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Key Points:6

• A deep learning algorithm is developed for multi-step reservoir storage volume fore-7

casting from snow water equivalent.8

• The algorithm has higher forecast accuracy compared to common statistical meth-9

ods (SARIMA, VAR, and TBATS).10

• The algorithm performed best for years with large runoff; worst for years with small11

runoff and late-season snow accumulation.12
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Abstract13

Machine-learning algorithms have shown promise for streamflow forecasts, reser-14

voir operations, and scheduling, but have exhibited lower accuracy in predicting extended15

time horizons of peak storage volume (PSV). Deep learning algorithms exhibited improved16

inflow forecasting accuracy, but existing research has been mostly limited to real-time17

operation and short-term planning. We evaluate a new approach based on a hybrid ResCNN-18

LSTM Encoder-Decoder algorithm, enabling long-term multi-step reservoir forecasts. The19

proposed approach provides a three-month, weekly averaged prediction of reservoir stor-20

age volume (RSV) during the runoff season based on historical snow water equivalent21

(SWE). The optimal architecture and hyper-parameters for the model are configured through22

five-fold cross validation resulting in a twelve-layered residual convolutional neural net-23

work (ResCNN) as the encoder and a four-layered long short-term memory (LSTM) neu-24

ral network as the decoder. We evaluate the algorithm using 30 years of RSV and SWE25

data at the Upper Stillwater Reservoir located in Utah. The most accurate long-term26

predictions occurred during periods of large runoff (in excess of 28,000 ac-ft). The pe-27

riods where the model performed the worst were during small runoff and late-season SWE28

accumulation. We find that the ResCNN-LSTM consistently outperforms three widely29

used statistical models, with an average PSV absolute percent error of 2.66% for the pro-30

posed algorithm compared to SARIMA (14.22%), TBATS (13.82%), and VAR (18.14%).31

–2–



manuscript submitted to Water Resources Research

1 Introduction32

Classical statistical models such as Seasonal Auto-regressive Integrated Moving Av-33

erage (SARIMA) (Papamichail & Georgiou, 2001), Vector Auto-regression (VAR) (Iddrisu34

et al., 2016) and Trigonometric Seasonal Box-Cox Transformation with ARMA resid-35

uals, Trend, and Seasonal Components (TBATS) (Elizaga et al., 2014) have long been36

employed for reservoir storage and outflow prediction. These models are well-suited to37

short-term forecasts, but have limited capacity for long-term forecasts due to the con-38

vergence of the auto-regressive part of the model to the mean of the time series (Shumway39

& Stoffer, 2000). Forecast skill is also confounded by hydro-meteorological predictabil-40

ity in snow-dominated catchments (Anghileri et al., 2016). Machine-learning algorithms41

provide an alternative approach and are increasingly being used in a variety of related42

hydrologic fields: rainfall-runoff prediction for ungauged basins (Kratzert et al., 2019),43

hydropower production forecasting (Stokelj et al., 2002), spatial snow water equivalent44

(SWE) estimation for mountainous areas (Zheng et al., 2018), and quantifying climate45

and catchment control on hydrological drought (Konapala & Mishra, 2020).46

Machine learning has seen broad application to reservoir forecasting in both direct47

and multi-step scenarios, and generally resulted in more reliable forecasts of inflow ex-48

tremes. Coulibaly et al. (2000) trained a feed-forward neural network using an early stop-49

ping training approach for real-time reservoir inflow forecasting with lead times of one50

to seven days. An improvement to daily reservoir inflow forecasts was later made using51

a robust weighted-average ensemble that takes advantage of three different models: near-52

est neighbors, a conceptual model, and an artificial neural network (Coulibaly et al., 2005).53

An additive ensemble for monthly reservoir inflow forecasting was developed by Bai et54

al. (2015), incorporating an auto-regressive model, least squares support vector machine,55

and adaptive neuro-fuzzy inference system to subforecast trend, period, and stochastic56

terms. Bourdin et al. (2014), Wang et al. (2012), and Ahmed et al. (2015) all used en-57

semble learning methods coupled with meteorological predictions to forecast reservoir58

inflows with respective forecast horizons of three, eight, and fourteen days. Long-range59

streamflow forecasts, extending twelve months, were assessed by Bennett et al. (2016)60

in which calibrated climate forecasts are combined with a conceptual runoff model and61

a three-staged error model to simulate reservoir inflows. Similarly, Y. Liu et al. (2017)62

developed a long-term streamflow forecasting scheme, extending nine months, utilizing63
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Random Forest and support vector regression for precipitation post-processing of numer-64

ical weather predictions to feed into a hydrological watershed model.65

Research with deep learning algorithms applied to reservoir inflow forecasting has66

found improved forecast accuracy, but has been mostly limited to real-time operation67

and short-term planning. Deep belief networks for multiscale feature learning (Bai et al.,68

