References
Agisoft PhotoScan Professional, Version 1.2.4 (Software). (2016*). Retrieved from http://www.agisoft.com/downloads/installer/
AMAP. (2017). Snow, Water, Ice and Permafrost in the Arctic (SWIPA).Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. xiv + 269 pp
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., … & Allard, M. (2019). Permafrost is warming at a global scale. Nature communications10 (1), 264. https://doi.org/10.1038/s41467-018-08240-4
Burn, C. R., & Kokelj, S. V. (2009). The Environment and Permafrost of the Mackenzie Delta Area. Permafrost and Periglacial Processes ,12 (January), 53–68. https://doi.org/10.1002/ppp
Campbell, S., Affleck, R. T., & Sinclair, S. (2018). Ground-penetrating radar studies of permafrost, periglacial, and near-surface geology at McMurdo Station, Antarctica. Cold Regions Science and Technology148 , 38-49.
Carrivick, J. L., Smith, M. W., & Quincey, D. J. (2016). Structure from Motion in the Geosciences . John Wiley & Sons.
CloudCompare v2.7.0 (2020). [GPL software]. Retrieved from http://www.cloudcompare.org/
Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., … & Shongwe, M. (2013). Long-term climate change: projections, commitments and irreversibility. In Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change  (pp. 1029-1136). Cambridge University Press.
Comiso, J.C., 2006. Arctic warming signals from satellite observations. Weather61 (3), pp.70-76. https://doi.org/10.1256/wea.222.05
Couture, N. J., & Pollard, W. H. (2017). A Model for Quantifying Ground‐Ice Volume, Yukon Coast, Western Arctic Canada. Permafrost and Periglacial Processes, 28(3), 534-542. https://doi.org/10.1002/ppp.1952
Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H., & Fritz, M. (2018). Coastal erosion of permafrost soils along the Yukon Coastal Plain and fluxes of organic carbon to the Canadian Beaufort Sea. Journal of Geophysical Research: Biogeosciences, 123, 406– 422. https://doi.org/10.1002/2017JG004166
Cultrera, M., Antonelli, R., Teza, G., & Castellaro, S. (2012). A new hydrostratigraphic model of Venice area (Italy). Environmental earth sciences66 (4), 1021-1030. https://doi.org/10.1007/s12665-011-1307-2
Cunliffe, A. M., Tanski, G., Radosavljevic, B., Palmer, W. F., Sachs, T., Lantuit, H., … & Myers-Smith, I. H. (2019). Rapid retreat of permafrost coastline observed with aerial drone photogrammetry. The Cryosphere13 (5), 1513-1528. https://doi.org/10.5194/tc-13-1513-2019
Fritz, M., Vonk, J.E. and Lantuit, H., 2017. Collapsing Arctic coastlines. Nature Climate Change7 (1), pp.6-7. https://doi.org/10.1038/nclimate3188
Günther, F., Overduin, P. P., Sandakov, A. V., Grosse, G., & Grigoriev, M. N. (2013). Short-and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences10 , 4297-4318. https://doi.org/10.5194/bg-10-4297-2013
Günther, F., Overduin, P. P., Yakshina, I. A., Opel, T., Baranskaya, A. V., & Grigoriev, M. N. (2015). Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. The Cryosphere9 (1), 151-178. https://doi.org/10.5194/tc-9-151-2015
Heginbottom, J. A. (1984). Continued headwall retreat of a retrogressive thaw flow slide, eastern Melville Island, Northwest Territories. Geological Survey of Canada, Current Research part B, Paper , 363-365. https://doi.org/10.4095/119594
James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface117 (F3). https://doi.org/10.1029/2011JF002289
Johannessen, O. M., Kuzmina, S. I., Bobylev, L. P., & Miles, M. W. (2016). Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation. Tellus A: Dynamic Meteorology and Oceanography68 (1), 28234. https://doi.org/10.3402/tellusa.v68.28234
