loading page

Spatial extent of concurrent extremes over India and its teleconnection to climate indices
  • Ravi kumar Guntu,
  • ANKIT AGARWAL
Ravi kumar Guntu
Indian Institute of Technology Roorkee, Indian Institute of Technology Roorkee

Corresponding Author:[email protected]

Author Profile
ANKIT AGARWAL
Indian Institute of Technology Roorkee, Indian Institute of Technology Roorkee
Author Profile

Abstract

Concurrent temperature and precipitation extremes during Indian summer monsoon generally have signicant effects on agriculture, society and ecosystems. Due to climate change, frequency and spatial extent of concurrent extremes have changed, and there is a need to advance our understanding in this domain. Quantication of individual extremes (temperature and precipitation) during the summer monsoon season and its teleconnections to climate indices have been studied comprehensively. But, less attention is devoted to the quantication of concurrent extremes and its teleconnections to climate indices. In this study, concurrent extremes (dry/hot and wet/cold) based on mean monthly temperature and total monthly precipitation during the Indian summer season from 1951 to 2019 over the Indian mainland are investigated. Next, the study uses wavelet coherence analysis to unravel the teleconnections of the spatial extent of concurrent extremes to climate indices (Nino 3.4, WEIO SST and SEEIO SST). Results show that the frequency of wet/hot concurrent extremes has increased signicantly, while the frequency of wet/cold concurrent has decreased for the time window 1985 to 2019 relative to 1951-1984. Also, a statistically signicant increase (decrease) in the spatial extent exists in concurrent dry/hot (wet/cold) extremes during the July, August and September months. The ndings of this study could advance our understanding of changes in concurrent extremes during the Indian summer monsoon due to climate change.