2016) improved on prior efforts (Bai et al., 2015) in direct-step forecasting using an ad-69

ditive ensemble approach. Budu (2014) and Chiamsathit et al. (2016) both applied multi-70

layered perceptrons for direct-step forecasting scenarios that achieved reasonable accu-71

racy among daily and monthly timesteps, respectively. Time-lagged recurrent neural net-72

works (TLRNs) have been studied (Muluye & Coulibaly, 2007; Kote & Jothiprakash, 2009;73

Sattari et al., 2012) where a preceding record of reservoir inflow is used to investigate74

the performance of a back-propagation through time (BPTT) algorithm. Better predic-75

tion of inflow into a reservoir using TLRN was achieved by Kote and Jothiprakash (2009)76

by modifying the artificial neural network to include seasonal (monsoon) effects, accu-77

rate mapping of high and low flows was achieved following a monthly time-step.78

However, attempts at long-range forecasts with deep learning algorithms have gen-79

erally exhibited lower accuracy. Similar to Bennett et al. (2016) and Y. Liu et al. (2017),80

earlier attempts at long-term forecasting (Muluye & Coulibaly, 2007; Kote & Jothiprakash,81

2009) failed to accurately predict the peak storage volume (PSV) at extended time hori-82

zons. More recently, multi-step flood forecast models (Chang & Tsai, 2016; Zhou et al.,83

2019; Kao et al., 2020) have been developed for predicting reservoir inflows using adap-84

tive neuro-fuzzy inference systems and long short-term memory (LSTM) based Encoder-85

Decoder frameworks. However, the timestep for these forecasts are hourly with forecast86

horizons only extending four, six, and eight hours.87

We evaluate a new approach to multi-step weekly average forecasting of reservoir88

storage volumes (RSV) based on historical regional SWE data. This approach aims to89

use existing SWE and RSV time series data to train a hybrid, multi-step ResCNN-LSTM90

(Encoder-Decoder) (LeCun, 1990; Hochreiter & Schmidhuber, 1997) algorithm, to pre-91

dict the RSV of future timesteps for the proceeding three months. In contrast to RNNs,92

convolutional neural networks (CNN) operate independently of previous time steps to93

capture fixed size contexts, allowing for parallel computation within a given sequence.94

The stacking of convolutional layers allows for precise control of the dependencies to be95

–4–



manuscript submitted to Water Resources Research

modeled by effectively increasing the context size (Gehring et al., 2017). Implementing96

residual connections in CNNs has been shown to improve model performance by increas-97

ing the depth of the model architecture (He et al., 2015). Deep learning frameworks uti-98

lizing residual connections in CNNs have seen extensive application in other fields (H. Liu99

& Song, 2018; Ning et al., 2019; Cengil & Cinar, 2018), but have not yet been evaluated100

in the context of RSV forecasting. Thus, a key distinction between the proposed model101

in this paper and the others listed above is that a deep residual CNN (ResCNN) is ini-102

tially used for feature extraction, which may improve long-range forecast accuracy. The103

specific aims of this study are:104

1. Assess the accuracy of the ResCNN-LSTM algorithm in predicting RSV from SWE.105

2. Determine characteristics of years in which the algorithm exhibits high vs. low ac-106

curacy.107

3. Compare the long-term accuracy of the proposed algorithm against three commonly108

used RSV forecast methods: SARIMA, VAR, and TBATS.109

2 Materials and Methods110

2.1 Study Region111

This study focuses on the Upper Stillwater reservoir located at the top of the Cen-112

tral Utah Water Conservancy District’s (CUWCD) collection system in the Uinta Moun-113

tains. CUWCD is one of Utah’s four large specialty water districts that provides potable114

and secondary water to various water associations, conservancy districts, irrigation com-115

panies, and local residents. The water district spans eight counties with over $3.5 bil-116

lion in infrastructure. There are currently ten lakes/reservoirs maintained and operated117

by CUWCD that house non-potable water in excess of 1.6 million ac-ft. The storage lev-118

els for these reservoirs act as a barometer for the state’s water resources and provide in-119

sight for how to appropriately prepare for future water usage. Figure 1 shows Upper Still-120

water (located in the middle of the figure) surrounded by a network of snow telemetry121

monitoring sites.122

2.2 Data123

The data used for model training is accessed from the National Resource Conser-124

vation Service (NRCS) online Application Programming Interface (NRCS, 2020 (accessed125
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May 3, 2020)). The two data types used for this study are RSV and SWE (the depth126

of water (in) that would result if the snowpack were melted). Specific to Upper Stillwa-127

ter Reservoir, the historical daily data span from January 1990 to the present with new128

values updated daily. Linear time interpolation was used for gap-filling a limited num-129

ber of missing data points within the time series. From January 1st 1990 to July 14th130

