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Key Points: 15 

A generative variational autoencoder is applied to augment precipitation data to improve a 16 

LSTM network for spring discharge prediction.  17 

Augmenting precipitation data improves learning generalization and predictive capability of 18 

various deep learning models. 19 

The generative variation autoencoder offers a novel solution to address data scarcity issue across 20 

diverse research domains.21 
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Abstract 22 

Precipitation data collected from sparse monitoring stations in numerous karst catchment pose a 23 

challenge for hydrologic models to accurately capture spatial and temporal correlation between 24 

precipitation and karst spring discharge, hindering the development of robust simulation models. 25 

To address this data scarcity issue, this study employs a coupled deep learning model that 26 

integrates a variation autoencoder (VAE) for augmenting precipitation data and a long short-term 27 

memory (LSTM) network for karst spring discharge prediction. The VAE contributes by 28 

generating synthetic precipitation data through an encoding-decoding process. This process 29 

generalizes the observed precipitation data by deriving joint latent distributions with improved 30 

preservation of temporal and spatial correlations in the data. The combined VAE-generated 31 

precipitation and observation data are used to train and test the LSTM for predicting the spring 32 

discharge. Applied to Niangziguan spring catchment in northern China, our coupled VAE/LSTM 33 

model demonstrated significantly higher predictive accuracy compared to a LSTM model using 34 

only field observations.  We also explored temporal and spatial correlations in the observed data 35 

and the impact of different ratios of VAE-generated precipitation data to actual data on model 36 

performances. Additionally, our study evaluated the effectiveness of VAE-augmented data on 37 

various deep learning models and compared VAE with other data augmentation techniques. Our 38 

study demonstrates that the VAE offers a novel approach to address data scarcity and uncertainty, 39 

improving learning generalization and predictive capability of various hydrological models. 40 

41 
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Plain Language Summary 42 

Millions of people around the world use spring as their water sources. To protect these precious 43 

springs, water resources managers need to have a good understanding on how spring discharges 44 

change in the future under the stress of climate change and human activities. A common tool to 45 

help improve this understanding is a computer model. A trustworthy computer model requires 46 

plenty of quality data, which are unfortunately not available for many springs. To address this 47 

data scarcity issue, we applied a computer-based learning technique, called variation autoencoder 48 

(VAE), that learned the patterns of real-world data and generated data that complied with the 49 

learned pattern.  We then combined the generated data and real-world data to train a computer-50 

based learning model, called long short-term memory (LSTM) network, that is excellent in 51 

simulating spring discharges. We tested our method using Niangziguan spring in the northern 52 

China, demonstrating that adding VAE-generated data significantly improved the LSTM model. 53 

In addition, we investigated the effectiveness of the VAE in improving other common models. 54 

The study shows that our model is accurate in predicting spring discharges and VAE is a very 55 

helpful tool in improving our model. 56 

57 
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1 Introduction 58 

Continuous and discontinuous carbonate rocks cover 15.2% of the global land surfaces 59 

(Goldscheider et al.,2020). The karst aquifers formed by carbonate rock formations provide fresh 60 

water for approximately 678 million or 9.2% of the world's population (Stevanović,2019). 61 

Carbonate rocks cover 3.44 million km
2
 of China territory (He et al.,2019). Many large karst 62 

groundwater catchments feed big karst springs in northern China (Han et al., 2006). Over the 63 

past decades, human activities and environmental problems have led to declining groundwater 64 

levels or karst spring dry-ups in many regional karst groundwater catchments (Hao et al., 2009). 65 

Therefore, accurate simulation and prediction of karst spring discharge is essential for the 66 

sustainable management of water resources in the region. 67 

To gain comprehension and accurate predictive capacity regarding these intricate 68 

hydrological processes, Labat et al. (2000) developed a rainfall-runoff model that integrates 69 

linear and steady-state rainfall-runoff models to identify and simulate the processes. Similarly, 70 

Juki et al. (2009) introduced a conceptual rainfall-runoff model to estimate the components of 71 

groundwater balance, including the dynamic catchment boundaries and the subsurface flow 72 

influences within the catchment area. Notwithstanding the significant advancements achieved by 73 

conventional hydrological models, limitations persist when confronted with spatiotemporal 74 

nonlinearity and nonstationarity (Wunsch et al., 2022; Çallı et al., 2022). 75 

The recent development of deep learning (DL) methods has made significant strides in 76 

modeling the spatiotemporal behavior of rainfall-discharge processes. For example, Artificial 77 

Neural Networks (ANNs) have been employed in investigating karst hydrological processes 78 

(Yaseen et al., 2015) and have emerged as a prominent tool in hydrology. Wunsch et al. (2022) 79 

utilized Convolutional Neural Networks (CNNs) to simulate the flow within three karst spring 80 
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catchment areas in the Alps and the Mediterranean region. Nevertheless, exploring time series 81 

data, a vital component in hydrological research, has remained somewhat limited (Yin et al., 82 

2022). To address this gap, Song et al. (2022), Yin et al. (2022), and Zhou et al. (2022) have 83 

implemented Long Short-Term Memory (LSTM) networks to simulate karst spring flow and 84 

effectively manage time series data. Additionally, Cheng et al. (2021) conducted a comparative 85 

evaluation of three machine learning methods (Multi-Layer Perceptron (MLP), LSTM, and 86 

Support Vector Machine (SVM) to enhance our understanding of the mechanisms behind the 87 

fluctuations in spring discharge in the Longzici spring's karst area and its relationship with 88 

precipitation. Their research underscores that artificial neural networks are the preferred 89 

approach for simulating and predicting karst spring discharge (Zhou et al., 2022; Gai et al., 90 

2023). 91 

However, deep learning models often demand substantial training data for robust 92 

performance (Shorten et al., 2021; Tang et al., 2022). In the context of hydrological process 93 

studies, the high costs associated with data collection and the inherent spatial and temporal 94 

randomness or stochasticity of the natural phenomena present formidable challenges (Dugdale et 95 

al., 2022). In remote areas, data collection tasks can become even more arduous, thus 96 

constraining a comprehensive grasp of hydrological processes (Mengistu et al., 2022). Nowhere 97 

is this challenge more pronounced than in karst regions, where highly spatially variable 98 

groundwater flow and the intricate dynamics of groundwater flow and spring discharge 99 

complicate sampling and monitoring efforts (Hartmann et al., 2014). Consequently, the sparsely 100 

sampled data brings significant challenges to apply deep learning in spring discharge simulation.  101 

Some traditional methods have already been employed to deal with data sparsity in 102 

hydrology. For example, Yeh et al. (2015) and Yeh et al. (2023) have summarized many 103 
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advances over the past decades in applying the Bayesian statistic concept to characterize aquifer 104 

heterogeneity and to predict groundwater flow and solute transport processes in spatially variable 105 

geologic media with spare data. In particular, they promoted collecting more spatially non-106 

redundant data cost-effectively using hydraulic tomography to reduce uncertainty in predictions 107 

(Yeh and Liu, 2000; Zhu and Yeh, 2005). Varouchakis et al. (2013) and Smith et al. (2021) 108 

proposed interpolation techniques to enhance model performance with sparse data. Bruckmann et 109 

al. (2020) employed sequential Gaussian simulation for the statistical modeling of groundwater 110 

flow, enabling the quantification of overall uncertainty in sparsely sampled hard rock aquifers. 111 

