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Key Points: 16 

• Antarctic sea ice predictability is strongly determined by the temperature and salinity 17 

profiles of the underlying upper ocean water column 18 

• Every winter, the timing of the loss of sea ice predictability is defined by when deep water 19 

is entrained into the mixed layer  20 

• Sea ice predictability depends not only on the depth of the Winter Water layer, but also on 21 

how strongly stratified its base is 22 

Abstract 23 
Antarctic sea ice is a critical component of the climate system and a vital habitat for Southern 24 

Ocean ecosystems. Understanding the underlying physical processes and improving Antarctic sea 25 

ice predictability is of broad interest. Using model data, we investigate sea ice and upper ocean 26 

predictability at interannual timescales in the Weddell Sea region. We find that oceanic 27 

predictability is largely confined to the Winter Water layer and responds to seasonal modifications 28 

of the water column, mainly driven by sea ice processes. Predictability depends not only on the 29 
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depth of the Winter Water layer, but also on how strongly stratified its base is. Predictability is lost 30 

when warm Circumpolar Deep Water with no sea ice-related memory entrains into the mixed layer. 31 

We show the strong dependence of sea ice predictability on the local upper ocean vertical structure, 32 

which suggests that both are likely to change in a warming climate.  33 

Plain Language summary 34 

Antarctic sea ice affects global climate through its interplay with planetary albedo, atmospheric 35 

circulation, thermohaline circulation, ocean productivity, and is also a vital habitat for Southern 36 

Ocean ecosystems. Therefore, understanding the drivers and physical processes influencing 37 

Antarctic sea ice, and being able to predict Antarctic sea ice, is of broad interest. 38 

We assess the predictability of sea ice and underlying upper ocean in the Weddell Sea region of 39 

the Southern Ocean using model data. We find that sea ice processes influence the upper ocean 40 

temperature, and these thermal signatures linger in the ocean producing sea ice predictability over 41 

multiple months. Here we show the oceanic memory (lingering thermal signature) in the upper 42 

ocean is largely found within the Winter Water layer (WW i.e., cold water layer formed during sea 43 

ice formation). Oceanic memory and sea ice predictability are suddenly lost when warm deep 44 

waters from the ocean interior entrain into the surface mixed layer in mid-winter. This limit to sea 45 

ice predictability has not been explored before, and it shows the strong dependency of sea ice 46 

predictability in a region to its local vertical structure of oceanic properties and their seasonal 47 

evolution. This implies that the spatial variability in sea ice predictability can now be addressed 48 

based on local upper ocean vertical structure and sea ice processes. Also, changes to upper ocean 49 

properties in a warming climate can likely alter the sea ice predictability patterns in the future. 50 



manuscript submitted to Geophysical Research Letters 

 

1 Introduction 51 

The growth and melt of Antarctic sea ice, arguably the strongest seasonal cycle on the planet 52 

(Handcock and Raphael, 2020), affects global climate through its interplay with planetary albedo, 53 

atmospheric circulation, thermohaline circulation, and ocean productivity (Abernathey et al., 2016; 54 

Brandt et al., 2005; Hobbs et al., 2016; Massom and Stammerjohn, 2010; Raphael and Hobbs, 55 

2014). The close interaction of Antarctic sea ice with the ocean and atmosphere has been linked to 56 

interannual variability and trends in sea ice (Hobbs et al., 2016; Holland, 2014; Lecomte et al., 57 

2017; Martinson, 1990). Antarctic sea ice predictability studies have identified the strong 58 

dependence of sea ice predictability on oceanic processes, pointing towards sea ice-ocean 59 

interactions (Holland et al., 2013; Marchi et al., 2019; Ordoñez et al., 2018; Zunz et al., 2015). 60 

This study aims to better understand the physical processes in the ocean associated with sea ice 61 

predictability.  62 

Sea ice predictability studies are diverse, with predictions ranging from seasonal to decadal 63 

timescales, using statistical or dynamical approaches, and based on observations or climate model 64 

data. They have a variety of applications ranging from planning operational activities (scientific 65 

research, tourism, shipping, fisheries management, and conservation) to evaluating climate 66 

projections, and policy decision making (Bushuk et al., 2021; Chen and Yuan, 2004; Guemas et 67 

al., 2016; Holland et al., 2013; Juricke et al., 2014; Kearney et al., 2021; Marchi et al., 2020; 68 