2019, a total of 16 missing daily data points, out of 10,787, required interpolation. These131

points occurred in 1990, during the first year of data collection.132

The RSV time series for Upper Stillwater illustrates a seasonal runoff period, fed133

by snowmelt, that begins in April and ends in July. A governing assumption of this study134

is that water managers only have until the end of March to make a final decision regard-135

ing the level of storage space to leave vacant in the reservoir for the runoff season. There-136

fore, the critical period to forecast RSV is a 15-week window between the first of April137

and the beginning of July. Such an extended forecast horizon requires a model capable138

of learning long-term dependencies.139

SWE data were collected from the NRCS monitoring network of snow telemetry140

sites for the same period as Upper Stillwater’s RSV time series. For each of the avail-141

able monitoring sites, a maximum of three daily data points required interpolation over142

the entire period. The dependence of RSV (Figure 2) on SWE (Figure 3) is the primary143

relationship that the model will attempt to learn.144

The daily data were then prepared for training the algorithm. The data were first145

re-sampled into weekly averages and scaled between 0 and 1 based on the chosen acti-146

vation function for the model (see Section 2.3). A variety of sliding window lengths (15,147

20, and 25 weeks) were then used as inputs to predict the next 15 weeks. This range of148

window sizes is selected based on the time series data for SWE (depending on the pre-149

cipitation distribution during a given winter season, the process of SWE accumulation150

ranges between 15 to 25 weeks). The input window length that yields the greatest per-151

formance is selected for the final model.152

2.3 Deep Learning Model153

The objective of the model is to forecast multiple timesteps forward based on mul-154

tiple inputs from the past. The inputs are the multiple time series of RSV and SWE and155

the output is a future RSV sequence prediction starting at the final point in the input156
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data. Therefore, a multivariate sequence-to-sequence prediction model is required. This157

type of model is broken down into two separate models: one for reading the input se-158

quence and encoding it into a fixed-length vector (Encoder), and a second model for de-159

coding the fixed-length vector and outputting the predicted sequence (Decoder) (Sutskever160

et al., 2014). Following the Decoder, a time-distributed fully connected layer is used as161

the final component to condense the output and yield a forecasted sequence of values.162

Figure 4 illustrates the architecture of this model, which receives a sliding window163

input of multiple variables and transmits a sliding window output of a single target vec-164

tor. This architecture has proven to be effective for numerous sequence-to-sequence prob-165

lems, including multi-step flood forecasting (Kao et al., 2020), network traffic forecast-166

ing (Zhang & You, 2020), weather forecasting (Yuan et al., 2019), and predicting solar167

performance ratio (Yen et al., 2019). The Encoder-Decoder model is written in Python168

using the Keras deep-learning library (Gulli & Pal, 2017). Another important feature169

of the proposed model is how each node sequentially transmits information to the next170

within each layer. This process is governed by the use of a piece-wise linear activation171

function. A node or unit that implements this activation function is referred to as a rec-172

tified linear unit (ReLu) (Agarap, 2018). The benefit of using ReLu is two-fold: it al-173

lows for faster training time due to its near-linear properties, while also addressing the174

vanishing gradient problem during back-propagation of errors. The Adam optimizer (Kingma175

& Ba, 2014) is used to adaptively optimize the weights within the network using con-176

cepts of momentum (Sutskever et al., 2013) and stochastic gradient descent (Robbins177

& Monro, 1951).178

2.3.1 CNN Encoder179

A deep ResCNN is used as the encoder in the Encoder-Decoder architecture. A one-180

dimensional CNN is a model with one or more hidden layers that operate over a 1D se-181

quence (e.g. sentence or time series) through convolutions. In a multi-layer CNN, the182

stacking of CNN layers creates a hierarchical structure that provides a shorter path to183

capture long-range dependencies. Therefore, the model creates hierarchical representa-184

tions over the input sequence allowing nearby input elements to interact at lower lay-185

ers while distant elements interact at higher layers (Gehring et al., 2017). Causal padding186

(van den Oord et al., 2016) is used for each CNN layer to ensure the model does not vi-187

olate the temporal order (i.e. model does not have look-ahead bias). Residual connec-188
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tions are used between stacked CNN layers to boost model performance with increased189

network depth (He et al., 2015). A residual block is defined with a single skip connec-190

tion between CNN layers (Figure 5). Within a residual block, the output from the first191

CNN layer is passed through the activation function (ReLU) and sent in two separate192

paths: forward to the next CNN layer in sequence, and around to skip the next CNN193

layer as a residual from the previous. The residual is added to the output of the second194

CNN layer prior to its respective output being activated through ReLU. Thus, the model195

is optimized for a residual mapping of feature extraction from the sliding window of time196

series input.197

The encoder is designed to gradually reduce the dimensionality of the input fea-198

ture matrix while increasing the number of feature abstractions. This is done using fil-199

ters (see Section 2.3.3) and pooling layers, whose purpose is to condense a CNN layer’s200

output to the most prominent elements. Max pooling is used at the end of each resid-201

ual section (Figure 5), in which two residual blocks are connected in sequence for a given202

number of filters and kernel size. Max pooling and flatten are used at the end of the en-203

coder to downsize the extracted features into a fixed length vector proportional to the204

number of nodes in the decoder. The final output represents the extracted elements as205

features from the input sequences that will be fed as a flattened sequence for the decoder.206

