
to be detected, and those times and their corresponding rates are thus less likely to be part of our
sample. Defining femp(λi) to be inversely proportional to the fraction of events that are observed
when the current rate is λi corrects for this underrepresentation. This yields

Li =
νi + 1∑
j(νj + 1)

· β · e−β·(mi−mref ) ·
(

1− e−β·(mi−mref )
)νi

, (S12)

which explains the term for LL given above. Figure S1 shows the log likelihood of the synthetic
test catalog for different values of tR and β when λi are known. The crosses highlight that the
resulting estimators match the ground truth parameters used in the simulation of the catalog.

Text S3 Catalog simulation

The following algorithm is used to simulate the continuation of a training catalog.

Note that the synthetic catalogs referred to in Sections 4.1 and 4.2 in the article are not continua-
tions of a training catalog, hence generation 0 (defined in the following) consists only of background
events. The locations of these background events are uniformly distributed in the study region. Also
in the case of synthetic catalog simulation, the “testing period”, which is referred to below, is the
period for which one wishes to simulate a catalog. Where different models are mentioned, the base
model is used for synthetic catalog simulation.
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1. Background events are simulated for the testing period.

• Number of background events is drawn from a Poisson distribution with mean as given
by the ETAS background rate.

• Occurrence times are drawn from a uniform distribution within the testing period.

• Locations are drawn from the locations of events in the training catalog, weighted by
their probability of being background events. The locations are then randomly displaced
by a distance drawn from a normal distribution with mean 0 and standard deviation of
0.1°.

• Magnitudes are drawn from a GR law with exponent β as estimated in the PETAI
inversion (for PETAI and trig only). For the base model and par only, we use the β
estimate obtained when using the formula proposed by Tinti and Mulargia (1987) for
binned magnitude values, using magnitudes M ≥ 3.1 in the training catalog.

2. The training catalog together with the simulated background events make up generation 0.
igen := 0.

3. Expected number of aftershocks is calculated for all events of generation 0. In the case of the
PETAI and the trig only model, the average number of aftershocks triggered by any event ei
in the training catalog is inflated by 1 + ξ(ti).

4. Actual number of aftershocks of each event is randomly drawn from a Poisson distribution
with mean as calculated in the previous step.

5. Aftershocks of the current generation igen are simulated.

• Aftershock time distance to its parent event is randomly generated according to the
estimated ETAS time kernel. If aftershock time falls out of the testing period, this
aftershock is discarded.

• Aftershock spatial distance to its parent event is randomly generated according to the
estimated isotropic ETAS spatial kernel. If aftershock location falls out of the considered
polygon, this aftershock is discarded.

• Aftershock magnitude is generated according to the GR law with exponent β (same as
for the background events).

6. The newly generated aftershocks now make up the next generation igen + 1.

7. We move on to the next generation. igen := igen + 1

8. Expected number of aftershocks is calculated for all events of generation igen. Continue with
step 4.

The algorithm terminates when no aftershocks fall into the testing period anymore, which is ex-
pected to happen in a finite amount of time if the branching ratio η < 1.
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Text S4 Comments on parameters inverted from the Californian catalog

Table 2 in the article contains ETAS parameters, β, and, if applicable, tR estimates obtained when
applying different inversion algorithms to Californian data. Additionally, the resulting values for
productivity exponent α = a− ργ and branching ratio η (see Equation S2) are provided. The first
column shows the results of applying the usual inversion method as described in Section 3.1 in the
article, with a constant completeness magnitude of mc ≡ 3.1 to the main catalog (1970 to 2019).
The second column shows the parameters inverted when time-varying completeness (Equation 20 in
the article) is accounted for and thus historical data from 1932 to 2019 can be used with a reference
magnitude of mref = 2.4.

The results of applying PETAI inversion to the main catalog (1970 to 2019) with a reference
magnitude of mref = 2.5 is given in Column four. Note that the estimation of β is independent
of the ETAS parameter estimates for the first two applications, but not so in the case of PETAI
inversion.

To allow a better comparison between parameters inverted using different methods when mref

varies, the third and fifth columns show the parameters of Columns two and four, respectively, after
having been translated to a value of mref = 3.1 as described in Section Text S6.

