
Draft version November 5, 2021
Preprint typeset using LATEX style emulateapj v. 12/16/11

UPDATED RADIATIVE TRANSFER MODEL FOR TITAN: VALIDATION ON VIMS-CASSINI
OBSERVATIONS OF THE HUYGENS LANDING SITE AND APPLICATION TO THE ANALYSIS OF THE

DRAGONFLY LANDING AREA.

M. Es-sayeh1, S. Rodriguez1, T. Cornet2., L. Maltagliati3, M. Coutelier4, P. Rannou4 , B. Grieger5, E.
Karkoschka6, B. Seignovert7, S. Le Mouélic7, C. Sotin7
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ABSTRACT

Titan, the only moon in the solar system with a thick atmosphere and a methane-based hydrological cycle similar
to the water-based cycle on Earth, is a prime target for planetary and astrobiological researches. Organic materials
from atmospheric chemistry precipitate on the surface and are subject to geological processes (e.g. eolian and fluvial
erosion) that lead to the formation of dune fields, river networks, lakes and seas similar to their terrestrial counterparts.
The analysis of the surface reflectance in the near-infrared (NIR) allows to constrain the surface composition, which is
crucial to understand these atmosphere/surface interactions. However, Titan’s atmosphere prevents the surface from
being probed in the NIR, except in 7 transmission windows (centered at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7 and 5 µm).
We use an updated version of the Radiative Transfer (RT) model of Hirtzig et al. (2013), with updated gases and
aerosols opacities, in order to better simulate atmospheric absorption and scattering and retrieve surface albedos in the
7 NIR transmission windows with an enhanced accuracy. Our RT model is based on the SHDOMPP and CDISORT
solvers (Evans 2007) and (Buras et al. 2011) to solve the RT equations in a plane- parallel and pseudo-spherical
approximations respectively. We recently improve atmospheric inputs of the model with up-to-date gaseous CH4,
CH3D, 13CH4, C2H2, HCN and CO abundances profiles and absorption coefficients (Vinatier et al. 2007), (Niemann
et al. 2010), (Maltagliati et al. 2015), (Serigano et al. 2016), (Rey et al. 2018), (Thelen et al. 2019), (Gautier 2021),
and improved the photochemical aerosol optical properties. In particular, the optical properties of Titan’s aerosols are
now computed from a fractal aggregate model (Rannou et al. 2003) constrained by in situ measurements of the Descent
Imager/Spectral Radiometer (DISR) onboard the Huygens probe (Tomasko et al. 2008) and (Doose et al. 2016). Our
RT model is benchmarked with the help of the most recent RT model for Titan in the literature (Coutelier 2021) and
validated using the in situ observations of DISR acquired during descent and once landed. Coupled with an efficient
inversion scheme, our model can be apply to the Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) complete
dataset for the retrieval of Titan’s atmospheric opacity and surface albedos at regional and global scales. This will
help to analyzing the near-future observations of Titan with the James Webb Space Telescope (JSWT) (Nixon et al.
2016) and preparing the future exploration of Titan by the Dragonfly mission (Lorenz et al. 2018).
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