2.3.2 RNN Decoder207

The extracted features from the encoder are fed into the decoder to yield a fore-208

casted sequence of values. This is done using an RNN capable of learning long-term de-209

pendencies, which is analogous to context for the case of sequence-to-sequence predic-210

tion. RNNs are well suited for time series data as they process each timestep sequen-211

tially for modelling non-linear relationships between the input and the output. This is212

achieved by forming recurrent cycles within the nodes/cells of each hidden layer (Kao213

et al., 2020). In the case of runoff from snowmelt, a typical approach for determining the214

type of runoff season to expect is to compare the current snowpack with previous years.215

The process of observing current data and recalling previous significant events and their216

outcomes is what the RNN attempts to mimic. However, RNNs fail to connect informa-217

tion from the past (input) to the present (output) data when the gap between the two218

grows too large, which creates the issue of long-term dependencies. This problem is ad-219

dressed with the use of LSTM networks (Hochreiter & Schmidhuber, 1997), a special kind220
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of RNN. An essential feature of the LSTM cell is its state that runs directly through the221

network, enabling addition or removal of information from the cell state via regulated222

gates. These internal gates are weighted functions that govern how the information flows223

in the cell, mitigating the vanishing gradient problem.224

2.3.3 Model training and assessment225

The optimal hyper-parameters for the model (i.e. layers, nodes, filters, kernels, in-226

put window, epochs, and batch size, see Table 1) are determined through five-fold cross227

validation. Layers are arrays of nodes that sequentially transmit information from one228

to the next. Within each layer are nodes connected by multiple weights for a given num-229

ber of inputs and outputs. A single node receives input data, processes the input as a230

weighted sum, and then propagates new information to its successor based on a given231

activation function. Filters and kernels are interrelated hyper-parameters specific to CNNs.232

A kernel represents a matrix of weights that slide over the input sequence calculating233

the dot-product between the sequence values and matrix weights. Therefore, the size of234

the kernel represents the length of the window it spans for deep feature extraction. A235

complete tour of a kernel over the input sequence represents a filter; thus, kernel’s op-236

erating over multiple channels of input establish a filter/feature map. The input win-237

dow represents the multivariate time series of RSV and SWE accumulation during the238

winter season until the first of April. Epochs represent the number of full passes of the239

data set that the model uses during training. The batch size is the fraction of data that240

the model is exposed to during each epoch. An early stopping algorithm is used during241

training to prevent over-fitting with excessive epochs: a training session will terminate242

early if there are 10 consecutive epochs with no improvement in minimizing the mean243

squared error.244

For a given input window length, the training data for each test year spans from245

Jan 1990 to mid October or November of the previous year. For example, the training246

data set for the 2015 runoff period with a 20-week input window begins January 1990247

and ends November 2014. 80% of the data are used for training, while 20% are used for248

validation. This inner split between training and validation data allows for learning curves249

to be developed (to evaluate signs of over vs under-fitting). Across all five test years, the250

model is trained one configuration at a time to develop the regression metrics: mean ab-251

solute error (MAE), root mean squared error (RMSE), median absolute error (MedAE),252
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Nash-Sutcliffe model efficiency coefficient (NSE), and explained variance (ExpVar). The253

regression metrics are calculated from a held-out data set that is not used during model254

training. The hold-out set spans 30-40 weeks and consists of two consecutive parts: in-255

put (15-25 weeks) and output (15 weeks). The input spans from October or November256

through May; the output from April through June. For example, the hold-out data set257

used to forecast the 2015 runoff period with a 20-week input window begins in Novem-258

ber 2014 and ends at the start of April 2015.259

Finally, a confidence interval is calculated from multiple model runs. Due to the260

stochastic nature of the model, a slightly different forecast will be returned each time261

the model is trained. Therefore, for a given configuration, the model is trained multi-262

ple times to establish a normal distribution of model predictions for each time-step in263

the forecast. By design, forecast points will be labeled as outliers if they lie beyond the264

whiskers of their respective boxplot following the Tukey method (Tukey, 1970).265

The forecast plots and regression metrics provide valuable insight into the overall266

accuracy of the ResCNN-LSTM; however, the primary concern is the total expected runoff267

(TER). This can be defined as the change in RSV from the end of March to the begin-268

ning of July. The TER is the amount of water that is expected to fill the reservoir dur-269

ing the critical runoff period. Hence, the statistics of greatest value lie at the crest of each270

forecast curve (i.e. the PSV).271

2.4 Statistical Methods for Comparison272

The forecasts are compared against three widely used statistical models: Seasonal273

Auto-regressive Integrated Moving Average (SARIMA), Vector Auto-regression (VAR),274

and Trigonometric Seasonal Box-Cox Transformation with ARMA residuals, Trend, and275

Seasonal Components (TBATS). Each model is trained on monthly averaged data; there-276

fore, their forecasts for PSV are the maximum monthly average during the runoff pe-277

riod. This change in the timestep frequency is due to the limitations of the statistical278

models to forecast into such extended horizons.279
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2.4.1 SARIMA Model280