Sun et al. (2020) also applied it to meteorological observations or regions with limited or no data 112 

on the Qinghai-Tibet Plateau by inversely evaluating the reconstructed precipitation with a 113 

glacier-hydrology model. This approach contributes to catchment hydrological modeling and 114 

forecasting research. Similarly, Grundmann et al. (2019) introduced an inverse surface 115 

hydrologic modeling approach to reconstruct spatial-temporal rainfall patterns stochastically and 116 

applied it to areas with data scarcity and poor catchment measurements. These methods, 117 

however, typically rely on complex mathematical models governed by partial differential 118 

equations and algorithms. Moreover, their limited adaptability to diverse hydrological data 119 

domains and types hampers their cross-domain applicability and restricts flexibility and 120 

scalability, posing challenges in addressing evolving hydrological research needs. 121 

While the methods above have improved prediction accuracy in hydrology under sparse 122 

sampling conditions, they often struggle to handle the large-scale datasets required by deep 123 

learning models (Ghorbanidehno et al., 2020; Addor et al., 2020). Among the diverse branches 124 

of deep learning, generative models such as the Variational Autoencoder (VAE), presented in 125 

this study, can be precious when confronted with challenges like data scarcity, inadequate 126 
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sampling (Lin et al., 2023), and the intricacies of hydrological process modeling (Chen et al., 127 

2022). Specifically, this study addresses predicting spring discharge time series from spatially 128 

limited observed precipitation time series over a large-scale karst catchment, where unknown 129 

spatial and temporal variability of precipitations and hydrologic processes exist. In particular, a 130 

deep-learning model that integrates a VAE and a Long short-term memory (LSTM) 131 

network developed based on the spatiotemporal statistics of precipitation and discharge to predict 132 

the most likely spring discharges and address their uncertainty in a karst catchment. This paper is 133 

organized as follows. 134 

(1) It first introduces the problems of predicting spring discharge at the Niangziguan 135 

Springs karst catchment in China with sparse precipitation observation stations. (2) It then 136 

investigates the spatial and temporal statistics of seven spatially sparse precipitation time series 137 

to demonstrate that Bayesian statistics can generate many possible precipitation time series in the 138 

latent space. These generated time series would represent those not observed at other parts of the 139 

catchment and have the same spatiotemporal statistics as those observed. Besides, the study 140 

examines the statistical relationship of the observed precipitation time series with the spring 141 

discharge time series. Afterward, it uses their spatiotemporal relationships to analyze the most 142 

likely discharge time series and address the uncertainty as the stochastic predictive and inverse 143 

models in subsurface hydrology discussed in Yeh et al. (2015) and Yeh et al. (2023). (3) This 144 

study proposes a deep-learning network (VAE/LSTM) model to avoid complex classical 145 

governing surface and subsurface flow partial differential equations and characterization of the 146 

hydraulic properties of the karst aquifer. (4) This study presents the results of the model's 147 

application to the Niangziguan Karst catchment. It demonstrates the model's validity: 148 

argumentation of more synthetic precipitation time series, capturing the precipitation's spatial 149 



manuscript submitted to replace this text with name of AGU journal 

 

variability, improves the spring discharge prediction. (5) At last, this study discusses its scientific 150 

insights.  151 

2 Statement of Problems 152 

The Niangziguan Springs composite, one of the largest karst springs in northern China, is 153 

located in east Shanxi Province, China, with an annual average spring discharge of 9.35 m
3
/s 154 

from 1959 to 2019. The Karst aquifer is an Ordovician carbonate aquifer, sandwiched by 155 

Quaternary loess deposits, Permian shale, Carboniferous argillaceous limestone with coal seams 156 

on top, and Cambrian dolomite on the bottom (Gai et al., 2023). The karst groundwater flows 157 

eastward, and when groundwater meets with the low-permeable dolomite strata of the Cambrian 158 

at the Mian River valley, it perches on the surface, and Niangziguan Springs occurs (Figure 1). 159 

The landforms of the Niangziguan Springs catchment are rough hilly terrains and gentle 160 

sloping river terraces, where the elevation ranges from 2149m to 362m above mean sea level 161 

(MSL). Precipitation is the primary aquifer recharge source, with an annual average precipitation 162 

of 534.6 mm from 1959 to 2019 (Gai et al., 2023). 163 

Before 1971, the Niangziguan Springs catchment was a remote rural mountainous area 164 

with a well-developed river water system. Residents mainly used river and spring water for their 165 

water supply. Karst groundwater was not developed and remained in natural condition during 166 

that time. Although the residents utilized water from the rivers and streams connected to the 167 

subsurface groundwater, widespread pumping development of the karst aquifer did not occur. 168 

That is, the impacts of human activities on groundwater were negligible (Hao et al., 2016; Song 169 

et al., 2022). 170 
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 171 

Figure 1. Niangziguan Springs catchment, China. 172 

With China's reforming and opening up from the beginning of the 1970s, regional 173 

economic development and population growth increased. The Niangziguan Springs catchment 174 

has become one of the national heavy industrial zones for coal mining, power generation, and 175 

metallurgy. Specifically, after the early 1970s, groundwater of the catchment began to be 176 

developed for industrial, municipal, and irrigation uses. The regional economic and social 177 
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development largely influenced karst groundwater in the Niangziguan Springs catchment and the 178 

Niangziguan Spring discharge accordingly.  179 

Figure 2 displays the monthly spring discharges measured at the Niangziguan Springs 180 

gauging station in Mian River (point B in Figure 1) from 1959 to 2019. The discharge records 181 

exhibit a two-scale variability, a large-scale declining trends from 1959 to 2019, depicted by the 182 

polynomial and linear regression lines, and local-scale variability at the monthly level. As 183 

illustrated in the figure, the points of intersection between the linear regression line and the 184 

polynomial regression line occur at two distinct time points, namely 1971.10 and 2006.12. Based 185 

on the two intersecting points, we divide the discharge records into the nature period (1959.1-186 

1970.12), the overexploitation period (1971.1-2006.12), and the recovery period (2007.1-187 

2019.12). This segmentation method comprehensively analyzes and compares spring discharge 188 

characteristics in these distinct phases while exploring potential patterns and trends in karst 189 

spring spatiotemporal variation. 190 

 191 

 192 

Figure 2. Spring discharge data partition of Niangziguan spring from 1959 to 2019. 193 

 194 
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From 1971 through 2006 (the overexploitation period), the region underwent rapid 195 

development due to China's economic reform and open-door policy. Due to a substantial demand 196 

for groundwater, spring discharge exhibited a significant declining trend (An et al., 2020; He et 197 

al., 2019).  198 

Post-2006, influenced by China's sustainable development strategy, local authorities 199 

actively promoted industrial transformation (Liu et al., 2020). As a result, natural resource 200 

consumption and groundwater exploitation decreased, leading to a gradual recovery in spring 201 

discharge, and we call this period the recovery period. 202 

Precipitation over the catchment is the primary source of the spring discharge. Figure 3 203 

illustrates the monthly precipitations as a function of time (from 1959 to 2019) recorded at seven 204 

meteorological stations located at Yuxian, Shouyang, Pingding, Xiyang, Heshun, and Zuoquan 205 

counties, and Yangquan city (i.e., the black dots in Figure 1) (Gai et al., 2023). These figures 206 

exhibit the variability of the monthly precipitation values, which do not exhibit the trend in the 207 

discharge in Figure 2. Absence of the trend confirms our interpretation of groundwater usage's 208 

influence on the spring discharge due to the catchment development. 209 

The mean values and standard deviations of the precipitation corresponding to Figure 3 210 

are also listed in Table 1. 211 

 212 

Table 1. The means and standard deviations of the monthly precipitation time series (1959-2019) 213 

at the seven stations.  214 

 Yangquan Pingding Yuxian Shouyang Xiyang Heshun Zuoquan 

Mean(mm) 45.2 44.8 46.0 41.0 45.5 45.6 43.7 

Variance 3493.9 3426.7 3388.1 2521.2 3626.4 3273.3 2888.4 

 215 

 216 
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 217 

Figure 3. The monthly precipitations as a function of time (from 1959 to 2019) recorded at 218 

seven meteorological stations.  219 

 220 

As indicated in Table 1, the mean values of the monthly precipitations (1959-2019) at the 221 

seven stations are almost the same. Their standard deviations are close, indicating a slight spatial 222 

variation in the monthly precipitation. However, the precipitation records manifest a periodic 223 

behavior: heavy rainfalls in the middle of every year (the temporal variability). 224 