Marchi et al., 2019; Massonnet et al., 2019; Ordoñez et al., 2018; Yang et al., 2016; Zampieri et 69 

al., 2019; Zunz et al., 2015). In this study, we evaluate sea ice and ocean predictability at seasonal 70 

to interannual timescale in the Weddell sector (Figure 1a). In the Southern Ocean, the Weddell Sea 71 

is one of the dominant regions of sea ice production. Its geographical setting limits dynamical 72 
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influence from advected oceanic and sea ice properties into this region, making it ideal for studying 73 

local ice-ocean interaction.  74 

Previous studies have established the link between the upper ocean heat content (OHC) and sea 75 

ice predictability (Holland et al., 2013; Marchi et al., 2019). These studies found that sea ice 76 

predictability can persist for some months but is then generally lost during the ice-retreat season 77 

before reemerging in the following ice-growth season. Marchi et al. (2019) calculated the 78 

predictability of integrated OHC in the upper 100 m and showed strong correspondence between 79 

regions of high sea ice predictability and oceanic predictability. When integrating the OHC as done 80 

by Marchi et al. (2019), information about the evolution of OHC anomalies in the vertical oceanic 81 

layers is lost, this limits our capacity to observe the physical process occurring within the ocean.  82 

In this study, we retain the vertical dimension for oceanic predictability results and compare the 83 

evolution of predictability of sea ice and ocean simultaneously. We find the loss of predictability 84 

in summer followed by the reemergence of predictability in autumn consistent with Holland et al. 85 

(2013) and Marchi et al. (2019). We also find a sudden loss of predictability in mid-winter when 86 

warm Circumpolar Deep Water is entrained into the mixed layer, connecting the influence of local 87 

vertical ocean structure and sea ice processes. These findings not only give insights into the 88 

physical processes in the upper ocean underlying sea ice predictability, but also directs towards 89 

hydrographic features that are valuable for understanding the regional differences in Antarctic sea 90 

ice trends and variability. 91 

2 Methods 92 

2.1 Data 93 
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We use the outputs from a global coupled ocean-sea ice model, the Australian Community Climate 94 

and Earth System Simulator (ACCESS-OM2), (Kiss et al., 2020). ACCESS-OM2 is based on the 95 

ocean MOM5.1 and ice CICE5.1 models coupled with the OASIS-MCT coupler. The model 96 

experiment analyzed in this study was forced using JRA55-do v1.4.0 (Tsujino et al., 2018). The 97 

high horizontal resolution of 0.1 o in ACCESS-OM2-01 produces good representation of Southern 98 

Ocean dynamics, and adequate simulations of the Antarctic sea ice extent and concentration: The 99 

mean annual cycle of Antarctic sea ice extent from ACCESS-OM2-01 closely matches 100 

observations and the historical sea ice trends are also well represented (Kiss et al., 2020). 101 

To calculate the observed sea ice area (SIA) used in this study, we use sea ice concentration (SIC) 102 

derived from satellite passive microwave data (a product based on the NASA Goddard-merged 103 

parameter in the NOAA/NSIDC Climate Data Record (CDR)) (Meier et al., 2013). 104 

 105 

2.2 Correlation Analysis and Statistical methods 106 

In our diagnostic predictability analysis, we calculate the correlation between a given initial month 107 

and the twelve future months. We use monthly data from 1985 to 2015. For the sea ice area, we 108 

calculate the monthly time series of total SIA in Weddell sector and detrend it by subtracting the 109 

linear least-squares fit, then we apply the correlation analysis (hereafter referred to as ‘sea ice 110 

predictability’). To evaluate the predictability of the ocean from its initial state, we apply the 111 

correlation analysis to the detrended monthly timeseries of conservative temperature (T) vertical 112 

profiles in the upper 200 m, by spatial averaging in the Weddell sector (T from initial month 113 

correlated with future T at same depth) (hereafter referred as ‘ocean-ocean correlations’). Then 114 

using the detrended monthly timeseries of total SIA and T in upper 200 m, we calculate 115 

correlations between given initial SIA with future T at depth, to investigate the signature of ice-116 
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ocean interactions (hereafter referred to as ‘ice-ocean correlation’). We define statistically 117 

significant values as p-values greater than 95% in the two-tailed Student’s T-test. 118 

