References
Agisoft PhotoScan Professional, Version 1.2.4 (Software). (2016*).
Retrieved from http://www.agisoft.com/downloads/installer/
AMAP. (2017). Snow, Water, Ice and Permafrost in the Arctic (SWIPA).Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.
xiv + 269 pp
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., … & Allard, M. (2019). Permafrost is warming at a
global scale. Nature communications , 10 (1), 264.
https://doi.org/10.1038/s41467-018-08240-4
Burn, C. R., & Kokelj, S. V. (2009). The Environment and Permafrost of
the Mackenzie Delta Area. Permafrost and Periglacial Processes ,12 (January), 53–68. https://doi.org/10.1002/ppp
Campbell, S., Affleck, R. T., & Sinclair, S. (2018). Ground-penetrating
radar studies of permafrost, periglacial, and near-surface geology at
McMurdo Station, Antarctica. Cold Regions Science and
Technology , 148 , 38-49.
Carrivick, J. L., Smith, M. W., & Quincey, D. J.
(2016). Structure from Motion in the Geosciences . John Wiley &
Sons.
CloudCompare v2.7.0 (2020). [GPL software]. Retrieved from
http://www.cloudcompare.org/
Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T.,
Friedlingstein, P., … & Shongwe, M. (2013). Long-term climate change:
projections, commitments and irreversibility. In Climate Change
2013-The Physical Science Basis: Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate
Change (pp. 1029-1136). Cambridge University Press.
Comiso, J.C., 2006. Arctic warming signals from satellite
observations. Weather , 61 (3), pp.70-76.
https://doi.org/10.1256/wea.222.05
Couture, N. J., & Pollard, W. H. (2017). A Model for Quantifying
Ground‐Ice Volume, Yukon Coast, Western Arctic Canada. Permafrost and
Periglacial Processes, 28(3), 534-542.
https://doi.org/10.1002/ppp.1952
Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H., & Fritz, M.
(2018). Coastal erosion of permafrost soils along the Yukon Coastal
Plain and fluxes of organic carbon to the Canadian Beaufort Sea. Journal
of Geophysical Research: Biogeosciences, 123, 406– 422.
https://doi.org/10.1002/2017JG004166
Cultrera, M., Antonelli, R., Teza, G., & Castellaro, S. (2012). A new
hydrostratigraphic model of Venice area (Italy). Environmental
earth sciences , 66 (4), 1021-1030.
https://doi.org/10.1007/s12665-011-1307-2
Cunliffe, A. M., Tanski, G., Radosavljevic, B., Palmer, W. F., Sachs,
T., Lantuit, H., … & Myers-Smith, I. H. (2019). Rapid retreat of
permafrost coastline observed with aerial drone
photogrammetry. The Cryosphere , 13 (5), 1513-1528.
https://doi.org/10.5194/tc-13-1513-2019
Fritz, M., Vonk, J.E. and Lantuit, H., 2017. Collapsing Arctic
coastlines. Nature Climate Change , 7 (1), pp.6-7.
https://doi.org/10.1038/nclimate3188
Günther, F., Overduin, P. P., Sandakov, A. V., Grosse, G., & Grigoriev,
M. N. (2013). Short-and long-term thermo-erosion of ice-rich permafrost
coasts in the Laptev Sea region. Biogeosciences , 10 ,
4297-4318. https://doi.org/10.5194/bg-10-4297-2013
Günther, F., Overduin, P. P., Yakshina, I. A., Opel, T., Baranskaya, A.
V., & Grigoriev, M. N. (2015). Observing Muostakh disappear: permafrost
thaw subsidence and erosion of a ground-ice-rich island in response to
arctic summer warming and sea ice reduction. The
Cryosphere , 9 (1), 151-178.
https://doi.org/10.5194/tc-9-151-2015
Heginbottom, J. A. (1984). Continued headwall retreat of a retrogressive
thaw flow slide, eastern Melville Island, Northwest
Territories. Geological Survey of Canada, Current Research part B,
Paper , 363-365. https://doi.org/10.4095/119594
James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D
surfaces and topography with a camera: Accuracy and geoscience
application. Journal of Geophysical Research: Earth
Surface , 117 (F3). https://doi.org/10.1029/2011JF002289
Johannessen, O. M., Kuzmina, S. I., Bobylev, L. P., & Miles, M. W.