A discrete time series Z1,Z2,Z3, . . . ,ZN−1,ZN of measurements at equal time in-281

tervals is simulated by a stochastic SARIMA model (Box et al., 2015) given by:282

ϕ(B)Φ
(
BS
)

(1− B)d(1−BS)DZt = θ(B)Θ
(
BS
)

et (1)

Here, t represents the discrete time and S denotes the length of each season. The283

B term corresponds to the backward shift operator which is defined by BZt = Zt−1 and284

BSZt = Zt−S. The independently and normally distributed white noise residual is rep-285

resented by et =
[
NID

(
0, σ2

e

)]
which has a zero mean, and variance defined by σ2

e . From286

the left hand side of equation 1, the first two terms ϕ and Φ represent series expansions287

given by:288

ϕ(B) = 1− ϕ1B− ϕ2B2 − . . .− ϕpBp (2)
289

Φ(BS) = 1− Φ1BS − Φ2B2S − . . .− ΦpBPS (3)

Equation 2 represents the nonseasonal auto-regressive operator of order p and ϕi,=290

1, 2, . . . , p depicts the nonseasonal auto-regressive parameters. (1−B)d is the nonsea-291

sonal difference operator of order d which produces nonseasonal stationarity of the dth292

differenced data, usually d = 0, 1, or 2. Whereas, equation 3 depicts the seasonal auto-293

regressive operator of order P and Φi; herein, i= 1,2, ... , P are the seasonal auto-regressive294

parameters.
(
1−BS

)
D is the seasonal differencing operator of the order D to produce295

seasonal stationarity of the Dth differenced data, usually in the order of D = 0, 1, or 2.296

From the right hand side of equation 1, the first two terms θ and Θ represent series ex-297

pansions given by:298

θ(B) = 1− θ1B− θ2B2 − . . .− θqBq (4)
299

Θ
(
BS
)

= 1−Θ1B
S −Θ2B

2S − . . .−ΘQB
QS (5)

Equation 4 is the nonseasonal moving average operator of the order q; thus, equa-300

tion 4 and q are the nonseasonal moving average parameters. Equation 5 is the seasonal301

moving average operator of order Q and Θi, i = 1, 2, . . . , Q are the seasonal moving av-302

erage parameters. Lastly, the natural log of the RSV time series is taken to stabilize the303
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variance of the time series and to transform any skew in the distribution into a normal304

distribution (Papamichail & Georgiou, 2001). Using an annual seasonal term (S) of 12305

months, the SARIMA model parameters (p,d,q)(P,D,Q) are configured using the autoarima306

function provided in the Pmdarima statistical library in Python 3.0.307

2.4.2 VAR Model308

VAR is another frequently used model for multivariate time series. The basic VAR309

model of order p, as suggested by Sims (1980) is given by310

yt = A1yt−1 +A2yt−2 + · · ·+Apyt−p + CDt + ut (6)

Where yt = (y1t, y2t, . . . , yKt)
′

represents a vector of K observable endogenous variables311

and Dt consists of all deterministic variables which carry a constant, a linear trend, sea-312

sonal dummy variables and user-specified variables. ut is a K-dimensional unobservable,313

zero-mean, white noise process which has a positive definite co-variance matrix E (utu
′
t) =314 ∑

u ·Ai and C are parameter matrices of suitable dimension upon which various restric-315

tions can be imposed. For a K-dimensional auto-regression with an effective sample size316

N, the optimal lag order p is selected that minimizes the Akaike Information Criteria (AIC)317

given by the following equation:318

AIC(p) = ln|
−∑

(p)|+ 2

N
(K2p) (7)

The
−∑

(p) is the quasi-maximum likelihood estimate of the innovation covariance ma-319

trix
∑

(p) (Ivanov & Kilian, 2005; Sin & White, 1996). The parameters in equation 6320

are estimated by the method of generalized least squares. This is done by first estimat-321

ing the individual equations of the system by ordinary least squares. The residuals can322

then be utilized to estimate the white noise co-variance matrix
∑
u as

∑̂
u = T−1

∑T
t=1 ûtût323

which is used to compute the generalized least square estimator (Iddrisu et al., 2016).324

The VAR model is developed through the statsmodels Python module and utilizes the325

same SWE data as the ResCNN-LSTM.326

2.4.3 TBATS Model327

BATS is a combination of three methodologies; (i) Exponential Smoothing Method,328

(ii) Box-Cox Transformation and (iii) ARMA model for residuals. The Box-Cox Trans-329

formation helps to deal with non-linear data and ARMA model for residuals can de-correlate330
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the time series data. However, the BATS model does not do well when the seasonality331

is complex with high frequency. Thus, De Livera et al. (2011) proposed a TBATS model,332

which includes the trigonometric seasonal component. The trigonometric expression of333

seasonality terms serves to reduce the parameters of model when seasonal frequencies334

(e.g. annual streamflow or annual peak flow) are high and improves the model flexibil-335

ity (i.e. lower bias with higher variance), enabling it to handle complex seasonality.336

