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Text S1: Difference between the variances of outcomes and of predictions25

Let yi = h(xi, β) + εi be the equation of an outcome yi to be predicted, where xi is a26

K × 1 vector of explanatory variables, β is a K × 1 vector of parameters, εi is a random error27
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term with mean 0 and variance σ2 and i = 1, . . . , n is an index of observations. Let h(·, ·) be28

a known function, which if it were linear would be h(xi, β) = β1 + β2xi2 + · · · + βK xKi .29

Consider the prediction of a specific outcome, yi corresponding to the explanatory30

variables xi . If we have a consistent estimator β̂ of the parameters β, then the predicted31

value of yi is ŷi = h(xi, β̂). Since β̂ is consistent, as the sample size n becomes large its limit32

in probability is precisely β, so in the limit h(xi, β̂) becomes indistinguishable from h(xi, β).33

However, even in the probability limit, ŷi
p
−−→ E[yi |x] , yi because yi = h(xi, β) + εi also34

has the random error term εi .35

The variance of yi has two parts, V [yi] = V [h(xi, β)] + V [εi], assuming xi is uncor-36

related with εi , as typically is necessary for β̂ to be consistent. In large samples, V [ŷi]
p
−−→37

V [h(xi, β)], but the variance of yi is larger:38

V [yi] = V [h(xi, β)] + σ2

due to the presence of the random error term εi in yi .39
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Text S2: Methods Details40

2.1 Process Models41

The Multi-scale synthesis and Terrestrial Model Intercomparison Project [MsTMIP;42

Huntzinger et al., 2014; Wei et al., 2014] isolates land model GPP structural responsiveness43

from output differences due to varying inputs. Variants of four of the models participate in44

IPCC’s forecasts. Comparing runs based on standardized drivers is important for the Ama-45

zon because its rainfall differs strongly across ESMs [Ahlström et al., 2017; Huntingford46

et al., 2013; Jupp et al., 2010; Li et al., 2006; Poulter et al., 2010]. MsTMIP did not pre-47

scribe how modelers should distribute monthly meteorology into the shorter time steps at48

which many models run. Forcing all models with the same weather does omit feedbacks be-49

tween weather and GPP [Gloor et al., 2013; Harper et al., 2014] at times scales longer than a50

single month.51

All participating MsTMIP models provided outputs of GPP, respiration, and closely-52

derived net ecosystem productivity. While MsTMIP invited additional variables, their ab-53

sence for at least a varying third of models hampers comparative analysis. Runs represent54

each model’s configuration in about 2014. A subsequent update of CLM, for example, specif-55

ically addressed previously excessive modeled tropical GPP [Oleson and Lawrence, 2013, p.56

9].57

Weather reanalyses are less certain for the tropics than for midlatitudes [Clark and58

Clark, 2011; Li et al., 2006; Malhi and Wright, 2004]. The only striking outliers in the MsT-59

MIP meteorology were retained. From 4000 to 8,597 mm of rain in January, 2000 is as-60

signed to 56 half-degree grid cells. Otherwise the highest monthly rainfall anywhere in the61

study area in any month is 2,431 mm. Following convention for the wet tropics [Saleska62

et al., 2003], dry season is defined as months when long-term mean precipitation is below63

100 mm, or less than the approximate maximum plants can metabolize in real time [Aragão64

et al., 2007].65

SiB4 meteorology and land cover drivers were developed in conjunction with the new66

model version and differ slightly from MsTMIP’s.67
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2.2 Statistical Models68

MsTMIP models plus SiB4 are referred to as process models, since each simulates69

the biological determination of GPP. In contrast, data assimilation estimates of global GPP,70

labeled as statistical models, simulate retrospectively from remotely sensed inputs. Ideally71

they are sufficiently accurate to benchmark process models [Jung et al., 2011; Zhang et al.,72

2017]. They are driven not by MsTMIP weather but by closely-related weather reanalyses.73

Global satellite inputs temper Fluxcom’s and extrapolate cleaned eddy covariance flux74

estimates. Fluxcom is widely used as reference GPP globally [for example, Anav et al., 2015;75