2.3 Climatology  119 

To understand the general ice and ocean seasonal evolution in the Weddell sector, we create the 120 

monthly climatologies of temperature (T) and salinity (S). Further the monthly climatology for the 121 

vertical gradient of T (dT/dz), S (dS/dz) and density (dρ/dz) are also created. To discuss the upper 122 

ocean processes, we use the mixed layer depth (MLD), here an output from the model, which is 123 

defined by an increase in density by 0.03 kgm-3 from surface ocean density.  124 
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 125 

 126 
Figure 1: (a) Map defining the Weddell sector in Antarctica along with the model climatological 127 
winter maximum (September) of sea ice extent (in shading) and summer minimum (February, 128 
white contour). (b) Sea ice predictability: autocorrelation of sea ice area from observation, and (c) 129 
Sea ice predictability from model output. In (b) and (c), SIA from initial months (or lead) along y-130 
axis are correlated against the SIA in the future months (or lags) along x-axis and statistically 131 
significant values (>95%) are hatched. Summer persistence (*) and spring reemergence (**) 132 
patterns are marked in (c).   133 
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3. Results 134 
 135 
3.1 Sea ice predictability: Summer persistence and spring reemergence 136 
 137 
Our analysis of sea ice and ocean predictability is in the forward-looking perspective, that is 138 

indicating how a given initial state relates to the future states. Sea ice area predictability results 139 

from observations and model data are similar (Figure 1 b, c), and show two predictability patterns: 140 

‘persistence’ from summer initial months with correlations lasting till June, shown by a sustained 141 

significant autocorrelation (Figure 1c *); and ‘reemergence’ from spring initial months to the 142 

following autumn months (Figure 1c **), shown by the loss of correlation in summer months 143 

which ‘reemerges’ in April. These patterns of persistence in summer and reemergence from spring 144 

to autumn (hereafter ‘spring reemergence’) were identified in a similar diagnostic study by 145 

Ordoñez et al 2018. Prognostic studies have identified the reemergence of Antarctic sea ice 146 

predictability during ice-growth season (Holland et al., 2013; Marchi et al., 2019; Zunz et al., 147 

2015). Our sea ice predictability results show the termination of both summer persistence and 148 

spring reemergence consistently occuring in July.  149 
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 150 

 151 
Figure 2: Comparison of summer persistence (plots on the left) and spring reemergence patterns 152 
(plots on the right) evident from sea ice (top row) and upper ocean predictability (0-200m) (middle 153 
and bottom row). Sea ice predictability: correlation of SIA from January (a) and October (b) initial 154 
months with future months; Correlation between SIA in (c) January and (d) October with ocean 155 
temperature in future months; Correlation of ocean temperature in (e) January and (f) October with 156 
future months. Statistically significant values (>95%) are hatched in all panels. In the oceanic 157 
predictability results (c-f), thick black line is the vertical temperature gradient (dT/dz) maximum, 158 
dashed black line is the vertical density gradient (dρ/dz) maximum, white contours are dT/dz 159 
contours, and white dashed contours bound the dT/dz values that are negative during summer 160 
stratification. 161 
  162 
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3.2 Ocean-ocean and ice-ocean correlations 163 
 164 
The physical processes in the ocean underlying sea ice predictability patterns are investigated using 165 

the evolution of upper ocean predictability (Figure 2). We choose SIA correlations starting from 166 

January and October to represent summer persistence and spring reemergence patterns respectively 167 