Figure 4a illustrates the temporal autocorrelation of the recorded precipitation time series 225 

(from 1959 to 2019) at Yangquan station. The maximum or minimum autocorrelation values 226 

decrease as the lag (separation) time increases. The autocorrelation behaviors of the precipitation 227 

time series at the other six stations have similar patterns, showing the same 12-month periodicity 228 
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(Figure 4b). This periodicity implies that if this month's precipitation is higher than the mean, the 229 

precipitation 12 months later will likely be higher than the mean or vice versa. The negative 230 

covariances indicate that if a given month's precipitation value is higher than the mean, the 231 

precipitation separated by a time lag between 3 to 9 months will be below the mean value of the 232 

entire record (Table 1). Such a periodic autocorrelation suggests that the precipitations over the 233 

catchment lasted less than a month. As a result, the monthly accumulated precipitations at 234 

different locations over the catchment do not exhibit significant deviations. 235 

 236 
 237 

 238 
Figure 4. (a) illustrates the autocorrelation of the precipitation from 1959 to 2019 at Yangquan 239 

station. (b) shows the autocovariance of the monthly precipitation perturbations as a function of 240 

time recorded at seven meteorological stations (1959 to 1964). 241 

(a) 
 

(b) 
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Figure. 4b shows that the time series at the seven stations behave similarly. The similarity 242 

is expected since the time series are monthly precipitations, which integrate the spatial variation 243 

of the precipitation over the time intervals of less than a month. However, they are slightly 244 

different, unveiling spatial variations in the precipitation over the entire catchment. This spatial 245 

variation is also confirmed by Figure 5, which plots the correlation values of the recorded 246 

precipitation among the seven stations, revealing that the precipitations are correlated well 247 

between adjacent stations and less with far away stations. 248 

 249 

Figure 5. The correlations between the precipitation data recorded at the seven stations illustrate 250 

their spatial similarity and variation. 251 

We also carried out the autocorrelation analysis for the spring discharge time series in 252 

Figure 2. The autocorrelation of the spring discharge without detrending is shown in Figure 6a. 253 

and that of the discharge after removing the polynomial trend (Figure 2) is illustrated in Figure 254 

6b, which exhibits some periodicities at large and small scale. The small-scale variations have 255 

one year's periodicity, corresponding to the above mentioned precipitations. It suggests that an 256 

appropriate cross-correlation analysis of the precipitation and spring discharge data must use the 257 
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detrended spring discharge data. Table 2 lists the means and standard deviations of the spring 258 

discharge time series (1959-2019) before and after detrending. Figures 6a and 6b and Table 2 259 

indicate that human activity heavily influences spring discharge time series during the over-260 

exploration period. 261 

 262 
 263 

 264 

Figure 6. Auto-correlation of spring discharge. (a) non-detrended. (b) detrended data. 265 

Table 2. Means and variances of non-detrened and detrended spring discharge data. 266 

Spring discharge Non-detrened Detrended 

Mean (mm) 9.35 0 

Variance (mm
2
) 7.99 1.49 

(a) 
 

(b) 
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The analyses in Figures 3, 4, 5, and 6 suggest that the precipitation over the catchment 267 

and the spring discharge time series can be conceptualized as spatiotemporal stochastic processes 268 

(Preciley, 1979) or latent processes (AI jargon): they are random but correlated in space and 269 

time. 270 

Since the precipitation is the primary source of the spring discharge, relationships 271 

between the precipitation and discharge data must exist. As such, we instigated the cross-272 

covariance between the discharge and the precipitation at each of the seven stations as a function 273 

of separation time in Figure 7. The discharge time series (1959-2019) were detrended, and the 274 

residuals were then analyzed.  275 

 276 

 277 

Figure 7. The cross-correlation between the discharge (detrended) and the precipitation at each 278 

of the seven stations as a function of separation time (month). 279 

The cross-covariance in Figure 7 shows a periodicity of almost 12 months as the 280 

autocorrelation of the precipitation time series (after human impacts were removed), suggesting 281 

that the precipitations closely control the spring discharge. Notice that the maximum cross-282 

correlation occurs four or five months after the precipitation perturbation greater than the mean 283 
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value. These four or five months may present the average travel time for the precipitation to 284 

reach the spring discharge location. 285 

The above discussion and Figure 1 demonstrate that the catchment covers an area with 286 

significant topographic variations, implying precipitations likely vary in time and space, not 287 

captured by the monthly cumulative precipitation data from the seven stations. The problems of 288 

sparse measurement and spatiotemporal variability processes are not new. Many scientists have 289 

employed stochastic approaches to deal with this issue in hydrology. For instance, Yeh et al. 290 

(2015) and Yeh et al. (2023) introduced the approach that conceptualizes the spatial variation of 291 

hydraulic properties in geologic media as a spatial stochastic process. Given some observed 292 

values, the process is exemplified by a joint posterior distribution with the mean, variance, and 293 

autocorrelation function as a function of correlation scales.  294 

Within this probability distribution, many possible heterogeneous aquifer parameters 295 

exist and can be used to simulate the statistically most likely flow and transport processes and to 296 

derive the associated uncertainty due to the effects of unknown heterogeneity missed by 297 

sampling. This approach is called Monte Carlo (MC) simulation in hydrology. This approach, 298 

however, requires solving 3-D partial differential equations governing the surface and subsurface 299 

flow with many parameters, boundaries, and initial conditions. Such an approach is a complex 300 

numerical simulation task. 301 

Of course, this study could have followed the stochastic MC simulation approach, but it 302 

faces many difficulties. An alternative is to use a deep-learning machine approach, skipping 303 

solving 3-D partial differential equations. However, it needs to deal with sparsely distributed 304 

temporal varying precipitation information. 305 
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For this reason, this study proposes a new deep-learning network model combining VAE 306 

and LSTM to predict precipitation-driven spring discharge. Figure 8 displays the architecture of 307 

the proposed network. VAE is a data generation model that can generate new data of similar 308 

spatiotemporal statistics (mean, covariance, and probability distribution) from the input data via 309 

the encoding and decoding mechanism in VAE. On the other hand, LSTM is a model that 310 

exploits spatiotemporal cross-correlation statistics between precipitation and spring discharge 311 

data to predict spring discharge at different times. 312 

3 Variational Autoencoder (VAE) and Long Short-Term Memory (LSTM) network:  VAE 313 

/ LSTM model 314 

3.1 Variational AutoEncoders (VAE) 315 

The VAE is a data-generative model that consists of two parts: an encoder and a decoder. 316 