Bonan et al., 2011; Collier et al., 2018; Jung et al., 2019; Malavelle et al., 2019; Mystakidis76

et al., 2016; Piao et al., 2013; Tramontana et al., 2016; Xu et al., 2015]. We use the half-77

degree resolution product from the multivariate adaptive regression splines algorithm.78

Wecann is similar in both concept and results to Fluxcom. With additional input from79

GOME-2’s solar-induced fluorescence, Wecann fits tower sensible heat, latent heat, and GPP80

slightly better than does Fluxcom [Alemohammad et al., 2017]. Wecann’s one degree reso-81

lution is coarser than MsTMIP’s. We attribute each value to four half-degree cells, and note82

below adjustments made to avoid artificially narrowed confidence intervals.83

The third statistical model, vegetation photosynthesis model (VPM) is a light-use effi-84

ciency model. VPM applies deliberately few and non-fitted numeric constants to temperature85

reanalysis and multiple MODIS and SPOT satellite products [Xiao et al., 2005; Zhang et al.,86

2017]. For a test year in North America, VPM provided the median estimate compared to87

six other global GPP models [Zhang et al., 2016]. Being even more heavily dependent on88

satellite data than is Fluxcom, VPM is likely to be less accurate in the cloudy tropics than89

elsewhere, and less accurate for the tropical wet season than for the dry season.90

2.3 Study Boundaries91

Selecting EBF tiles within cells is not workable because MsTMIP models’ GPP es-92

timates are not available for individual PFTs. To assess GPP that is representative for each93

cell’s vegetation (Fig. 1) requires that cell values should be an average only across land area.94

The MsTMIP models [Chapin et al., 2006], SiB4, and WeCann [personal communication,95

Alemohammad, 2020] give GPP as a mean value across both land and water. VPM [Zhang96

et al., 2017] and Fluxcom [Jung et al., 2019] provide GPP as means for a cell’s land area97
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only. All GPP datasets except VPM and Fluxcom were adjusted by the cell’s water fraction98

in the MsTMIP PFT map. In summary metrics, months are treated as if they are equally99

long.100

2.4 Eddy Covariance Fluxes101

While there is some utility in simply comparing models, knowing their true accuracy is102

far more useful. The statistical models are candidate reference data sets, but despite circular-103

ity issues addressed below, we wish to assess their accuracy as well. For the Amazon, GPP104

from individual eddy covariance towers is the only remaining option. ECs measure exchange105

between the land surface and the atmosphere of CO2 and other gasses that vegetation affects.106

From measurements related to net ecosystem exchange, the large and opposing contributions107

of GPP and ecosystem respiration are modeled.108

EC GPP was further limited to the study period starting in 2000, cutting off a few109

months each at sites CAX, K34, and RJA. The merged EC dataset offers eleven GPP algo-110

rithm options. Consistent with Baker et al. [2013], we use "GEP_model." The two ECs in111

the Tapajos National Forest are about a dozen kilometers apart in stands with different log-112

ging histories. Due to their related synoptic weather and seasonality, for this study the K67113

and K83 sites are best considered as pseudo-replicates.114

Six sites in the South American rainforest cannot fully represent the region’s range in115

either plant productivity or other criteria. For most study models the six cells that contain a116

flux tower site encompass less than a third of the model’s central 98% of range in mean an-117

nual GPP across the Amazon. However, EC site cells typically fall on both sides of a model’s118

median GPP. EC cells also tend to have high GPP (Text S3), which is useful because simi-119

larly annual high productivity is uncommon at other flux towers globally whose tendencies120

might otherwise help constrain modeling of the tropics.121
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Text S3: Representativeness of EC Sites122
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Figure S1: Distribution of cell-level GPP averaged across all study months and the entire study

area. A horizontal bar marks a model’s median GPP. Boxes encompass the central 50% of a

model’s cells as ranked by mean GPP, outside of which all grey points indicate all but the most

extreme 2% of cells. Colored symbols mark EC cells. Especially for the some of the more respon-

sive models, toward the left, the EC sites are in cells with above-average productivity.