(Figure 2 a and b). We correlate January and October SIA with lagged ocean temperature to 168 

explore how sea ice anomalies are related to upper ocean temperature ( ice-ocean correlation) 169 

(Figure 2 c and d); the ocean’s internal predictability is characterised by correlating the January 170 

and October temperature with future temperature at the same depth (ocean-ocean correlation) 171 

(Figure 2 e and f). We find a consistent evolution of predictability between the three sets of 172 

correlations. Sea ice and ocean autocorrelations (Figure 2 a,b, e, f), are positive, while ice-ocean 173 

correlations are negative, since cooler temperature implies more ice. 174 

3.2.1 Seasonal evolution of the upper ocean 175 

We overlay the climatological vertical thermal and density gradient contours to follow the seasonal 176 

evolution of the water column. The climatological dT/dz maximum (black line) represents the  177 

permanent pycnocline (PP) that separates the Winter Water (WW; i.e., cold water formed during 178 

sea ice production and its summer remnant) from slowly modifying Circumpolar Deep Water 179 

(CDW). The dρ/dz maximum (dashed black line) marks the evolution of seasonal pycnocline, 180 

which forms the base of the seasonally evolving mixed layer that is in direct exchange with the 181 

surface. Seasonal pycnocline acts as the base of mixed layer in summer (January-March) and 182 

autumn (April-June), before it merges with PP in winter. 183 

During the ice growth season, the PP coincides with the maximum depth of statistically significant 184 

correlation (Figure 2d). There is a layer of weak correlations at the base of the WW (Figure 2f), 185 

which we interpret as noise, due to the high variability from mixing processes at the interface of 186 
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the upper ocean and ocean interior. This separation (weak correlations) at the base of WW is 187 

expected, since WW is modified by sea ice production, implying that the entire WW is a source of 188 

memory for the ice-ocean system. 189 

3.2.1 Freeze and melt as limits to predictability 190 

The correlations emerging from October encounter loss of predictability during summer lag 191 

months, and present predictability remergence (Figure 2 b,d,f). Consistent with Holland et al. 192 

(2013) and Marchi et al. (2019), the oceanic predictability shows the weakening or loss of 193 

correlations during summer near the surface, while strong correlations are retained below this 194 

surface layer and above the PP. Freshwater and surface ocean warming during the ice-melt season 195 

(December-February) produce a thin and highly-stratified surface layer that becomes the summer 196 

mixed layer (dashed black line) in Figure 2c-f). This summer layer separates the thermal anomalies 197 

in the WW layer from the surface, causing the loss of predictability between December and March 198 

(Figure 2 b, d, f). 199 

In March, the regime shifts from sea ice melt (and a well-stratified summer mixed layer) to sea ice 200 

production (and destratification at the surface). Brine rejection from sea ice growth induces vertical 201 

mixing, resulting in entrainment across the seasonal mixed layer. Initially, this entrainment 202 

reconnects relatively cold remnant WW layer with the surface layer, leading to the reeemergence 203 

of both sea ice and ocean predictability (Holland et al., 2013; Marchi et al., 2019). After entraining 204 

through the WW layer, the mixed layer continues to deepen, eventually reaching the PP (merging 205 

of dashed black line with black line in Figure 2 c-f). Further entrainment causes loss of 206 

predictability (Figure 1c and all panels of Figure 2) as it entrains water that has no sea ice process-207 

related memory. We call this loss in predictability the ‘predictability barrier’, which is discussed 208 

in section (4.1). 209 
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3.2.2 Sensitivity of sea ice predictability to the stratification strength at the base of WW   210 

The main distinction between ice-ocean correlations and ocean-ocean correlations is that ice-ocean 211 

correlations are largely bounded by the PP (upper 100 m), while the ocean-ocean correlations 212 

produce significant correlations below the PP (below 100m). As discussed in section 3.2.1, ice-213 

ocean correlations emerging from October are bounded by the PP, which we attribute to the sea 214 

ice memory being confined to the WW. However the January SIA is correlated with ocean 215 

temperatures below the PP (up to 50 m; Figure 2c). Here we put forward the hypothesis that this 216 

is due to changes in the strength of the stratification at the base of the WW (or at the PP) (Figure 217 

