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Abstract  34 
The Joint Effort for Data assimilation Integration (JEDI) is an international 35 

collaboration aimed at developing an open software ecosystem for model agnostic data 36 

assimilation. This paper considers implementation of the model-agnostic family of the 37 

local volume solvers in the JEDI framework. The implemented solvers include the Local 38 

Ensemble Transform Kalman Filter (LETKF), the Gain form Ensemble Transform 39 

Kalman Filter (GETKF), and the optimal interpolation variant of the LETKF filter 40 

(LETKF-OI). This paper documents the implementation choices and strategies that allow 41 

model agnostic implementation. We also document an expansive set of localization 42 

approaches that includes generic distance-based localization, localization based on 43 

modulated ensemble products, but also localizations specific to ocean (based on the 44 

Rossby radius of deformation), and land (based on the terrain difference between 45 

observation and model grid point). Finally, we apply the developed solvers in a limited 46 

set of experiments, including single-observation experiments in atmosphere and ocean, 47 

and cycling experiments for the ocean, land, and aerosol assimilation. We also provide a 48 

proof of concept that illustrates how JEDI Ensemble Kalman Filter solvers can be used in 49 

a strongly coupled framework providing increments to the ocean based on the combined 50 

observations from the ocean and the atmosphere.  51 

Plain Language Summary 52 
The Joint Effort for Data assimilation Integration (JEDI) is an international 53 

collaboration aimed at reducing time it takes to transition research on initialization of the 54 

Earth system models to operation. JEDI framework is designed to be agnostic of the 55 

specific numerical model and, hence, can facilitate collaboration between research 56 
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institutions and operational centers. This paper documents implementation of the 57 

Ensemble Kalman filtering framework within JEDI. The implementation strategy 58 

supports a variety of algorithmic approaches to the Ensemble Kalman Filtering and is 59 

appropriate for multiple Earth system applications. Specifically, we demonstrate 60 

applications for atmosphere, atmospheric composition, ocean, and land data assimilation.   61 

1 Introduction  62 
Data assimilation for multiple Earth system components simultaneously (coupled 63 

data assimilation) is an emerging field, where observations of each Earth system 64 

component (such as atmosphere, ocean, ice, land, and aerosols) are combined with a 65 

coupled simulation model to produce a statistically consistent estimate of the complete 66 

Earth system (Penny et al., 2017). Recent examples of the coupled data assimilation (DA) 67 

applications build on a rich history of data assimilation in each sub-component of the 68 

system. For example, the National Oceanic and Atmospheric Administration (NOAA) 69 

(Saha et al., 2006, 2010), European Centre for Medium-Range Weather Forecasts 70 

(ECMWF) (Browne et al., 2019; Laloyaux et al., 2015), and Naval Research Laboratory 71 

(NRL) (Barton et al., 2020) operational Earth system forecast models and reanalyses are 72 

composed from legacy DA systems (solvers) for the atmosphere, ocean, and ice. These 73 

legacy DA solvers are specific to each Earth-system component and present formidable 74 

technical barriers for developing strongly coupled DA systems that treat all Earth system 75 

components as a joint statistical estimation problem in which observations of one 76 

component can correct the state estimate in the coupled components.  77 

 The Joint Effort for Data assimilation Integration (JEDI) is an international 78 

collaboration aimed at developing an open software ecosystem for model agnostic data 79 
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assimilation. Earlier efforts that developed model-agnostic data assimilation 80 

infrastructure such as Data Assimilation Research Testbed (DART Anderson et al., 2009) 81 

and Parallel Data Assimilation Framework (PDAF Nerger & Hiller, 2013) focused on 82 

acceleration of research in DA. In contrast, JEDI is developed by a consortium of 83 

operational and research weather forecast centers led by the Joint Center for Satellite 84 

Data Assimilation in Boulder, Colorado with the goal of accelerating transition of 85 

research results to operations. The JEDI framework achieves this by separating the 86 

concerns of the developers into generic blocks (see Figure 1) centered on abstract 87 

modeling of the data assimilation problem, observational storage, covariance modeling, 88 

observation operator, and interfaces to forecast models (grouped inside of the gray box). 89 

These basic building blocks in Figure 1 can be reused and specialized by multiple models 90 

(orange boxes in Figure 1). Some of these models include atmospheric models like the 91 