From the perspective of the models being contrasted, how representative are the EC123

sites of the entire Amazon? One basis of comparison is how much of the range in mean124

GPP for the 11-year study period the six cells that contain a flux site capture compared to125

the range across all EBF cells. EC sites are compared to the basin’s range as defined by its126

1st and 99th percentile values. The outlier is model J, for which EC sites span 85% of the127

watershed’s range in GPP due largely to its near-zero GPP for K67. Among the remaining128

models, mean GPP for cells with ECs cover from 9% and 51% of the range of the central129

98% of Amazon rainforest cells. The median among the models in span that ECs represent130
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is 29%. For most of the study models, the six ECs represent less than a third of the range in131

mean grid-cell GPP.132

On the other hand, the EC sites represent a portion of the rainforest GPP range that is133

especially valuable to match. There are disproportionately few flux towers in the exception-134

ally productive tropics than there are in some of the world’s less productive biomes. If plant135

responsiveness across the global range of environmental driver values is mostly continuous136

although non-linear, then ECs elsewhere may help constrain modeling of the low end of the137

rainforest productivity spectrum. By this criterion, the most useful EBF flux towers are at the138

most productive sites.139

The six EC cells do have a higher mean GPP than is typical of the Amazon basin. The140

median cell-level annual GPP across all the models that the most productive of the sites rep-141

resents as a percentile of each model’s central 98% of study cells is 85%, with a range of142

50% to 99% . In most but not all models, the most productive flux site cell is CAX. For the143

least rather than most productive of the EC cells, usually the cell that contains BAN, model144

percentiles range from 4% and 49% with a median of 17%. While the cells with eddy covari-145

ance data cover only a limited portion of the Amazon basin’s range in mean annual GPP, they146

are in relatively productive sites for which closely-related alternative data are least plentiful.147
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Text S4: Non-Linearities in GPP Responses to Rain and Light148
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Figure S2: Non-linearity in modeled GPP’s responses to rain and light, parallel to the main pa-

per’s Fig. 6 for temperature.

In Fig. S2, GPP is shown as z-score relative to a particular model and cell’s mean149

across the study period. Shared MsTMIP driver data is binned by deciles. Mild models are150

in the left panels, and lively models on the right. Nearly all models simulate GPP as falling151

in the very wettest months although in only a few mild models is it below average. In the dri-152

est 10% of months GPP is below average in all but two models.153

GPP increases with rain at the driest deciles and falls in the very wettest months in all154

but one model. One difference from temperature is that responses to rain for individual mild155

models are more nearly linear, and models diverge from each other for the driest months in156

approximately reverse rank as they do at the wettest. Model T, a statistical model, is an ex-157

ception, with no discernable trend in response to varying rain. The inflection point at which158

GPP switches from increasing to falling with more rain ranges among models from the sec-159
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ond to ninth deciles of current month’s rain. The drop begins at drier levels in most of the160

mild models. For some of the lively models, more rain corresponds to higher GPP until161

about the top two deciles. The disparities represent disagreement about what moisture is op-162

timal for EBF, although do not reveal how modeled soil moisture mediates these responses163

within many of the models.164

Radiation’s responsiveness too is almost uniformly curved, consistent with a classic165

light response curve [Baker et al., 2019]. In the darkest months nearly all models simulate166

low GPP. Consistent with differences that Rogers et al. [2017] noted, the flex points of mod-167

els’ light saturation divide into two groups, one slightly below 200 Wm-2 and the other near168

220 Wm-2. Some of the lively models show strong drops in plant productivity in especially169

bright months.170
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Text S5: Months of Modeled GPP’s Seasonal Peaks at EC Sites171
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Figure S3: For each site, the month of lowest mean monthly GPP for each mode. The x-axis and

symbol colors rank models by extent of seasonality. Grey bars on each site’s y-axis indicate the

three months with the least light, while a blue star marks the brightest month. Brown bars show

the dry season. The wettest month is indicated with a green dot. Mild models are more likely to

simulate minimum GPP during a dark month, while lively models’ lowest GPP typically occurs

during the dry season.