Jones, B. M., Farquharson, L. M., Baughman, C. A., Buzard, R. M., Arp, C. D., Grosse, G., … & Kasper, J. L. (2018). A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic. Environmental Research Letters13 (11), 115001. https://doi.org/10.1088/1748-9326/aae471
Jones, M. K. W., Pollard, W. H., & Jones, B. M. (2019). Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors. Environmental Research Letters, 14(5), 055006. https://doi.org/10.1088/1748-9326/ab12fd
Kokelj, S. V., Tunnicliffe, J., Lacelle, D., Lantz, T. C., Chin, K. S., & Fraser, R. (2015). Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Global and Planetary Change129 , 56-68. https://doi.org/10.1016/j.gloplacha.2015.02.008
Lakeman, T. R., & England, J. H. (2012). Paleoglaciological insights from the age and morphology of the Jesse moraine belt, western Canadian Arctic. Quaternary Science Reviews, 47,82–100. https://doi.org/10.1016/j.quascirev.2012.04.018
Lantuit, H., Pollard, W. H., Couture, N., Fritz, M., Schirrmeister, L., Meyer, H., & Hubberten, H. W. (2012). Modern and late Holocene retrogressive thaw slump activity on the Yukon coastal plain and Herschel Island, Yukon Territory, Canada. Permafrost and Periglacial Processes23 (1), 39-51. https://doi.org/10.1002/ppp.1731
Letterly, A. (2018, December 20). The Recent State of Permafrost, 2017-2018. Global Cryosphere Watch . (Accessed 2019, December 1). Retrieved from: https://globalcryospherewatch.org/assessments/permafrost/
Lewkowicz, A. G. (1987a). Headwall retreat of ground-ice slumps, Banks Island, Northwest Territories. Canadian Journal of Earth Sciences24 (6), 1077-1085. https://doi.org/10.1139/e87-105
Lewkowicz, A. G., & Way, R. G. (2019). Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nature communications10 (1), 1329. https://doi.org/10.1038/s41467-019-09314-7
Lim, M., D. Whalen, J. Martin, P. J. Mann, S. Hayes, P. Fraser, H. B. Berry, and D. Ouellette (2020). Massive Ice Control on Permafrost Coast Erosion and Sensitivity. Geophysical Research Letters:https://doi.org/10.1029/2020GL087917
Mackay, J. R. (1963). The Mackenzie Delta Area, N.W.T. Queen’s printer. Retrieved from https://books.google.co.uk/books?id=MWfIMgAACAAJ
Mackay, J. R. (1971). Canadian Journal of Earth Sciences8 (4), 397-422. The origin of massive icy beds in permafrost, western Arctic coast, Canada. https://doi.org/10.1139/e71-043
Mackay, J. R. (1986). Fifty years (1935-1985) of coastal retreat west of Tuktoyaktuk, District of Mackenzie. Geological Survey of Canada , 727-735. https://doi.org/10.4095/120445
Mackay, J. R., & Dallimore, S. R. (1992). Massive ice of the Tuktoyaktuk area, western Arctic coast, Canada. Canadian Journal of Earth Sciences , 29 (6), 1235–1249. https://doi.org/10.1139/e92-099
Markus, T., Stroeve, J.C. and Miller, J. (2009). Recent changes in Arctic sea ice melt onset, freeze up, and melt season length. Journal of Geophysical Research: Oceans114 (C12). https://doi.org/10.1029/2009JC005436
Mars, J. C., & Houseknecht, D. W. (2007). Quantitative remote sensing study indicates doubling of coastal erosion rate in past 50 yr along a segment of the Arctic coast of Alaska. Geology35 (7), 583-586. https://doi.org/10.1130/G23672A.1
Moorman, B. J., Michel, F. A., & Wilson, A. T. (1998, June). The development of tabular massive ground ice at Peninsula Point, NWT, Canada. In Proceedings of the Seventh International Conference on Permafrost, Lewkowicz AG, Allard M (eds). Collection Nordicanada  (No. 57, pp. 757-762).