Interestingly, the estimate of τ clearly decreases with an increase of the time horizon of the
catalog, although usually in this case one would expect an increase of τ . The less pronounced
decrease of τ in case of PETAI inversion speaks against the possibility that the decrease is caused
by inclusion of lower magnitude earthquakes revealing previously unseen earthquake interactions.
This indicates that the lower value of τ may actually better reflect the long-term behavior of
earthquake interaction.

Another counter-intuitive observation is the increase of c for both new inversion techniques,
in particular for PETAI inversion. The parameter c has been interpreted to reflect aftershock
incompleteness (Kagan, 2004; Lolli and Gasperini, 2006; Hainzl, 2016) and would thus be expected
to decrease when this effect is accounted for by the model (Seif et al., 2017). The observed higher
value of c even after accounting for STAI thus requires a different interpretation of c. Narteau
et al. (2009) have brought the parameter in relation with differential stress and the intensity of
stress re-distribution. Another possible interpretation provided by Lippiello et al. (2007) is based
on the dynamical scaling hypothesis in which time differences relate to magnitude differences. The
dependence of c of the cutoff magnitude as proposed by Shcherbakov et al. (2004) can qualitatively
explain our observations: The value inverted for c is highest in the case of mref = 2.4, and lowest
for mref = 3.1. Note that such a dependency is not accounted for in our model, and thus the values
in Columns two and three, and four and five of Table 2 in the article, respectively, are identical.
Overall, one should be careful to not over-interpret this estimate of c. After all, c is overestimated
in the PETAI synthetic test and hence an observed increase in c might be a consequence of complex
interdependencies of all parameters involved.

While the branching ratio η does not substantially vary with the different inversion methods,
we observe a slightly increased productivity exponent for the PETAI inversion. This is expected
given the results of Seif et al. (2017), with the extent of the observed increase being in line with
their estimated extent of underestimation for the productivity exponent.

The value of β shows an increase from 2.33 to 2.37, which translates to a b-value increase from
1.01 to 1.03, when STAI is accounted for in the PETAI inversion. This is expected due to the
underestimated number of small events caused by STAI.
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Text S5 Comments on computational time

There are two aspects to consider when discussing the computational time of the here presented
parameter inversion techniques. On one hand, the increased complexity of the algorithms plays an
important role. In particular, the PETAI inversion comprises multiple loops of ETAS and incom-
pleteness estimation. Although convergence was usually reached after 4 iterations, this still implies
a minimum factor of 4 in terms of computation time which is only required for ETAS inversion, on
top of which comes the time needed for the estimation of detection parameters and event rates. The
second factor, which contributes even more to an increase of computation time, is the increased
size of the catalog which is available to be used. For our application to Californian data, the
number of events used in the PETAI inversion increases by a factor of 3.78 because the minimum
considered magnitude is reduced from 3.1 to 2.5. The leads the number of pairs of potentially re-
lated events to increase from 7.3 million to 47.1 million. While this causes a substantial increase in
run time, educated initial guesses for ETAS parameter inversions can substantially reduce run time.

In contrast to the PETAI inversion, the run time of the ETAS parameter inversion with time-
varying mc is barely affected by model complexity. During synthetic experiments, we found run
time to be comparable to the run time of usual ETAS inversion when the number pairs of potentially
related events was similar.

Text S6 Parameter transformation for reference magnitude changes

With the exception of µ, k0 and d, all parameters are mref -agnostic, and the three exceptions can
easily be adjusted to another reference magnitude as follows. Denote by ∆m the difference between
new and original reference magnitude, ∆m = m′ref −mref . Then,

d′ := d · e∆m·γ (S13)

ensures that
d · eγ·(m−mref ) = d′ · eγ·(m−m

′
ref ). (S14)

Stipulating that the branching ratio η remains unchanged, it follows that

k′0 := k0 · e∆m·γ·ρ. (S15)

The adaptation of the background rate µ follows trivially from the GR law,

µ′ = µ · e−β·∆m. (S16)

When comparing the parameter estimates obtained when assuming mref = mc ≡ 3.6, we
transform them to refer tom′ref = 3.3 before calculating their distance to the generating parameters.
Also, for µ, d, k0, c and τ , we apply the log10 before calculating differences, so that the compared
values are in the same order of magnitude for all parameters.