The encoder derives latent posterior distributions of input data by neural networks and samples 317 

from the distributions to obtain latent samples. The decoder converts the latent samples back to 318 

the data that have similar statistical features with input data by neural networks. Different from 319 

MC simulation, this process is controlled by the neural network parameters trained by the input 320 

data. Details are available in Supporting Information S1 (Figure S1).   321 



manuscript submitted to replace this text with name of AGU journal 

 

 322 

Figure 8. The architecture of the VAE/LSTM for precipitation-driven spring discharge 323 

prediction. (a) is the module of the VAE for new precipitation data generation that has similar 324 

spatiotemporal statistics with the observed precipitation. (b) is the module of LSTM for spring 325 

discharge prediction using the observed precipitation, synthetic precipitation and historical 326 

spring discharges. 327 

The VAE encoder is conditioned on the observed precipitation from the seven stations to 328 

derive seven latent posterior probability distributions with their means and covariances. 329 

Specifically, let Xik be the precipitation data set of all the i-th month at the k observation station, 330 

where i=1,2,...,12, k =1,2,...,7 (representing 12 months of the observed precipitation data in seven 331 

zones of Niangziguan Springs catchment). The encoder maps Xik to a latent state distribution 332 

( | )
E ik ik

Z XP
with the mean uik and the variance 2

ik
 , which is the posterior probability distribution 333 
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of P(Xik). E
 is the parameter matrix of the encoder neural network associated with all zone 334 

precipitation. Thus, the latent distribution is a joint posterior probability distribution of the 335 

observed precipitation data, which can characterize other unknown locations by mean, variance, 336 

and covariance (i.e., spatiotemporal relationship between the precipitations at different locations 337 

in the entire catchment). Let zik be the sample of ( | )
E ik ik

Z XP
. Then the VAE decoder converts zik 338 

to a new precipitation data, ˆ
ik

x  as ˆ( | )
D ik ik

P x z


, where D
 is the parameter matrix of the decoder 339 

neural network.  340 

The VAE, in essence, conceptualizes the multi-scale spatiotemporal variable precipitation 341 

as stochastic processes, similar to the stochastic conceptualization of multi-scale heterogeneous 342 

geologic media (Chapter 4 in Yeh et al., 2015). Based on this process, the VAE generates many 343 

possible synthetic data, representing those spatiotemporal variating precipitations not observed at 344 

the seven stations (similar to the above MC simulation). This approach is the so-called "data 345 

augmentation" in the machine learning field.  346 

3.2 Long Short-Term Memory (LSTM) Network 347 

As sufficient spatially varying precipitation data over the catchment becomes available, 348 

next, the deep learning network of LSTM uses 12 consecutive months of the observed 349 

precipitation data in seven zones [X]12×7, and their synthetic precipitation 
12 7

ˆ
M

X
   (M is the 350 

number of synthetic data of each zone) as well as the observed spring discharge data Y12 from the 351 

past 12 months to exploit their spatiotemporal cross-correlations features to predict the spring 352 

discharge in the following months. Again, this is analogous to the conditional stochastic 353 

approaches of cokriging or SLE (Yeh et al., 2005). 354 
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LSTM has been widely employed for modeling time series data and proved well-suited 355 

for hydrological data, especially in Karst regions, for predictive tasks (Song et al., 2022). The 356 

core innovation of LSTM incorporates memory cells and gate mechanisms. Memory cells enable 357 

the network to store and retrieve long-term memory information, while gate mechanisms oversee 358 

and control the data read and write operations of these memory cells. These mechanisms are 359 

similar to stochastic hydrology's spatial and temporal correlation concepts (i.e., data are 360 

correlated over short or long temporal or spatial distances, depicted by the auto or cross-361 

correlation, Yeh et al., 2015; Yeh et al., 2023). The LSTM process, controlled by its network 362 

parameters LSTM
 of all the gates, acquires high-dimensional positively or negatively correlated 363 

spatiotemporal features of spring discharges for all data as 
LSTM

F


. Finally, a nonlinear calculation 364 

of 
LSTM

F


by a fully connected neural network outputs the spring discharge for the following month 365 

or months denoted as Y*, which can be given as 366 

                                                              * ( )
FC LSTM

Y C F
 

 ,                                                                (1) 367 

where FC
 is the parameter matrix of the fully connected neural network. Details are available in 368 

Supporting Information S2 (Figure S2).   369 

In our model, the VAE and LSTM are coupled. The output of VAE, the observed 370 

precipitation, and spring discharges are fed to the LSTM to predict the spring discharge. The 371 

initial parameters of E
 , D

 , LSTM
F


and FC
  are zero and are iteratively updated by the coupled 372 

model training until some criteria about the agreement between the observed and synthetic 373 

precipitation and the observed and simulation spring discharge are met. Afterward, the algorithm 374 

and the optimal parameters were verified through the testing (verification) phase, where the 375 

observed discharge time series were not used in the training.  376 
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Unlike traditional statistical methods, our approach exploits the results of synthetic 377 

precipitation and spring discharge prediction work together to update the model's parameters. 378 

This update enables LSTM to explore spatiotemporal variation cross-correlation features 379 

between precipitation and spring discharge while enabling VAE to generate more realistic spatial 380 

variation precipitation. That is, it can leverage the cross-correlation between spring discharge and 381 

precipitation to generate more reasonable data instead of relying solely on the statistical process 382 

of the precipitation itself. The detailed algorithm of VAE and LSTM can be seen in the 383 

Supporting Information S1 and S2 (Figures S1 and S2).    384 

3.3 Evaluation Metrics 385 

To assess the predictive accuracy of the model, we employed the following evaluation 386 

metrics: root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage 387 

error (MAPE), and Nash-Sutcliffe efficiency coefficient (NSE). They are defined below:  388 
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The yi in the above equations represents the observed spring discharge value, y is the 393 

mean of the observed discharges,  the yi* is the predicted, and N is the number of values used.  394 
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4 Results 395 

4.1 Model Implementation 396 

This study employs the proposed coupled model of VAE/LSTM to predict spring 397 

discharge. Since the parameters of the neural network model control its performance, parts of the 398 

observed data are used for the model training to obtain the optimal parameters, and the remaining 399 

is used for model testing (verification).  400 

In this paper, the ratio of the training data to the testing data is 2:1 for each divided period 401 

(i.e., nature, overexploitation and recovery periods in Figure 2) as shown in Figure 2. 402 

Specifically, during the nature period, the training phase used the time series from 1959.1 to 403 

1966.12, and the testing phase employed data from 1967.1 to 1970.12. During the 404 

overexploitation period, 1971.1- 1994.12 is the training phase, 1995.1-2006.12 is the testing 405 

phase. For the recovery period, 2007.1-2014.12 is the training phase, 2015.1-2019.12 is the 406 

testing phase.  407 

In addition, the LSTM time step used in this paper is 12 months (Song et al., 2022), 408 

which is consistent with 12 month periodicity in the autocorrelation of precipitation data (Figure 409 