The TBATS model is comprised of the following terms:337

y
(λ)
t = lt−1 + φbt−1 +

∑T
i=1 s

(i)
t−mi

+ dt

lt = lt−1 + φbt−1 + αdt

bt = φbt−1 + βdt

dt =
∑p
i=1 ϕidt−i +

∑q
i=1 θiet−i + et

Where:338

y
(λ)
t − time series at moment t (Box-Cox transformed)339

s
(i)
t − i th seasonal component340

lt - local level341

bt - trend with damping342

dt −ARMA(p, q) process for residuals343

et - Gaussian white noise344

Seasonal part:345

s
(i)
t =

∑(ki)
j=1 s

(i)
j,t

s
(i)
j,t = s

(i)
j,t−1 cos (ωi) + s

∗(i)
j,t−1 sin (ωi) + γ

(i)
1 dt

s
∗(i)
j,t = −s(i)j,t−1 sin (ωi) + s

∗(i)
j,t−1 cos (ωi) + γ

(i)
2 dt

ωi = 2πj/mi

Model parameters:346

T - Amount of seasonalities347

mi - Length of ith seasonal period348

ki - Amount of harmonics for ith seasonal period349

λ - Box-Cox transformation350

α, β− Smoothing351

φ - Trend damping352

ϕi, θi −ARMA(p, q) coefficients353

γ
(i)
1 , γ

(i)
2 - Seasonal smoothing (two for each period)354
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Based on a Fourier series, each seasonality is modeled by a trigonometric represen-355

tation. Advantages of this model framework consist of (i) improved parameter estima-356

tion and (ii) an ability to handle complex components and features intrinsic to the time357

series. As an innovations state-space model, TBATS admits a larger parameter space358

with the possibility of better forecasts (Hyndman, 2008). Likewise, TBATS involves a359

much simpler and efficient estimation procedure than other state-space models (e.g. SARIMA360

and VAR). With the use of trigonometric functions, the model is capable of handling non-361

integer seasonal frequencies (e.g. 365.25 days in a year), while also accommodating both362

nested and non-nested seasonal components. Additionally, the model handles nonlinear363

features typically seen in time series while taking into account any auto-correlation within364

the residuals (De Livera et al., 2011). The TBATS model is implemented using the tbats365

package in Python 3.0 and incorporates quarterly, bi-annual, and annual seasonal pe-366

riods.367

3 Results368

3.1 Model Architecture369

The optimal architecture for the ResCNN-LSTM was found to be a twelve-layered370

ResCNN as the encoder and a four-layered LSTM as the decoder. Through five-fold cross371

validation, the optimal number of filters in each ResCNN section was found to be 16 (fil-372

ter1), 32 (filter2), and 64 (filter3), while the LSTM layers required 64 nodes/cells per373

layer. The time-distributed fully connected layer is configured with 32 nodes to begin374

condensing the output from the decoder. Table 1 outlines the optimal configuration and375

architecture for the model. The maximum number of epochs is set to 100, but the av-376

erage final converged number ranges between 90 and 100 for a given test year.377

3.2 Model Performance378

This section is organized by each test year starting from 2015 and ending in 2019.379

During each test year, the date range for each time series input stems from the second380

week in November through the end of March. Figure 6 illustrates the forecasted runoff381

period which is composed with the actual values (solid green), forecasted values (dot-382

ted red), reservoir spill limit (dashed black), 95% confidence interval (shaded grey) and383

boxplots. The box plots and regression metrics are based on a sample population of 30384
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individual model trainings per test year. Regression metrics for the ResCNN-LSTM fore-385

casts are shown in Table 2 below. Results from the analysis of statistical models are shown386

in Figure 7. The graphs represent the storage volume forecasts for all three models across387

the five consecutive test years.388

Regardless of the low snowpack, the 2015 forecast proved to be very accurate. In389

addition to the low errors summarized in Table 2, the 15-week forecast nearly managed390

to identify the exact week that the reservoir was going to fill. The forecast’s accuracy391

is highest near the end of the period and lowest in the beginning. The 2016 forecast is392

an improvement over the previous year, with smaller errors for the MAE, RMSE, and393

MedAE, and improved values for NSE and ExpVar. The 2015 and 2016 forecasts are more394

skillful in the long-term projections occurring after May rather than earlier in April. Among395

all of the test years, the forecasts for 2015, 2016 and 2019 were the most accurate with396

the lowest reported errors. The forecast for 2017 fails to identify when the RSV will first397

increase, along with when the storage volume will peak. However, the forecast still man-398

ages to achieve an accurate prediction for the final storage volume at the end of the pe-399

riod. Similar to the forecast for 2017, the 2018 forecast fails to identify when the RSV400

will first increase, along with when the storage volume will peak. On the other hand, the401

forecast maintains an accurate prediction for the final expected volume in the reservoir.402

The observed runoff volumes for all other test years were in excess of 28,000 ac-ft, whereas403