(2016). Surface air temperature variability and trends in the Arctic:
new amplification assessment and regionalisation. Tellus A:
Dynamic Meteorology and Oceanography , 68 (1), 28234.
https://doi.org/10.3402/tellusa.v68.28234
Jones, B. M., Farquharson, L. M., Baughman, C. A., Buzard, R. M., Arp,
C. D., Grosse, G., … & Kasper, J. L. (2018). A decade of remotely
sensed observations highlight complex processes linked to coastal
permafrost bluff erosion in the Arctic. Environmental Research
Letters , 13 (11), 115001.
https://doi.org/10.1088/1748-9326/aae471
Jones, M. K. W., Pollard, W. H., & Jones, B. M. (2019). Rapid
initialization of retrogressive thaw slumps in the Canadian high Arctic
and their response to climate and terrain factors. Environmental
Research Letters, 14(5), 055006.
https://doi.org/10.1088/1748-9326/ab12fd
Kokelj, S. V., Tunnicliffe, J., Lacelle, D., Lantz, T. C., Chin, K. S.,
& Fraser, R. (2015). Increased precipitation drives mega slump
development and destabilization of ice-rich permafrost terrain,
northwestern Canada. Global and Planetary Change , 129 ,
56-68. https://doi.org/10.1016/j.gloplacha.2015.02.008
Lakeman, T. R., & England, J. H. (2012). Paleoglaciological insights
from the age and morphology of the Jesse moraine belt, western Canadian
Arctic. Quaternary Science Reviews, 47,82–100.
https://doi.org/10.1016/j.quascirev.2012.04.018
Lantuit, H., Pollard, W. H., Couture, N., Fritz, M., Schirrmeister, L.,
Meyer, H., & Hubberten, H. W. (2012). Modern and late Holocene
retrogressive thaw slump activity on the Yukon coastal plain and
Herschel Island, Yukon Territory, Canada. Permafrost and
Periglacial Processes , 23 (1), 39-51.
https://doi.org/10.1002/ppp.1731
Letterly, A. (2018, December 20). The Recent State of Permafrost,
2017-2018. Global Cryosphere Watch . (Accessed 2019, December 1).
Retrieved from:
https://globalcryospherewatch.org/assessments/permafrost/
Lewkowicz, A. G. (1987a). Headwall retreat of ground-ice slumps, Banks
Island, Northwest Territories. Canadian Journal of Earth
Sciences , 24 (6), 1077-1085.
https://doi.org/10.1139/e87-105
Lewkowicz, A. G., & Way, R. G. (2019). Extremes of summer climate
trigger thousands of thermokarst landslides in a High Arctic
environment. Nature communications , 10 (1), 1329.
https://doi.org/10.1038/s41467-019-09314-7
Lim, M., D. Whalen, J. Martin, P. J. Mann, S. Hayes, P. Fraser, H. B.
Berry, and D. Ouellette (2020). Massive Ice Control on Permafrost Coast
Erosion and Sensitivity. Geophysical Research Letters:https://doi.org/10.1029/2020GL087917
Mackay, J. R. (1963). The Mackenzie Delta Area, N.W.T. Queen’s
printer. Retrieved from
https://books.google.co.uk/books?id=MWfIMgAACAAJ
Mackay, J. R. (1971). Canadian Journal of Earth
Sciences , 8 (4), 397-422. The origin of massive icy beds in
permafrost, western Arctic coast, Canada.
https://doi.org/10.1139/e71-043
Mackay, J. R. (1986). Fifty years (1935-1985) of coastal retreat west of
Tuktoyaktuk, District of Mackenzie. Geological Survey of Canada ,
727-735. https://doi.org/10.4095/120445
Mackay, J. R., & Dallimore, S. R. (1992). Massive ice of the
Tuktoyaktuk area, western Arctic coast, Canada. Canadian Journal
of Earth Sciences , 29 (6), 1235–1249.
https://doi.org/10.1139/e92-099
Markus, T., Stroeve, J.C. and Miller, J. (2009). Recent changes in
Arctic sea ice melt onset, freeze up, and melt season
length. Journal of Geophysical Research: Oceans , 114 (C12).
https://doi.org/10.1029/2009JC005436
Mars, J. C., & Houseknecht, D. W. (2007). Quantitative remote sensing
study indicates doubling of coastal erosion rate in past 50 yr along a
segment of the Arctic coast of Alaska. Geology , 35 (7),
583-586. https://doi.org/10.1130/G23672A.1
Moorman, B. J., Michel, F. A., & Wilson, A. T. (1998, June). The
development of tabular massive ground ice at Peninsula Point, NWT,
Canada. In Proceedings of the Seventh International Conference on
Permafrost, Lewkowicz AG, Allard M (eds). Collection Nordicanada (No.
57, pp. 757-762).
Murton, J. B., Whiteman, C. A., Waller, R. I., Pollard, W. H., Clark, I.