4) and the cross-correlation between the precipitation and spring discharge (Figure 7). In other 410 

words, the model continuously employs cross-covariance of the past 12 months of precipitation 411 

and spring flow to predict the next month's spring discharge.  412 

More synthetic precipitation data reduces the uncertainty of spatial precipitation 413 

distribution, which can improve the ability of the LSTM to capture the cross-correlation features 414 

between precipitation and spring discharge. However, this will lead to higher data dimension 415 

calculations and reduce the generalization ability of the LSTM to diverse data during the testing 416 

phase. Therefore, it systematically increases the proportion of synthetic data during the training 417 
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process to determine the optimal numbers of the synthetic data in each period. This incremental 418 

approach enables the model to grasp precipitations' spatiotemporal characteristics over the 419 

watershed progressively.  420 

4.2 Effectiveness of VAE/LSTM model for Single-Step Spring Discharge Prediction 421 

Figures 9a, b, and c show the evaluation performance of single-step spring discharge 422 

prediction with various proportions of the synthetic of the three periods in the testing phase. 423 

These figures underscore the influence of additional spatiotemporal precipitation data on the 424 

model's predictive capabilities. As shown in the figure, VAE/LSTM model yields better-425 

predicted spring discharges as the proportion of synthetic precipitations gradually increases, 426 

which reflects that the model is exposed to an expanding pool of spatiotemporal varying 427 

precipitation data, enabling it to acquire broader spatiotemporal precipitation attributes. 428 

Furthermore, the predicted performance becomes stable when the proportion increases to a 429 

certain extent. Although there are differences in the cross-covariance between precipitation and 430 

spring discharge in different zones (as shown in Figure 7), when a certain amount of spatial 431 

precipitation data is employed, LSTM can capture their relevant features well, implying that the 432 

ergodic condition is reached.  433 

Figure 9 displays the single-step spring discharge prediction. It shows that the evaluation 434 

of NSEs of our model in the three periods can reach 0.92, 0.94 and 0.82, respectively, indicative 435 

of the excellent performance of our model. It is worth noting that the ratios of synthetic data that 436 

make the prediction optimal are different for different periods: 7:28 in the natural period, 7:21 in 437 

the overexploitation period, and 7:42 in the recovery period. Many reasons could contribute to 438 

this variation of the three periods. One likely reason is that human intervention has disrupted the 439 

natural correlation between precipitation and spring discharge. 440 
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 441 

 442 

Figure 9. Performance evaluation of LSTM Model with VAE data augmentation at different data 443 

ratios. The ratio means the amount of data by which one precipitation data is enhanced.  444 

Figure 9 also illustrates that model performance slightly deteriorates when the proportion 445 

of synthetic precipitation becomes high. The slight deterioration may be due to insufficient 446 

experiments. This result may imply that LSTM becomes overly sensitive to specific details and 447 

noise. Theoretically, more synthetic precipitations with corrected spatiotemporal statistics should 448 

yield stable predictions.  449 

Figure 10 visually compares the observed and the single-step predicted spring discharge 450 

in the training and testing phases for the three periods. Figure 10a-c are the results of the natural 451 

period (1959.1-1970.12). Figure 10d-f are the results of the overexploitation period (1971.1-452 

2006.12). Figure 10g-i are the results of the recovery period (2007.1-2019.12). In these figures, 453 

the red curve is the observed spring discharge, the blue curve denotes the predicted spring 454 

discharge during training, and the green curve represents the predicted spring discharge in the 455 

testing phase. The scatter plots compare the observed and predicted discharges in the training 456 
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and testing data set. The shaded area (in Figures 10a, 10d, and 10g) and the area between the red 457 

lines in the scatter plots are the predictions where their NSEs are with a 95% confidence interval. 458 

That means that when evaluating the model, we can have a 95% confidence level to believe that 459 

the real NSE value falls within the calculated confidence interval. This range provides a 460 

statistical measure of the model's performance and helps to determine the model's credibility 461 

under different conditions. 462 

These figures indicate that the NSEs of training for the three periods are all higher than 463 

0.9. Further, for the testing phase, the NSEs of the three periods reaches 0.92, 0.94, and 0.82, 464 

respectively. The R
2
 of the scatter plots comparing predicted and observed spring discharge of 465 

the three periods for the training phase are 0.97, 0.96, and 0.88. They are 0.92, 0.95, and 0.84 for 466 

the testing phase. These results demonstrate outstanding predictive performance during the 467 

testing periods. For the different periods, these results show some differences. Such differences 468 

arise because these results depend on LSTM's training, which is influenced by the amount of 469 

observed data in each period and the differences in data distribution between the testing and 470 

training phases. As shown in Figure 2, the amount of observed data during each period and the 471 

distribution also varies. 472 

Table 3 presents NSE, RMSE, MAE, and MAPE values for the VAE/LSTM model 473 

during the training and testing phases of spring discharge for each of the three periods, using 474 

optimal synthetic precipitation ratios. These results underscore the robustness of the proposed 475 

model, which is enhanced by precipitation data augmentation (considering spatiotemporal 476 

variation) through VAE.  477 

 478 
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 480 

 481 

Figure 10. Comparison between observed and predicted spring discharge in training and testing 482 

for the three periods. 483 

484 
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Table 3. Performance of VAE/LSTM for single-step spring discharge prediction during training 485 

and testing phases of the three periods. 486 

Period Data Ratio Phase NSE RMSE MAE MAPE(%) 

Natural 
1:4 

Training 0.96 0.32 0.18 1.31 

1959-1970 Testing 0.92 0.33 0.19 1.40 

Overexploitation 
1:3 

Training 0.96 0.37 0.19 1.97 

1971-2006 Testing 0.94 0.24 0.17 2.49 

Recovery 
1:6 

Training 0.91 0.20 0.09 1.31 

2007-2019 Testing 0.82 0.20 0.11 1.51 

4.3 Effectiveness of VAE/LSTM Model for Multi-Step Spring Discharge Prediction 487 

Next, this paper expands its predictive horizon from forecasting one month of spring 488 

discharge to predicting spring discharge for the next six months. The results for the test data set 489 

of the three periods depicted in Figure 11 show a gradual decrease in the NSE values as the 490 

prediction step extends. When comparing the prediction outcomes across the three periods, it is 491 

evident that the NSE values for one-month and six-month predictions are as follows: 0.92 and 492 

0.28 (Natural period), 0.94 and 0.45 (overexploitation period) and 0.82 and 0.07 (Recovery 493 

period), respectively, which have a reduction of 69.57%, 52.13%, and 91.46%, correspondingly. 494 

This pattern might be linked to the climatic conditions of the Niangziguan spring. Niangziguan 495 

Spring is in northern China and is influenced by the northern monsoon and continental climate 496 

(He et al., 2019). During abundant rainfall, increased surface runoff can diminish the proportion 497 

of spring recharge, thereby impacting spring discharge (Fiorillo et al., 2010). Furthermore, 498 

predicting the next six months encompasses the summer high-temperature season, when rising 499 

temperatures can result in the evaporation of certain springs. Evaporative losses curtail the 500 
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effective recharge of spring (Mustafa et al., 2015), consequently diminishing the accuracy of 501 

forecasting future spring discharge. 502 

 503 

 Figure 11. NSE performance for different forecast horizons in multi-step prediction of spring 504 

discharge for the three periods. 505 

In contrast to single-step prediction, multi-step prediction provides longer-term 506 

projections, aiding in exploring the evolving patterns of karst spring discharge. However, 507 

considering long-term climate trends and seasonal variations at Niangziguan Spring, expanding 508 

the prediction horizon may include a greater range of seasons and climate variations. Different 509 

seasons may exhibit significant differences in precipitation patterns, increasing the complexity of 510 

predictions. Hence, choosing an excessively long prediction horizon may result in less accurate 511 

long-term LSTM predictions than shorter ones. Opting for smaller prediction horizons, such as 512 

two and three months, yields better predictive accuracy (Table 4). Smaller prediction timeframes 513 

encompass similar seasons and climatic conditions, aiding in capturing the trends in spring 514 

discharge more effectively. The previous cross-covariance analysis (Figure 7) should also 515 

explain these results. 516 

517 
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Table 4. Performance of VAE/LSTM for 2 months and 3 months spring discharge predictions on 518 

the test data set for the three periods using the optimal parameters 519 

Period Prediction Steps NSE RMSE MAE MAPE(%) 