Text S7 Forecast evaluation

The performance of each model is evaluated by calculating the log-likelihood of the testing data
given the forecast. Specifically, we calculate the log-likelihood of Ni earthquakes to occur in each
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bin bi of a spatial grid of 0.1° latitude × 0.1° longitude. Here, Ni is the number of earthquakes that
actually occurred during the testing period in spatial bin bi.

The log-likelihood for bi is calculated based on the smoothed estimate of the probability of Ni
earthquakes to occur in bi, where the probability estimate is based on the 100’000 simulations of the
model in question. For smoothing we use Gaussian kernels with adaptive bandwidth as described
by Nandan et al. (2019), with a fixed value of Ω = 3.0. To avoid arbitrary likelihood values
due to extrapolation, we define a water-level likelihood for event counts larger than the maximum
simulated event count in the respective bin. This waterlevel probability is defined as a uniform
value of 100′001−1/nextr, where nextr is the number of event counts larger than the maximum
observed and smaller than a generously high maximum possible event count. Symbolically, this
suggests that all other possible event counts could have been simulated in the 100′001st simulation.
Inevitably, the probabilities for non-extrapolated event counts are proportionally reduced such that
the probabilities of all possible event counts add up to 1.

The total log-likelihood of the testing data is then given by the sum of log-likelihoods over all
bins bi.

Two competing models can be compared by calculating the information gain (IG) of the al-
ternative model Malt over the null model M0, which is simply the difference in log-likelihood of
observing the testing data. The mean information gain (MIG) is calculated as the mean over all
testing periods. We accept the superiority of Malt over M0 when we reject the null hypothesis
that Malt does not outperform M0. To decide whether to reject the null hypothesis, we perform a
one-sided t-test on the set of IGs for all testing periods, and we reject the null hypothesis when a
p-value of less than 0.05 is observed.

The flat model forecasts the same number of events in all spatial bins. This number of events
forecasted, Nfc, is given by

Nfc =
Ntrain · Ttest
Ttrain ·Nbins

, (S17)

where ntrain is the number of events observed in the training period, Ttrain is the length of the
training period in days, Ttest = 30 is the testing period length, and Nbins is the total number of
spatial bins. The log-likelihood for the flat model is calculated assuming a Poisson distribution of
event numbers with mean Nfc in each spatial bin.
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Figure S1: Log likelihood of observing the test data for different values of tR and b-value, when
current rate is known. Black cross indicates true values used in simulation, blue cross indicates
maximum likelihood estimators obtained.
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Figure S2: Flow diagram of PETAI inversion. Caption on next page.

10



Figure S2: (Previous page.) Flow diagram of PETAI inversion. Main algorithm starts at top
left and ends at bottom left. The middle column describes the estimation of incompleteness (I =
λi, tR, β) when ETAS parameters (E) are given. Note that the estimation of (λi)i=1,...,n when ETAS
parameters and (tR, β) are fixed requires yet another loop to obtain self-consistency, as updating
λi (step Λ) leads to changes in the inflation factor 1 + ξ(ti), which forces one to update (λi)i=1,...,n.
This sub-sub-algorithm is visualized in the right column of the flow diagram. Process boxes are
linked to corresponding methods and equations described in this article.
*, **, ***: Convergence is reached when the estimated values of the kth iteration, âk, lie very close
to the estimated values of the previous iteration, that is, if

∑
a∈A |âk − âk−1| ≤ θ. Here, A is the

set of values that are tested for convergence, *A = E , **A = {tR, β}, ***A = {λi, i = 1, . . . , n}.
For convergence threshold θ we use *θ = 10−3, **θ = 10−12, ***θ = 1.
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Figure S3: Evolution of ETAS and PETAI parameter estimates with increasing training catalog,
when using standard inversion (black lines) and when using PETAI inversion (turquoise lines). The
evolution for tR is only given for PETAI inversion because it does not exist in standard ETAS.
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