3e).  218 

Winter cooling and sea ice production create a WW layer that is very distinct from CDW, which 219 

maintains a strong PP; therefore, the sea ice memory is confined above PP. When WW production 220 

ceases after October the pycnocline starts to decay allowing sea ice signals to penetrate deeper, so 221 

in January the ocean memory extends below the PP (Figure 2c). Ice-ocean correlations for all 12 222 

initial months (Supplementary figure 1 (S1)) show how the correlations responds to changes in 223 

stratification strength. When stratification is strong at the PP (April-October), the PP act as the 224 

boundary for sea ice memory and ice-ocean correlations gradually extend below the PP when the 225 

stratification weakens at the PP (November-May, Figure S1). Doddridge et al. (2021) 226 

demonstrated that during the ice melt season, turbulent mixing can move heat anomalies 227 

downwards across the summer mixed layer and into the remnant WW layer; here we posit a similar 228 

process happening before the development of the summer mixed layer, so that temperature 229 

anomalies penetrate below the PP. In this case, the memory from those thermal anomalies is lost 230 

to the CDW (which acts as a thermal sink). 231 
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Importantly, this variability in the depth of significant correlation (Figure 2 c,d) demonstrates that 232 

the strength of stratification, as well as the depth, of the PP is important for the regime of sea ice 233 

predictability in a given sector. We further discuss the dependance of sea ice predictability on the 234 

hydrographic profile in section 4.2. 235 

4 Discussions 236 

4.1 Predictability barrier and predictability suppression 237 

Our study is consistent with findings from existing literature connecting upper OHC (oceanic 238 

thermal memory) with sea ice predictability (Holland et al., 2013; Marchi et al., 2019; Ordoñez et 239 

al., 2018; Zunz et al., 2015). In the Weddell Sea, sea ice anomalies persist in spring, are lost 240 

temporarily in summer (December-May), and then reemerges in May before they are lost 241 

permanently in mid-winter (July). Seasonal loss of sea ice predictability (in summer) is associated 242 

with the development of a highly stratified summer mixed layer due to sea ice melt that separates 243 

the surface ocean and sea ice from the heat content anomalies below the summer mixed layer. 244 

Below the summer mixed layer, OHC anomalies are retained and reemerge when the summer 245 

mixed layer erodes and deepen in autumn. This is consistent with the reemergence mechanism 246 

explained by Holland et al. (2013) and Marchi et al. (2019). 247 

After reemerging, predictability is suddenly lost in mid-winter (in July). The loss in predictability 248 

is consistent among all three sets of correlation analysis. We call this loss in predictability the 249 

“predictability barrier”. In our analysis, the predictability barrier is a clear, sharp loss of 250 

correlations in July (regardless of the lead month) and not the gradual decline we might expect 251 

from statistical red noise. This implies there is a change in the physical system in July. Previous 252 

studies (Blanchard-Wrigglesworth et al., 2011; Giesse et al., 2021; Ordoñez et al., 2018) also show 253 



manuscript submitted to Geophysical Research Letters 

 

the permanent loss of predictability on a specific month (or a set of months, in the same season) 254 

but they do not explain the physical mechanism of this barrier. 255 

Since predictability arises from OHC in the mixed layer, loss of predictability suggests 256 

modification of OHC within mixed layer. Mixed layer can lose heat to the atmosphere and can 257 

gain heat from the ocean interior. The climatological sea ice freezing rate (Figure 3a), shows no 258 

sudden increase, suggesting there is no sudden changes in ocean-atmosphere fluxes that could 259 

explain a sudden loss of predictability. In section 3.2, we have shown the predictability barrier 260 

coincides with the time at which the seasonal pycnocline merges with PP. During the ice growth 261 

season, the atmosphere cools the upper ocean inducing sea ice growth, and deepening the mixed 262 

layer through enhanced vertical mixing from the brine released. Initially this entrains remnant WW 263 

containing sea ice memory into the mixed layer, which explains the reemergence of predictability. 264 