D., & Dallimore, S. R. (2005). Basal ice facies and supraglacial
melt-out till of the Laurentide Ice Sheet, Tuktoyaktuk Coastlands,
western Arctic Canada. Quaternary Science Reviews ,24 (5–6), 681–708.
https://doi.org/10.1016/j.quascirev.2004.06.008
Nakamura, Y. (1989). A method for dynamic characteristics estimation of
subsurface using microtremor on the ground surface. Railway
Technical Research Institute, Quarterly Reports , 30 (1).
https://doi.org/10.1109/IGARSS.2015.7326874
Novikova, A., Belova, N., Baranskaya, A., Aleksyutina, D., Maslakov, A.,
Zelenin, E., … & Ogorodov, S. (2018). Dynamics of permafrost coasts
of Baydaratskaya Bay (Kara Sea) based on multi-temporal remote sensing
data. Remote Sensing , 10 (9), 1481.
https://doi.org/10.3390/rs10091481
Obu, J., Lantuit, H., Fritz, M., Pollard, W. H., Sachs, T., & Günther,
F. (2016). Relation between planimetric and volumetric measurements of
permafrost coast erosion: a case study from Herschel Island, western
Canadian Arctic. Polar Research , 35 (1), 30313.
https://doi.org/10.3402/polar.v35.30313
Pizhankova, E. I. (2016). Modern climate change at high latitudes and
its influence on the coastal dynamics of the Dmitriy Laptev Strait
area. Earths Cryosphere , 20 (1), 46-59.
Pollard, W. H. (1990). The nature and origin of ground ice in the
Herschel Island area, Yukon Territory. In Proceedings, Fifth Canadian
Permafrost Conference, Québec (pp. 23-30)
Ramage, J. L., Irrgang, A. M., Herzschuh, U., Morgenstern, A., Couture,
N., & Lantuit, H. (2017). Terrain controls on the occurrence of coastal
retrogressive thaw slumps along the Yukon Coast, Canada. Journal
of Geophysical Research: Earth Surface , 122 (9), 1619-1634.
https://doi.org/10.1002/2017JF004231
Ramage, J. L., Irrgang, A. M., Morgenstern, A., & Lantuit, H. (2018).
Increasing coastal slump activity impacts the release of sediment and
organic carbon into the Arctic
Ocean. Biogeosciences , 15 (5), 1483-1495.
https://doi.org/10.5194/bg-15-1483-2018
Robinson, S.D., 2000: Thaw-slump-derived thermokarst near Hot Weather
Creek, Ellesmere Island, Nunavut; in Environmental Response to Climate
Change in the Canadian High Arctic, (ed.) M. Garneau and B.T. Alt;Geological Survey of Canada, Bulletin 529, p. 335–345
Rudy, A. C. A., Lamoureux, S. F., Kokelj, S. V., Smith, I. R., &
England, J. H. (2017). Accelerating Thermokarst Transforms Ice‐Cored
Terrain Triggering a Downstream Cascade to the Ocean. Geophysical
Research Letters, 44(21), 11-080.
https://doi.org/10.1002/2017GL074912
Scheib, A. J. (2014). The application of passive seismic to estimate
cover thickness in greenfields areas of western Australia—method, data
interpretation and recommendations. Geological Survey of Western
Australia, Record , 201 .
Segal, R. A., Lantz, T. C., & Kokelj, S. V. (2016). Acceleration of
thaw slump activity in glaciated landscapes of the Western Canadian
Arctic. Environmental Research Letters , 11 (3), 034025.
https://doi.org/10.1088/1748-9326/11/3/034025
Serreze, M. C., & Francis, J. A. (2006). The arctic amplification
debate. Climatic Change , 76 (3-4), 241–264.
https://doi.org/10.1007/s10584-005-9017-y
Steele, M., Ermold, W., & Zhang, J. (2008). Arctic Ocean surface
warming trends over the past 100 years. Geophysical Research
Letters , 35 (2), 1–6. https://doi.org/10.1029/2007GL031651
Stroeve, J.C., Markus, T., Boisvert, L., Miller, J. and Barrett, A.
(2014). Changes in Arctic melt season and implications for sea ice
loss. Geophysical Research Letters , 41 (4), pp.1216-1225.
https://doi.org/10.1002/2013GL058951
Tallett-Williams, S., Gosh, B., Wilkinson, S., Fenton, C., Burton, P.,
Whitworth, M., … & Novellis, V. (2016). Site amplification in the
Kathmandu Valley during the 2015 M7. 6 Gorkha, Nepal earthquake.
Bulletin of Earthquake Engineering, 14(12), 3301-3315.
https://doi.org/10.1007/s10518-016-0003-8
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., &
Reynolds, J. M. (2012). ‘Structure-from-Motion’photogrammetry: A
low-cost, effective tool for geoscience
applications. Geomorphology , 179 , 300-314.
https://doi.org/10.1016/j.geomorph.2012.08.021
Westoby, M. J., Lim, M., Hogg, M., Pound, M. J., Dunlop, L., &
Woodward, J. (2018). Cost-effective erosion monitoring of coastal
cliffs. Coastal Engineering , 138 , 152-164.
https://doi.org/10.1016/j.coastaleng.2018.04.008
Zwieback, S., Kokelj, S. V., Günther, F., Boike, J., Grosse, G., &
Hajnsek, I. (2018). Sub-seasonal thaw slump mass wasting is not
consistently energy limited at the landscape scale. The
Cryosphere , 12 (2), 549-564.
https://doi.org/10.3929/ethz-b-000244496