Natural 

1967.1-1970.12 

2 Months 0.82 0.53 0.43 3.14 

3 Months 0.69 0.64 0.53 3.92 

Overexploitation 

1995.1-2006.12 

2 Months 0.87 0.36 0.28 4.01 

3 Months 0.81 0.44 0.34 5.30 

Recovery 

2015.1-2019.12 

2 Months 0.65 0.26 0.18 2.46 

3 Months 0.52 0.32 0.21 2.88 

5 Discussions 520 

5.1 Comparing VAE-Augmented Deep Learning Models in Spring Discharge Prediction 521 

This study also evaluates various deep learning models (RNN, ANN, GCN, and 522 

Transformer) to validate the universality of the data augmentation method proposed and its 523 

potential value in other hydrological applications. The introduction of these approaches are 524 

available in supporting information S3 and Figure S3. The experimental results in Table 5 525 

demonstrate that various deep learning models, following precipitation enhancement, achieve 526 

favorable single-step predictive outcomes. It is crucial to emphasize that the LSTM model yields 527 

the best predictive results (Table 3). This is attributed to its outstanding capability for time series 528 

modeling, its internal state to retain past information, and its proficiency in extracting temporal 529 

features. Therefore, it remains the preferred model for handling hydrological data, especially in 530 

karst terrains. 531 

532 



manuscript submitted to replace this text with name of AGU journal 

 

Table 5. Performance comparison of various models with VAE based data augmentation 533 

Models                                Periods NSE RMSE MAE MAPE(%) 

RNN 

Original(No Periods) 0.33 0.54 0.38 5.74 

Augmented(natural) 0.92 0.33 0.18 1.34 

Augmented(Overexploitation) 0.95 0.23 0.14 2.06 

Augmented(Recovery) 0.82 0.21 0.11 1.56 

Augmented(Mean) 0.89 0.26 0.14 1.65 

ANN 

Original(No Periods) -0.42 0.79 0.64 9.84 

Augmented(natural) 0.77 0.55 0.41 3.02 

Augmented(Overexploitation) 0.81 0.44 0.32 4.90 

Augmented(Recovery) 0.77 0.23 0.13 1.83 

Augmented(Mean) 0.78 0.41 0.29 3.25 

GCN 

Original(No Periods) 0.05 0.64 0.43 6.41 

Augmented(natural) 0.73 0.59 0.44 3.13 

Augmented(Overexploitation) 0.82 0.43 0.31 4.82 

Augmented(Recovery) 0.60 0.31 0.15 2.11 

Augmented(Mean) 0.71 0.44 0.30 3.35 

Transformer 

Original(No Periods) -0.15 0.71 0.57 8.23 

Augmented(natural) 0.90 0.36 0.25 1.89 

Augmented(Overexploitation) 0.87 0.36 0.26 3.97 

Augmented(Recovery) 0.78 0.23 0.15 2.14 

Augmented(Mean) 0.85 0.32 0.22 2.67 
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Specifically, RNN and LSTM excel in handling time series data because they can capture 534 

temporal dependencies within hydrological data through internal states. Conversely, ANN is 535 

typically designed as a feedforward neural network and lacks internal states for handling 536 

temporal dependencies, potentially resulting in inferior performance when dealing with time 537 

series data. 538 

Furthermore, GCN can be employed in hydrological prediction for spatiotemporal graph 539 

data, where nodes represent distinct geographical locations, and edges represent connections 540 

between these locations. GCN's strength lies in its capacity to consider the relationships between 541 

geographical locations (Gai et al., 2023). However, in this study, the data primarily focuses on 542 

time series information, leading to slightly lower predictive performance for GCN than LSTM. 543 

Simultaneously, the predictive performance of the Transformer model is not as 544 

satisfactory as that of LSTM. This discrepancy may arise because Transformers tend to perform 545 

better under conditions of large-scale datasets (Vaswani et al., 2017), whereas the dataset in this 546 

research comprises only thousands of records even after augmentation. Therefore, Transformer 547 

models may struggle to leverage their advantages when dealing with smaller datasets. In 548 

summary, in the context of sparse and uncertain hydrological data, the approach presented in this 549 

study significantly improves the performance of various deep-learning models in hydrological 550 

prediction. 551 

5.2 Performance Comparison of Various Data Augmentation Approaches 552 

This study compares the performance of the LSTM model using various data 553 

augmentation approaches. The results of performance metrics are shown in Table 6. We initiated 554 

experiments for spring discharge prediction using linear regression and ARIMA (AutoRegressive 555 
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Integrated Moving Average) models. These traditional prediction models yielded unsatisfactory 556 

results (as indicated in the first two rows of the table). This outcome is attributed to the fact that, 557 

in hydrological forecasting, the relationship between spring discharge and various factors, 558 

including meteorological and hydrological variables, is often nonlinear and nonstationary. 559 

Furthermore, this involves statistical methods, like augmenting precipitation data to 560 

conform to a uniform distribution of its extremes (Fourth row of Table 6). It also includes 561 

precipitation augmentation using the tophat kernel function and density estimation (fifth row of 562 

Table 6). Linear interpolation is applied by estimating values between known precipitation data 563 

points, resulting in new augmented values (sixth and seventh row of Table 6). The methods for 564 

data augmentation using deep learning include the LSTM model with direct data augmentation 565 

without period division (eighth row of the Table 6) and the LSTM model with a two-period 566 

division before and after human activities in 1971 for data augmentation (ninth row of the Table 567 

6). The experimental results highlight that the LSTM model enhanced by VAE exhibits lower 568 

errors in spring discharge prediction than the baseline LSTM model. Moreover, it demonstrates 569 

superior predictive performance compared to traditional data augmentation methods. 570 

Traditional statistical methods often rely on a single distribution estimate, which proves 571 

challenging for capturing the intricate spatiotemporal characteristics of precipitation due to its 572 

inherent complexity and uncertainty. In contrast, the VAE can derive joint latent distributions to 573 

learn the nuanced representation of data by the encoding-decoding process, resulting in improved 574 

preservation of temporal and spatial correlations in precipitation. Unlike precipitation 575 

interpolation methods, which are limited by local information and may lead to information loss 576 

in global spatiotemporal correlations, VAE excels at comprehensively preserving the multimodal 577 

nature and global correlations of precipitation data, thereby providing enhanced information for 578 
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the LSTM. In augmenting precipitation with VAE across various periods, the enhanced model 579 

improves the NSE to 0.55 (NSE=0.38 vs. NSE=0.93) and MAE by 0.25 (MAE=0.40 vs. 580 

MAE=0.15). Moreover, the decrease in RMSE (RMSE=0.54 vs. RMSE=0.15) further 581 

substantiates the superior fit between the enhanced model and actual observations. Consequently, 582 

the three-period LSTM model with data augmentation yields enhanced performance in spring 583 

discharge prediction. Additionally, period-wise predictions based on regression analysis 584 

significantly augment the overall predictive capabilities of the model. 585 

Table 6. LSTM model validation with different data augmentation strategies on validation set. 586 