Fig. S3 shows that models tend to fall into the same groups for seasonal phase as they172

do for seasonal amplitude, both reflecting their relative responsiveness to drivers. Mild and173

lively models have nearly identical mean timing differences between EC and modeled GPP,174

of 2.9 and 2.3 months respectively. The model groups differ in the direction of differences.175

Models with little seasonality tend to simulate the year’s lowest GPP before or early in the176

dry season. For every lively model except Model I, GPP is lowest at every site either during177

the dry season or in the first month afterward (Fig. S3). Most of the lively models’ minima178

occur late in the dry season when modeled soil moisture presumably is lowest. Again except-179

ing Model I, no lively model simulates minimum GPP during the three darkest months for180

any site.181

Patterns are similar for month of highest rather than of lowest mean GPP (Fig. S4).182

EC GPP at all sites but CAX peak 2-5 months after the last dry season month. Half of the183

models, a mix of mild and lively, match CAX’ timing to the extent of peaking during its four-184

–10–



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

●

O

A

J
VE

U

B

W Z

C
T

H

D X

S Y

G
I ●

●

O

A

J V

E

U

B

W
Z

C

T

H
D X

S Y
G

I

●

●

O

A

J

V

E
U

B

W

Z

C
T

H

D

X

S
YG

I●

● O

A

J

V

E

U

B

W

Z

C

TH

D

XS

Y

G

I

●

●

O
A

J
V

E

UB

W

Z

C

TH

D

X
S

Y

G
I

●

●

O

A

J VE

U
B

W
Z

C

T

H

D

X
S Y

G
I

●

K67 K83 RJA

BAN CAX K34

0 4 8 12 0 4 8 12 0 4 8 12

Fe

Ap

Jn

Ag

Oc

De

Fe

Ap

Jn

Ag

Oc

De

Annual GPP Amplitude,  gCm−2d−1

M
onth of H

ighest M
ean G

P
P

GPP, Seasonal Phase Maxima

Figure S4: Parallel to Fig. S3 of month of lowest GPP at each site, but showing month of highest

GPP. While the peak and trough of the seasonal phase is not consistently offset by six months,

overall patterns of model responses are similar between lowest and highest GPP timing.

month dry season. Peak month is most accurately modeled for RJA, where neither the EC185

tower nor any model reaches maximum GPP during the dry season.186

The wet tropics have a modest annual cycle in both leaf area index and the photosyn-187

thetic capacity of average leaves [Albert et al., 2018; Borchert et al., 2002; Dahlin et al.,188

2017; Doughty and Goulden, 2008; Goulden et al., 2004; Samanta et al., 2012; Wilson et al.,189

2001; Wu et al., 2016] but see [Morton et al., 2016]. Seasonal rainforest leaf phenology is190

thus far absent from most process models of GPP Albert et al. [2019]. While there is at least191

speculative logic for the timing of each site’s maximum plant stress, the dominant mecha-192

nism appears to vary across sites. At Tapajos, sites K34 and K83, the lowest EC GPP occurs193

early in the dry season (Fig. S4) and corresponds to the annual peak of leaf exchange. The194

timing at K67 and BAN also is reasonably consistent with a leaf demography hypothesis.195

RJA reaches its lowest EC GPP late in its stark dry season. CAX’s minimum is during a dark196

month in the middle of its mildly wetter season. The timing of rainforest leaf exchange may197

respond to a continuum of water v. light limitation even if instantaneous GPP does not Albert198
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et al. [2019]. The mismatches suggest that adding tropical leaf seasonality could improve the199

accuracy of modeled GPP.200
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Text S6: Cumulative rainfall’s influence on EC GPP201

Although site intercepts and current weather in simple regressions explain on aver-202

age 64% of modeled GPP’s variance, on average about a third remains unexplained. For the203