Murton, J. B., Whiteman, C. A., Waller, R. I., Pollard, W. H., Clark, I. D., & Dallimore, S. R. (2005). Basal ice facies and supraglacial melt-out till of the Laurentide Ice Sheet, Tuktoyaktuk Coastlands, western Arctic Canada. Quaternary Science Reviews ,24 (5–6), 681–708. https://doi.org/10.1016/j.quascirev.2004.06.008
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports30 (1). https://doi.org/10.1109/IGARSS.2015.7326874
Novikova, A., Belova, N., Baranskaya, A., Aleksyutina, D., Maslakov, A., Zelenin, E., … & Ogorodov, S. (2018). Dynamics of permafrost coasts of Baydaratskaya Bay (Kara Sea) based on multi-temporal remote sensing data. Remote Sensing10 (9), 1481. https://doi.org/10.3390/rs10091481
Obu, J., Lantuit, H., Fritz, M., Pollard, W. H., Sachs, T., & Günther, F. (2016). Relation between planimetric and volumetric measurements of permafrost coast erosion: a case study from Herschel Island, western Canadian Arctic. Polar Research35 (1), 30313. https://doi.org/10.3402/polar.v35.30313
Pizhankova, E. I. (2016). Modern climate change at high latitudes and its influence on the coastal dynamics of the Dmitriy Laptev Strait area. Earths Cryosphere20 (1), 46-59.
Pollard, W. H. (1990). The nature and origin of ground ice in the Herschel Island area, Yukon Territory. In Proceedings, Fifth Canadian Permafrost Conference, Québec (pp. 23-30)
Ramage, J. L., Irrgang, A. M., Herzschuh, U., Morgenstern, A., Couture, N., & Lantuit, H. (2017). Terrain controls on the occurrence of coastal retrogressive thaw slumps along the Yukon Coast, Canada. Journal of Geophysical Research: Earth Surface122 (9), 1619-1634. https://doi.org/10.1002/2017JF004231
Ramage, J. L., Irrgang, A. M., Morgenstern, A., & Lantuit, H. (2018). Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean. Biogeosciences15 (5), 1483-1495. https://doi.org/10.5194/bg-15-1483-2018
Robinson, S.D., 2000: Thaw-slump-derived thermokarst near Hot Weather Creek, Ellesmere Island, Nunavut; in Environmental Response to Climate Change in the Canadian High Arctic, (ed.) M. Garneau and B.T. Alt;Geological Survey of Canada, Bulletin 529, p. 335–345
Rudy, A. C. A., Lamoureux, S. F., Kokelj, S. V., Smith, I. R., & England, J. H. (2017). Accelerating Thermokarst Transforms Ice‐Cored Terrain Triggering a Downstream Cascade to the Ocean. Geophysical Research Letters, 44(21), 11-080. https://doi.org/10.1002/2017GL074912
Scheib, A. J. (2014). The application of passive seismic to estimate cover thickness in greenfields areas of western Australia—method, data interpretation and recommendations. Geological Survey of Western Australia, Record201 .
Segal, R. A., Lantz, T. C., & Kokelj, S. V. (2016). Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic. Environmental Research Letters11 (3), 034025. https://doi.org/10.1088/1748-9326/11/3/034025
Serreze, M. C., & Francis, J. A. (2006). The arctic amplification debate. Climatic Change , 76 (3-4), 241–264. https://doi.org/10.1007/s10584-005-9017-y
Steele, M., Ermold, W., & Zhang, J. (2008). Arctic Ocean surface warming trends over the past 100 years. Geophysical Research Letters , 35 (2), 1–6. https://doi.org/10.1029/2007GL031651
Stroeve, J.C., Markus, T., Boisvert, L., Miller, J. and Barrett, A. (2014). Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters41 (4), pp.1216-1225. https://doi.org/10.1002/2013GL058951
Tallett-Williams, S., Gosh, B., Wilkinson, S., Fenton, C., Burton, P., Whitworth, M., … & Novellis, V. (2016). Site amplification in the Kathmandu Valley during the 2015 M7. 6 Gorkha, Nepal earthquake. Bulletin of Earthquake Engineering, 14(12), 3301-3315. https://doi.org/10.1007/s10518-016-0003-8
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology179 , 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
Westoby, M. J., Lim, M., Hogg, M., Pound, M. J., Dunlop, L., & Woodward, J. (2018). Cost-effective erosion monitoring of coastal cliffs. Coastal Engineering138 , 152-164. https://doi.org/10.1016/j.coastaleng.2018.04.008
Zwieback, S., Kokelj, S. V., Günther, F., Boike, J., Grosse, G., & Hajnsek, I. (2018). Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale. The Cryosphere12 (2), 549-564. https://doi.org/10.3929/ethz-b-000244496