2018 demonstrated a runoff volume on the low end of 18,000 ac-ft.404

Results from the other statistical models are shown in Figure 7. The graphs rep-405

resent the monthly storage volume forecasts for all three models across the five consec-406

utive test years. SARIMA and TBATS exhibited higher accuracy in capturing seasonal407

fluctuations than VAR, as shown respectively in 2015, 2017, and 2019; and 2016, 2018,408

and 2019. VAR generally demonstrated the lowest accuracy but occasionally excelled in409

forecasting extreme inflow events (e.g. in 2017 and 2019). Overall, ResCNN-LSTM out-410

performs the statistical methods except for the 2018 test year (Figures 6 and 7, and Ta-411

ble 2). The ResCNN-LSTM produces accurate PSV forecasts for each test year, which412

lie within the distribution bounds of the batch forecasts (Figure 8, comparing the PSV413

for each test year in comparison to the observed amount). The distributions for the PSV414

are skewed upwards towards the reservoir spill limit during each test year. Table 3 sum-415

marizes the absolute percent errors at the edges and center of the confidence interval for416

each test year, along with forecasts from the statistically-based models. With the excep-417
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tion of SARIMA in 2016 and VAR in 2019, the ResCNN-LSTM consistently outperforms418

all three statistical models when using the upper bound of the confidence interval.419

4 Discussion420

While the ResCNN-LSTM approach exhibited higher accuracy overall, there was421

significant inter-annual variability, which appears to relate to SWE characteristics. A422

relatively low snowpack was observed during the 2014-2015 winter and spring seasons423

(Figure 3). The buildup of SWE begins early in October and peaks in the middle of March.424

The improved forecast for 2016 may be attributed to a more typical winter experienced425

from the SWE monitoring sites. The forecast most similar to 2016 is 2019 in which the426

times series for SWE both steadily climb through the winter into the spring season. The427

buildup of SWE for 2017 is different from other years: it appears to peak early in March428

but then continues to linger through April until finally dropping off at the start of May.429

In comparison to the winters experienced in 2016 and 2019, the buildup of SWE peaks430

at the start and middle of April, respectively. The most accurate test periods (2015, 2016,431

2019) are likely a result of the accumulated SWE tapering off between March and April.432

These periods occur at either the tail-end or just outside of the input window, making433

them close enough for the model to effectively map the resulting runoff period assum-434

ing that no further SWE accumulation takes place. Thus, the timing of snow ablation435

dictates model performance as it marks the transition period from SWE accumulation436

to runoff fed by snow melt. The 2017 test period is a testament to this theory as the ac-437

cumulation of SWE lingers well past April resulting in very poor regression metrics.438

The proposed model’s forecasts are also speculated to be influenced by non-linear439

relationships between RSV (Figure 2) and SWE (Figure 3). Similar to 2015, the 2018440

test year experienced a winter with below average SWE accumulation. Likewise, both441

2015 and 2018 test years have peak SWE at the middle and end of March, respectively.442

However, the total observed reservoir inflows are significantly different with 29,287 ac-443

ft in 2015 and 18,590 ac-ft in 2018. This indicates the model’s learned ability to map non-444

linear relationships among the multivariate dataset which statistical methods fail to cap-445

ture (e.g. the 2018 VAR forecast, which exhibits low accuracy). Moreover, the model’s446

best long-term forecasts (Figure 6) were during years of large runoff, making it most ef-447

fective during years when accurate prediction is most important. The model’s high pre-448

dictive performance is likely associated with these events because they historically oc-449
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cur most frequently. Across the entire 30-year dataset for RSV, the most frequently ob-450

served reservoir inflow volumes (taken between first of April and beginning of July) were451

in excess of 28,000 ac-ft. The ResCNN-LSTM is a data-driven model designed to remem-452

ber essential features over time; therefore, this behavior is entirely expected.453

In addition to inter-annual dependencies, forecasts also depend on reservoir oper-454

ations, hydrological features, and other structural characteristics of the water system (Anghileri455

et al., 2016). All of these components factor into long-term decision making by water456

managers who depend on reliable estimates for peak inflows. The proposed ResCNN-457

LSTM proves to effectively forecast the PSV at Upper Stillwater by (i) taking into ac-458

count the spill limit as a physical limiter, and (ii) improving accuracy through statisti-459

cal confidence intervals. The ResCNN-LSTM exhibits a higher bias in forecasting the460

PSV by consistently producing a realistic value close to but never exceeding what the461

reservoir can physically store (Figure 6). In contrast to the statistical models (Figure462

7), the forecasted PSV is widely over-predicted during some years (e.g. SARIMA: 2015463

and 2018; VAR: 2015) and under-predicted during others (e.g. TBATS: 2015 - 2017 and464