Once the mixed layer deepens to reach the PP, further sea ice growth entrains heat from ocean 265 

interior (CDW) into the mixed layer (Gordon and Huber, 1984; Gordon and Huber, 1990; 266 

Martinson, 1990; Wilson et al., 2019), which has no sea ice-related memory, therefore terminating  267 

predictability. 268 

Martinson (1990) and Wilson et al. (2019) showed that vertical heat flux driven by brine rejection 269 

placed a constraint on winter sea ice growth. Our analysis shows that this constraint is likely 270 

invoked in mid-winter in the Weddell sector, when warm CDW is entrained into the mixed layer.  271 

The timing of predictability barrier signals when the negative ice-ocean feedback limiting ice 272 

growth rate due to entrainment is activated.  273 

Goosse and Zunz (2014) and Lecomte et al. (2017) showed how increased stratification in the 274 

upper ocean reduced vertical heat flux from CDW during ice-growth, which enabled positive ice-275 
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ocean feedbacks. Lecomte et al. (2017) found the postive ice-ocean feedback, associated to a long 276 

term trend in sea ice concentration only in the Ross sector. The fact that they do not find positive 277 

ice-ocean feedback in the Weddell sea, is consistent with our finding of the existence of a 278 

predictability barrier that prevents the persistence of anomalies beyond 12 months.  Therefore, an 279 

implication of predictability barrier  is that it hampers near-surface ice-ocean feedbacks that could 280 

potentially lead to long term trends (in upper ocean properties and sea ice concentration).  281 

By investigating regional Antarctic sea ice predictability one can determine the presence or 282 

absence of predictability barriers that will provide valuable insights into long term sea ice trends.   283 
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4.2 Dependence of sea ice predictability to mixed layer depth/ winter water depth 284 

 285 
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Figure 3: Annual evolution of climatological (a) Sea ice area (red line) and thermodynamic freeze 286 
and melt (blue line), (b) Temperature, (c) Salinity, (d) vertical temperature gradient (dT/dz), and 287 
(e) vertical density gradient (dρ/dz), spatially averaged over the sea ice covered ocean zone of the 288 
Weddell sector in the upper 250m. The vertical temperature gradient maximum (thick black line), 289 
vertical temperature gradient (white lines), and vertical density gradient maximum (dashed line) 290 
are the same used in Figure 2, and mixed layer depth (red line) is marked on all panels.  291 
 292 

Mixed layer depth (MLD) has been given high relevance in previous studies of sea ice 293 

predictability. Holland et al. (2013) and Marchi et al. (2019) observed spatial variability in their 294 

prognostic sea ice predictability analysis, and suggested that sufficently deep mixed layers were 295 

required for retaining heat anomalies and hosting sea ice predictability. Our results align closely 296 

with findings from Marchi et al. (2019) in that the temperature anomalies relevant to sea ice 297 

predictability are stored at the depth range typical of WW. However as discussed in section 3.2.2, 298 

we find instances where the depth to which temperature anomalies extend, vary depending on the 299 

stratification strength at the PP.  When the stratification is weak the T anomalies (memory) extends 300 

deeper than the WW. Also, Marchi et al. (2019) suggested that the effectiveness of the reemergence 301 

mechanism is associated with sufficiently large seasonal cycle of MLD  (i.e., a transition from a 302 

shallow highly-stratified summer mixed layer to the deep WW). However, Ordoñez et al. (2018) 303 

suggested that variable mixed layer depth is less important to sea ice predictability than basic 304 

mixed layer temperature persistence, suggesting that the MLD is not the only important criterion 305 

for sea ice predictability during melt and growth season.  306 

We have used the maximum vertical temperature gradient (dT/dz) to denote the PP and the base 307 

of the WW layer; We also used the maximum density gradient (dρ/dz) to follow the seasonal 308 

evolution of the mixed layer (more information in supporting information (TextS1, Figure S2)). 309 

From Figure 3b-e we can see how these two gradients compare with the model derived MLD. The 310 