Data Augmentation Approach NSE RMSE MAE MAPE(%) 

LinearRegression 0.04 1.53 1.26 9.04 

ARIMA -2.84 1.15 1.01 13.93 

Only LSTM (Baseline) 0.38 0.54 0.40 6.03 

LSTM with precipitation 

Uniform Distribution 
-0.51 4.13 3.36 32.42 

LSTM with Kernel Density 

Estimation (tophat) 
0.67 0.65 0.49 3.63 

LSTM with Linear 

Interpolation (No Periods) 
0.49 0.87 0.69 5.04 

LSTM with Linear 

Interpolation (Three-Period) 
0.80 0.50 0.41 3.02 

LSTM with VAE Data 

Augmentation (No Periods) 
0.57 0.39 0.22 3.10 

LSTM with VAE Two-Period 

Data Augmentation 
0.72 0.31 0.15 2.11 

LSTM with VAE Three-

Period Data Augmentation 
0.93 0.26 0.15 1.80 
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5.3 Visualization and Quantitative Results of the VAE 587 

Next, we demonstrate that the VAE encoder captures the posterior probability 588 

distribution, mean, and autocovariance functions of observed precipitation data, and then the 589 

decoder generates the synthetic data with the same distribution, mean, and autocovariance 590 

functions. Figure 12a is the scatter plots showing that the synthetic series are unbiased compared 591 

with the observed data for the seven stations from 1959-2019. Figure 12b demonstrates that the 592 

probability distribution of the synthetic time series is consistent with that of the observed.  593 

 594 

Figure 12. The observed and synthetic precipitation distribution for the seven stations from 595 

1959-2019. 596 

 597 

Figure 13 displays the correlations between the augmentation data at seven precipitation 598 

observation stations. Compared with Figure 5, the synthetic data reduce the gap of spatial 599 

precipitation and thus enhance the correlation between the precipitation observation points. 600 

Notice that intuitively, hourly or daily precipitations may vary throughout the region. The 601 

cumulative precipitations over a month likely filter out the spatial variability in precipitation. As 602 

such, the correlation between monthly precipitation data at different locations in the catchment is 603 

similar, indicating that the monthly precipitation spatial pattern over the entire catchment is 604 
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almost uniform (small spatial variability). This result may suggest that the temporal variability of 605 

precipitation may play a more critical role in predicting the spring discharge than its spatial 606 

variability. Figure 14 shows the temporal auto-correlation of the seven stations' observed and 607 

synthetic precipitation time series (from 1959 to 2019). They illustrate that the VAE also 608 

enhances the temporal correlation of the precipitation. 609 

 610 

Figure 13. The correlations between the augmentation data at 7 precipitation observation 611 

stations 612 

   613 

Figure 14. The temporal auto-correlation of the observed and synthetic precipitation (from 1959 614 

to 2019). (a) is for the observed precipitation. (b) is for the synthetic precipitation. 615 
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6 Conclusions 616 

This study utilized a VAE model to generate synthetic precipitation data and applied it to 617 

the simulation of spring discharge in data-sparse karst regions. Augmenting the precipitation data 618 

improved the learning capabilities and predictive performance of various deep learning models 619 

(e.g., LSTM, RNN, ANN, GCN, Transformer, see supplementary section) for spring discharge 620 

prediction. 621 

We applied the VAE-augmented precipitation to the LSTM model for three periods of 622 

Niangziguan Spring in China: a natural period, a subsequent overexploitation period, and finally, 623 

a recovery period. The results of the augmented model demonstrated a significant advantage in 624 

single-step spring discharge prediction. When validated against actual observations, the 625 

augmented model exhibited notably higher predictive accuracy than the baseline LSTM model. 626 

In the multi-step prediction of LSTM after data augmentation, which considered spring 627 

discharge across three distinct periods, this study had revealed that opting for smaller prediction 628 

horizons (e.g., two and three months) leaded to enhanced predictive accuracy. We concluded that 629 

these narrower prediction timeframes encompassed more closely aligned seasons and climatic 630 

conditions, thus facilitating the model in capturing the patterns in spring discharge more 631 

effectively. 632 

Our precipitation data augmentation strategy was further validated through multi-model 633 

generalization experiments, demonstrating the versatility and effectiveness of this approach in 634 

addressing challenges related to data scarcity in hydrology, particularly in regions with limited 635 

data availability. This strategy is not restricted to specific LSTM models but can be extended to a 636 

broader range of models depending on various hydrological contexts and research questions. 637 
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While we applied this strategy to a karst spring, its generality allows it to meet the 638 

demands of diverse research inquiries across different domains. It offers researchers a novel 639 

solution to address issues related to data scarcity and sampling difficulties, enabling them to 640 

select appropriate models for prediction and analysis tailored to their specific requirements. We 641 

present a fresh perspective on handling the challenges of data scarcity and uncertainty in 642 

hydrological data. 643 

Acknowledgments 644 

 The work of Yonghong Hao is partially supported by the National Natural Science 645 

Foundation of China 42072277, 41272245, 40972165, 42307088 and 40572150. Chunmei Ma is 646 

partially supported by the Scientific Research Project of Tianjin Education Commission under 647 

Grant (No.2021KJ186). Yeh is partially supported by US NSF grant 000316729.  648 

 649 

Open research 650 

Data Availability Statement 651 

The test data and test codes of our hybrid model are available at: 652 

https://github.com/csmcm/spring-discharge-prediction. 653 

654 

https://github.com/csmcm/spring-discharge-prediction.


manuscript submitted to replace this text with name of AGU journal 

 

References 655 

Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., & Mendoza, P. A. 656 

(2020). Large-sample hydrology: recent progress, guidelines for new datasets and grand 657 

challenges. Hydrological Sciences Journal, 65(5), 712-725. 658 

An, L., et al. 2020. Simulation of karst spring discharge using a combination of time–659 

frequency analysis methods and long short-term memory neural networks. Journal of hydrology, 660 

589, 125320. 661 

Bruckmann, J., & Clauser, C. (2020). Ensemble-based stochastic permeability and flow 662 

simulation of a sparsely sampled hard-rock aquifer supported by high performance computing. 663 

Hydrogeology Journal, 28(5), 1853-1869. 664 

Çallı, S. S., Çallı, K. Ö., Yılmaz, M. T., & Çelik, M. (2022). Contribution of the satellite-665 

data driven snow routine to a karst hydrological model. Journal of Hydrology, 607, 127511. 666 

Chen, Q., Cui, Z., Liu, G., Yang, Z., & Ma, X. (2022). Deep convolutional generative 667 

adversarial networks for modeling complex hydrological structures in Monte-Carlo simulation. 668 

Journal of Hydrology, 610, 127970. 669 

Cheng, S., Qiao, X., Shi, Y., & Wang, D. (2021). Machine learning for predicting discharge 670 

fluctuation of a karst spring in North China. Acta Geophysica, 69, 257-270. 671 

Dugdale, S. J., Klaus, J., & Hannah, D. M. (2022). Looking to the skies: realising the 672 

combined potential of drones and thermal infrared imagery to advance hydrological process 673 

understanding in headwaters. Water Resources Research, 58(2), e2021WR031168. 674 

Fiorillo, F., & Guadagno, F. M. (2010). Karst spring discharges analysis in relation to 675 

drought periods, using the SPI. Water resources management, 24, 1867-1884. 676 

Gai, Y., Wang, M., Wu, Y., Wang, E., Deng, X., Liu, Y.,Tian-Chyi Jim Yeh, & Hao, Y. 677 