2019; VAR: 2016 and 2019). This behavior is most likely attributed to the fact that Up-465

per Stillwater has a spill limit to account for storage capacity. Thus, the spill limit acts466

as an asymptote for the model when producing each forecast, whereas other statistical467

models fail to recognize it. Likewise, this physical feature would account for the upwards468

skew in distribution for each test year’s PSV forecast (Figure 8). The confidence inter-469

val also provides valuable insight for future decision making. The most challenging year470

for the model was 2018 due to an abnormally low snowpack throughout the winter. With471

this taken into consideration, the model’s forecast for PSV in 2018 still lies within a phys-472

ically realistic value and statistically confident interval. With an average absolute per-473

cent error of 2.66% in the center and 1.82% in the upper bound (Table 3), the confidence474

interval’s upper bound consecutively proves to be the most accurate in predicting the475

PSV for all five test years. Therefore, water managers would be best served by using the476

forecasted upper bound for PSV in their forecasts.477

Geared towards strengthening water manager abilities to manage and conserve RSV,478

this research improves on prior multi-step reservoir forecasting efforts by effectively in-479

creasing the context size to capture temporal dependencies. Previous studies including480

direct-step (Coulibaly et al., 2005; Sattari et al., 2012; Bai et al., 2016) and multi-step481

(Coulibaly et al., 2000; Muluye & Coulibaly, 2007; Kao et al., 2020) deep-learning al-482
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gorithms have improved forecasting accuracy, but have yet to accurately forecast peak483

inflows at extended long-term horizons. For a lead time of one week, Coulibaly et al. (2000)484

forecasted peak flows ranging from an underprediction of 4.3% to an overprediction of485

3.8% on average. Similarly, extended four month forecasts by Muluye and Coulibaly (2007)486

demonstrated reasonable predictions of low and medium reservoir inflows, but then ei-487

ther under or over-predicted the peaks. By contrast, our proposed model consistently488

manages to confidently predict realistic PSV values at a three-month lead time with an489

average absolute percent error of 2.66%. Similar to Coulibaly et al. (2000), the long-term490

forecasts at the end of the forecasted runoff period were more accurate than the initial491

short-term values. Periods where the proposed model struggled the most are irregular492

runoff seasons with abnormally dry hydrologic conditions and late-season SWE accumu-493

lation. An extended horizon of three months leaves wide potential for changes in hydro-494

logic conditions and can amount to multiple different scenarios for runoff. A topic for495

future research may involve the inclusion of scenario-based model runs incorporating me-496

teorological predictions from outside entities.497

5 Conclusion498

Given the comparatively high performance of the proposed algorithm in the study499

region, the ResCNN-LSTM architecture warrants further study for multi-step RSV fore-500

casting. Considerations for future research include (i) further experiments with model501

architecture, (ii) investigating additional independent variables, and (iii) modeling ad-502

ditional reservoirs influenced by snowmelt runoff. Potential experiments with model ar-503

chitecture may include implementing batch normalization (Ioffe & Szegedy, 2015) be-504

tween layers to reduce training time and increase predictive accuracy, and utilizing an505

attention mechanism (Bahdanau et al., 2014) to observe the intermediate states of the506

encoder, rather than only the final states. The inclusion of other independent variables,507

such as atmospheric temperature and solar radiation, may further improve accuracy. Fi-508

nally, modeling additional reservoirs will provide valuable insight into model transfer-509

ability.510
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6 Tables663

Table 1. Optimal architecture and configuration for the model

Parameter Selected Value Tested Values

Input Window 20 15,20,25

Epochs 100 50,75,100,150

Batch Size 32 16,32,64

Filter1 (CNN) 16 16,32,64

Filter2 (CNN) 32 16,32,64

Filter3 (CNN) 64 16,32,64

Kernel (CNN) 6 4,5,6,7,8

Cells (LSTM) 64 16,32,64,128

LSTM Layers 4 1,2,3,4,5

CNN Layers 12 3,6,12,18
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Table 2. Regression metrics for ResCNN-LSTM hold-out sets

MAE (%) RMSE (%) MedAE (%) NSE ExpVar

2015 22.949 28.090 19.161 0.889 0.932

2016 12.295 16.695 8.132 0.968 0.972

2017 32.863 43.216 29.509 0.792 0.836

2018 60.759 70.335 48.331 0.412 0.851

2019 21.515 35.361 7.208 0.812 0.862

Table 3. Forecasted PSV absolute percent error

Lower Limit Center Upper Limit SARIMA VAR TBATS

2015 2.979 2.136 1.294 11.874 14.343 14.144

2016 3.529 2.703 1.878 1.526 28.256 16.396

2017 6.029 4.195 2.362 4.792 3.452 17.607

2018 7.020 2.301 2.419 47.989 43.745 12.602

2019 2.858 1.995 1.133 3.830 0.924 8.356

7 Figures664
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Figure 4. Deep learning model architecture
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Figure 5. Deep residual framework for CNN encoder
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Figure 6. Multi-step storage volume forecasts from 2015 through 2019 using ResCNN-LSTM

following a weekly timestep frequency
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Figure 7. Multi-step storage volume forecasts from 2015 through 2019 using classic statistical

methods following a monthly timestep frequency
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Figure 8. Comparison of various model’s forecasted PSV
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