MLD and dρ/dz maximum (red and dashed black line) closely align until July. However, during 311 
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winter the MLD is considerably deeper than the dρ/dz maximum which is near PP. Our key finding 312 

is that sea ice and ocean predictability patterns follow changes in vertical ocean structure (dT/dz 313 

and dρ/dz gradients; Figure 2, all panels). Therefore, the vertical ocean structure in any region and 314 

its modification via sea ice processes, determines its potential for retaining oceanic thermal 315 

memory, and by focusing only on the mixed layer depth, we lose other key features and processes 316 

related to sea ice predictability and its spatial variability.  317 

Our analysis looks at changes in total sea ice area and ocean properties averaged over a large area, 318 

in the Weddell Sea. We do not consider the variability within the region, such as the transport of 319 

sea ice into or out of the region, nor the advection of oceanic properties. Although the Weddell 320 

gyre forces a strong redistribution of sea ice within our sector, we estimate from the model that 321 

~92% of the sea ice freezes and melts within our Weddell sector; hence in a bulk scale, the net 322 

dynamic term is minimal compared to thermodynamic freeze/melt. We rely solely on the 323 

correlations to draw our interpretations and use the climatological oceanic parameters to guide our 324 

arguments. Quantifying the seasonal exchanges and thermal modifications occurring in the upper 325 

ocean is a potential follow-up analysis. 326 

5 Conclusions 327 

Over the 40 years of satellite record of Antarctic sea ice, the last decade has seen particularly large 328 

fluctuations in sea ice extent, including a record high value in 2014, followed by a record low in 329 

2016-17. These recent fluctuations and the uncertainties in sea ice variability and trends linked to 330 

climate change make the emerging field of sea ice prediction particularly relevant. In this study 331 

we have analyzed the predictability of sea ice and underlying ocean in the Weddell sector of the 332 

Southern Ocean, using lagged correlations. We find that 1) sea ice predictability emerging from 333 

summer months persists until mid-winter, and 2) sea ice predictability emerging from spring 334 
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months has a temporary loss during summer months and reemerges in autumn months. We also 335 

find that oceanic predictability is largely confined to the Winter Water layer, and it is dependent 336 

not only on the depth of the Winter Water layer but also heavily controlled by changes in the 337 

strength of stratification at the base of the Winter Water layer. Therefore, both these hydrographic 338 

parameters may be valuable for understanding regional differences in Antarctic sea ice trends and 339 

variability. 340 

Our results are consistent with Holland et al. (2013) and Marchi et al. (2019) in (1) connecting 341 

upper ocean heat content with sea ice predictability and (2) with their proposed mechanism of 342 

predictability reemergence. In addition to the temporary loss of predictability in summer lag 343 

months prior to predictability reemergence, we find a more permanent loss of predictability in mid-344 

winter. In mid-winter when the seasonal pycnocline merges with the permanent pycnocline, warm 345 

Circumpolar Deep Water with no sea ice related memory entrains into the mixed layer and 346 

terminates the predictability. Key insights from our study are in finding that (1) regional sea ice 347 

predictability is tied to the vertical structure of its oceanic properties and how this structure 348 

evolves, especially when forced by sea ice processes. This implies that the spatial variability in sea 349 

ice predictability can now be addressed based on local upper ocean vertical structure and sea ice 350 

processes. We also find that (2) the strength of stratification at the base of the Winter Water layer 351 

is relevant in determining potential for sea ice predictability. 352 

Oceanic predictability can be summed up as thermal anomalies lingering in the ice-ocean system 353 

at interannual timescales. These thermal anomalies generate sea ice predictability, which implies 354 

that sea ice predictability is a signature of local ice-ocean interaction mediated by residual thermal 355 

anomalies. Therefore, our analysis not only improves our knowledge and capacity for operational 356 

Antarctic sea ice forecast, but it presents a potential tool for evaluating the regional signature of 357 
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ice-ocean interactions. The fact that sea ice predictability is strongly tied to the vertical structure 358 

of oceanic properties suggest that changes in the upper ocean in a warming climate are likely to 359 

alter Antarctic sea ice predictability patterns in the future. 360 
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