ECs, the correlation of soil moisture with GPP is -0.31. Lively models’ lower GPP than ECs204

during the dry season suggests that modeled rainforest plants experience more severe wa-205

ter stress than real plants. Process models simulate and track soil moisture, often at multiple206

depths. Cumulative water deficit may be a key variable omitted from the descriptive regres-207

sions. Soil moisture output is not available for enough models, but an indirect indicator of its208

effects is the strength of connection between modeled GPP and cumulative rain over recent209

months. The added explanatory power of cumulative rainfall is one way to characterize the210

strength of a site’s hydrologic memory.211

Testing soil moisture modeling directly requires reasonable reference GPP across the212

basin’s spectrum of annual precipitation. Local plants logically adapt to the degree of drought213

they experience episodically [Corlett, 2016], and satellite data imply that sensitivity to trop-214

ical drought is spatially heterogeneous [Bonal et al., 2016; Feldpausch et al., 2016]. Soil215

moisture varies markedly also at fine scales, making it difficult to measure [Broedel et al.,216

2017; Huang et al., 2016] or model [Parazoo et al., 2014] for even an EC footprint. Bench-217

marking modeled soil moisture across the Amazon is therefore particularly challenging.218

It would be helpful if instead accumulated rain were a rough proxy for soil moisture.219

Rain summed over periods ranging from only the most recent month to the entire last year220

explain greatly varying portions of individual sites’ GPP variability. Each point in Fig. S5,221

represents a regression of GPP on MsTMIP temperature, light and accumulated rain, opti-222

mized for a single site except the summary line for all sites. Dots and solid connecting lines223

mark regressions whose rain coefficients are statistically significant at p≤0.05. Dashed lines224

pass through r2 of regressions whose rain coefficients fail the significance test. The max-225

imum predictive power of a full year for all sites is of little practical consequence. A full226

year’s cumulative rain is significant at only one site.227

For each site, the point for one month of lag in Fig. S5 shows how much of the varia-228

tion in GPP current weather alone explains. The difference from each site’s peak value in-229

dicates how much more information rain history can add to current month’s weather. The230

legend lists each site’s maximum fit improvement due to cumulative rain. As with current231
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Figure S5: For each site, the rain accumulation duration best predicts EC GPP. The x-axis shows

the number of months before and including the current month that are totaled. The y-axis indi-

cates the portion of variability explained by regressing each rain accumulation period plus current

month’s light and temperature on GPP. Large open symbols indicate each site’s accumulation dura-

tion with the most explanatory power. The increase in r2 listed in the legend equals the difference

between the optimal formula and one that uses only current month’s rain. The month with the most

explanatory power varies so much that no single duration explains more of the variability across all

sites than can current month’s rain alone.

month predictors of GPP, weather measured near each EC has slightly less explanatory power232

(Fig. S6).233

We attempted to predict each site’s best rain lag period. The negative coefficient on234

annual average rain, -0.010 months of optimal lag per mm increase, implies that a longer lag235

and possibly greater soil moisture retention capacity or deep rootedness exist at relatively236

dry sites. Correlations are very low for latitude, dry season length, and mean rain during the237

three driest months. Site mean annual precipitation explained 73% of the variation in best238

lag length.239
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Figure S6: Parallel to Fig. S5 of rain lag duration versus explanatory power, using EC meteorol-

ogy rather than MsTMIP weather reanalysis rain. The sharpest differences in results for the two

meteorology sources are the worse fits of EC rain for K67 and K83. EC rain does slightly better

than MsTMIP rain for K34 and CAX.

Highlighting the difficulties in developing modeling equations that are reasonable for240

all sites are differences in Fig. S5’s site-specific light and temperature coefficients. Particu-241

larly for light, responsiveness is typically two to eight times stronger at individual ECs than242

when calculated across all sites simultaneously. Light at one or more rain lags is significant243

at only three sites, one only at cumulations longer than 9 months. That light nonetheless is244

significant for the regression across all sites for every lag period option suggests that light245

may be partly a surrogate for omitted drivers correlated with latitude. Temperature differs246

more across sites, significant in regressions for 2 to 7 inconsistent groupings of the 12 possi-247

ble lag periods.248
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Figure S7: Mean and Variance of GPP for Each Site249
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Figure S7: For each eddy covariance site, comparison of EC estimates to the means and variances

in GPP estimates from each statistical or process model. Vertical and horizontal lines bracketing

Model "O", EC estimates, are 99th percentile confidence bounds. For most models, both mean and

variance fall outside the confidence bounds, with some models higher and some lower. For some

models, their GPP variability exceeds that of EC estimates even more markedly than does mean

GPP.