(2023). Simulation of spring discharge using graph neural networks at Niangziguan Springs, 678 

China. Journal of Hydrology, 130079. 679 

Ghorbanidehno, H., Kokkinaki, A., Lee, J., & Darve, E. (2020). Recent developments in 680 

fast and scalable inverse modeling and data assimilation methods in hydrology. Journal of 681 

Hydrology, 591, 125266. 682 



manuscript submitted to replace this text with name of AGU journal 

 

Goldscheider, N., Chen, Z., Auler, A. S., Bakalowicz, M., Broda, S., Drew, D., & Veni, G. 683 

(2020). Global distribution of carbonate rocks and karst water resources. Hydrogeology Journal, 684 

28, 1661-1677. 685 

Grundmann, J., Hörning, S., & Bárdossy, A. (2019). Stochastic reconstruction of spatio-686 

temporal rainfall patterns by inverse hydrologic modelling. Hydrology and Earth System 687 

Sciences, 23(1), 225-237. 688 

Han D, Xu H, Liang X. 2006. GIS-based Regionalization of a karst water system in Xishan 689 

Mountain area of Taiyuan Basin, North China. Journal of Hydrology, 331(3–4): 459–470. 690 

Hao, H., Hao, Y., Liu, Y., Yeh, T. C. J., Zhang, M., Wang, Q., & Fan, Y. (2023). Anomaly 691 

of glacier mass balance in different vertical zones and responses to climate modes: Urumqi 692 

Glacier No. 1, China. Climate Dynamics, 60(1-2), 493-509. 693 

Hao, Y., Huo, X., Duan, Q., Liu, Y., Fan, Y., Liu, Y., & Yeh, T. C. J. (2015). A Bayesian 694 

analysis of nonstationary generalized extreme value distribution of annual spring discharge 695 

minima. Environmental Earth Sciences, 73, 2031-2045. 696 

Hao, Y., Zhang, J., Wang J., Li, R., Hao, P., & Zhan, H. (2016). How does the 697 

anthropogenic activity affect the spring discharge? Journal of hydrology, 540, 1053-1065. 698 

Hao Y, Zhu Y, Zhao Y, Wang W, Du X, Yeh TJ. 2009. The role of climate and human 699 

influences in the dry-up of the Jinci Springs, China. Journal of the American Water Resources 700 

Association, 45(5): 1228–1237. 701 

Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., & Weiler, M. (2014). Karst water 702 

resources in a changing world: Review of hydrological modeling approaches. Reviews of 703 

Geophysics, 52(3), 218-242. 704 

He, X., Wu, J., & Guo, W. (2019). Karst spring protection for the sustainable and healthy 705 

living: the examples of Niangziguan spring and Shuishentang spring in Shanxi, China. Exposure 706 

Health, 11, 153-165. 707 

Juki, D. , & Deni-Juki, V. (2009). Groundwater balance estimation in karst by using a 708 

conceptual rainfall-runoff model. Journal of Hydrology, 373(3-4), 302-315. 709 

Labat, D., Ababou, R., Mangin, A., 2000. Rainfall-runoff relations for karstic springs. Part I: 710 

convolution and spectral analyses. Journal of Hydrology, 238, 123–148. 711 



manuscript submitted to replace this text with name of AGU journal 

 

Lin, M., Teng, S., Chen, G., & Bassir, D. (2023). Transfer Learning with Attributes for 712 

Improving the Landslide Spatial Prediction Performance in Sample-Scarce Area Based on 713 

Variational Autoencoder Generative Adversarial Network. Land, 12(3), 525. 714 

Liu, B., et al. 2020. Measurement of sustainable transformation capability of resource-based 715 

cities based on fuzzy membership function: A case study of Shanxi Province, China. Resources 716 

Policy, 68, 101739. 717 

Mengistu, A. G., Woldesenbet, T. A., & Dile, Y. T. (2022). Evaluation of observed and 718 

satellite-based climate products for hydrological simulation in data-scarce Baro-Akob River 719 

Basin, Ethiopia. Ecohydrology & Hydrobiology, 22(2), 234-245. 720 

Mustafa, O., Merkel, B., & Weise, S. M. (2015). Assessment of hydrogeochemistry and 721 

environmental isotopes in karst springs of Makook Anticline, Kurdistan Region, Iraq. Hydrology, 722 

2(2), 48-68. 723 

Shorten, C., Khoshgoftaar, T. M., & Furht, B. (2021). Text data augmentation for deep 724 

learning. Journal of big Data, 8, 1-34. 725 

Smith, R., & Li, J. (2021). Modeling elastic and inelastic pumping-induced deformation 726 

with incomplete water level records in Parowan Valley, Utah. Journal of Hydrology, 601, 727 

126654. 728 

Song, X., Hao, H., Liu, W., Wang, Q., An, L., Yeh, T. C. J., & Hao, Y. (2022). Spatial-729 

temporal behavior of precipitation driven karst spring discharge in a mountain terrain. Journal of 730 

Hydrology, 612, 128116. 731 

Stevanović, Z. (2019). Karst waters in potable water supply: a global scale overview. 732 

Environmental Earth Sciences, 78(23), 662. 733 

Sun, H., & Su, F. (2020). Precipitation correction and reconstruction for streamflow 734 

simulation based on 262 rain gauges in the upper Brahmaputra of southern Tibetan Plateau. 735 

Journal of Hydrology, 590, 125484. 736 

Tang, T., Jiao, D., Chen, T., & Gui, G. (2022). Medium-and long-term precipitation 737 

forecasting method based on data augmentation and machine learning algorithms. IEEE Journal 738 

of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 1000-1011. 739 



manuscript submitted to replace this text with name of AGU journal 

 

Varouchakis, Ε. A., & Hristopulos, D. T. (2013). Comparison of stochastic and 740 

deterministic methods for mapping groundwater level spatial variability in sparsely monitored 741 

basins. Environmental Monitoring&Assessment 185: 1-9. 742 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & 743 

Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing 744 

systems, 30. 745 

Wunsch, A., Liesch, T., Cinkus, G., Ravbar, N., Chen, Z., Mazzilli, N., & Goldscheider, N. 746 

(2022). Karst spring discharge modeling based on deep learning using spatially distributed input 747 

data. Hydrology and Earth System Sciences, 26(9), 2405-2430. 748 

Yaseen, Z. M. , El-Shafie, A. , Jaafar, O. , Afan, H. A. , & Sayl, K. N. . (2015). Artificial 749 

intelligence based models for stream-flow forecasting: 2000-2015. Journal of Hydrology, 530, 750 

829-844. 751 

Yin, H., Wang, F., Zhang, X., Zhang, Y., Chen, J., Xia, R., & Jin, J. (2022). Rainfall-runoff 752 

modeling using long short-term memory based step-sequence framework. Journal of Hydrology, 753 

610, 127901. 754 

Zhou, R., & Zhang, Y. (2022). On the role of the architecture for spring discharge 755 

prediction with deep learning approaches. Hydrological Processes, 36(10), e14737. 756 

Zhu, J., & Yeh, T. C. J. (2005). Characterization of aquifer heterogeneity using transient 757 

hydraulic tomography. Water Resources Research, 41(7): W07028. 758 