Comparing GPP’s mean and variance for individual EC sites to each model relative250

to the mean rather than by the absolute variance further contradicts the possibility that high251

variance is simply due to high absolute GPP. Six models’ variance at one or more sites ex-252

ceeds 100% of the site’s mean (Fig. 2). These six models are among the eight whose overall253

variance is larger than overall EC variance. Site-level variance for the model with the highest254

overall variance ranges from 160 to 226% of the site’s mean modeled GPP. In contrast, the255
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model with the lowest variance as a percent of mean modeled GPP ranges from 1% to 8% at256

individual sites.257
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Figure S8: Correlations of EC GPP with Process and Statistical Models258

Figure S8: Simple correlations between a process or statistical model’s GPP at a particular site to

its EC estimate. Letter colors correspond to models’ seasonal amplitude relative to that of the ECs,

with green and blue models milder and orange and red models livelier. The mean months that a EC

operated, or number of paired values per site correlation, is 43. The column on the far right, for all

sites, is the variance calculated on all pairs of EC GPP with the other model, across all sites and

months, not the mean of the six site-level variances. A small squared correlation suggests prima

facie that there is only random connection between a model and EC estimate.
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Figure S9: Seasonal Cycle Amplitudes for Each EC Site259
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Figure S9: Parallel to the main paper’s Fig. 3 of seasonal amplitudes, showing each site sep-

arately. Steadily increasing values from left to right indicate moderate similarity in site-level

amplitude ranking and the ranking of mean amplitudes.
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Figure S10: Yearly Mean GPP by Model260

6

9

12

2000 2003 2006 2009
year

M
ea

n 
C

el
l G

P
P,

 g
C

m
−2

d−1

A

B

C

D

E

F

G

H

I

J

S

T

U

V

W

X

Y

Z

Model Variation in Amazonian GPP over Time

Figure S10: Yearly mean GPP for Amazon rainforest model cells. Interannual variability of indi-

vidual models is much smaller than the differences among models in a particular year. Even driven

by identical climate inputs, different models simulate consequentially different GPP. In every year

the mean reconstructed GPP for the Amazon is over twice as high for the highest three models as

for the lowest two. The differences mean that ESMs’ predictions of tropical GPP several reflect

not only substantial differences in meteorological predictions but also in tropical GPP’s model

structure and parameterization.
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Figures S11 and S12: GPP Responses to Environmental Drivers Across the Entire261

Amazon Basin262
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Figure S11: Fig. 5 shows each model’s slope of GPP for EC cells only with driver units in z-

scores. This figure summarizes tendencies also across the entire basin, displays slopes per unit

value of each driver, and includes slopes for CO2. The large purple diamonds are for the EC cells

only while the blue dots are for the entire Amazon. EC estimates are highlighted with a yellow

background. Site slopes with probability ≤0.05 are semi-transparent. With hundreds of cells,

p≤0.05 for all basin-level predictors. Model responsiveness at EC sites generally mimics their

basinwide responsiveness.
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Figure S12: Please see caption for previous figure. Fits for Model F are not directly comparable

because they summarize a 1o spatial grid while all other models have ½o, or approximately four

times as many cells in the Amazon.
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Figure S14: Phase of Site-Level Seasonality263
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Figure S14: Parallel to the main paper’s Fig. 7 for each site separately, showing deviance in mod-

eled GPP from EC estimates. Blue and yellow bars at the top of each panel show mean monthly in-

solation and rainfall. Relative variations in light are small, and the line at 200 W m-2 is an arbitrary

visual reference. The dotted line for rain defines dry season months. At most sites, divergences are

largest for lively models late in the dry season.
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