Finite Volume cube sphere version 3 atmosphere general circulation model—FV3 (Harris 92 

et al., 2021), and the Model for Prediction Across Scales—MPAS (Skamarock et al., 93 

2012); ocean models like the Modular Ocean Model version 6—MOM6 (Adcroft et al., 94 

2019) and the Regional Ocean Model—ROMS (Haidvogel et al., 2000); sea ice models 95 

like the Los Alamos sea ice model—CICE (Hunke & Lipscomb, 2015);  land surface 96 

models like the Noah land surface model with Multi-Parameterization options—Noah-97 

MP (Niu et al., 2011), and atmospheric composition models like the FV3-based Global 98 

Ensemble Forecast System – Aerosols (GEFS-Aerosols; Zhang et al., 2021). 99 

Consequently, the generic DA algorithms developed using the JEDI framework can be 100 

applied to many of the model implementations currently under development within the 101 

JEDI consortium. Having this ability to use the same codebase, data structures, and 102 
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algorithms for all components of the Earth system model will greatly simplify the 103 

transition to strongly coupled data assimilation and testing of the individual components. 104 

This paper focuses on the implementation of local volume solvers within the JEDI 105 

framework. By local volume solvers, we mean the large family of algorithms that updates 106 

the model forecast at each grid point (e.g. the green square in Figure 2) using a selection 107 

of observations in the geographic neighborhood of this grid point (e.g. the orange dots 108 

and orange circle in Figure 2). Such updates can be performed independently of each 109 

other and can scale well on modern computer architectures. The family of local volume 110 

solvers includes the Optimal Interpolation (OI) (Gandin, 1963), the Local Ensemble 111 

Transform Kalman Filter (LETKF) (Hunt et al., 2007), the Gain form Ensemble 112 

Transform Kalman Filter (GETKF) (Bishop et al., 2017; Lei et al., 2018), and LETKF-113 

OI/GETKF-OI (Frolov et al., 2022) algorithms. Local volume updates are in contrast to 114 

global updates that are achieved by inverting global covariance matrices through a 115 

gradient descent algorithm employed by variational solvers (Daley, 1991).  116 

Specifically, this paper presents implementation of the local volume solvers in the 117 

abstract layer, implementation choices for model data and observational data distribution 118 

across processing elements, and a flexible framework for representation of the ensemble 119 

localization. We also provide details on the specific implementations of the localization 120 

strategies for different components and between the components of the Earth system. We 121 

demonstrate our implementation in various components of the Earth system model using 122 

a combination of single-observation increments and a limited demonstration of cycling 123 

capabilities.  124 



 6 

The objective of this paper is to make the framework for local volume solvers in 125 

JEDI accessible to end-users and developers. For the initial set of capabilities described 126 

in this paper, we implemented the most basic solvers (LETKF and GETKF) and several 127 

localization options (observation space for the LETKF and model space for the GETKF). 128 

This paper documents these basic capabilities to engage the end-users in rigorous testing 129 

and refinement of the existing capabilities. We also aim to document existing interfaces 130 

that, we believe, will support implementation of more advanced capabilities by external 131 

developers, including hybrid solvers (Kotsuki & Bishop, 2021), local particle filters 132 

(Poterjoy, 2016), and iterative versions of the ensemble filters (Bocquet & Sakov, 2014).  133 

2 Mathematical notation for the local volume solver 134 

2.1 Ensemble Kalman filter  135 
A generic implementation of an ensemble KF (EnKF) consists of the time update 136 

and the measurement update steps (Evensen, 2003). In the time update step, ensemble 137 

initial conditions are propagated forward in time and the mismatches between actual 138 

observations and the ensemble observation equivalents are computed, resulting in a prior 139 

estimate (the forecast) of the state and observations:  140 

( )
( )

( 1) ( ) ( 1)

( 1) ( 1) ( 1)

( ) :

( ) :

f k a k k
j j j

f k f k k
j j

a

b

+ +

+ + +

 = +


= +

x x η

y x ζ

M

H
 (1), 141 

Where: ( )f k
jx  and ( )a k

jx  are the forecast and analysis states for member (j) valid for 142 

timestep (k), M  and H  are the forecast and the observation operators; ( , )N←η 0 Q  143 

and ( , )Nξ ← 0 R  are the model and the observational noise terms; and ( )f k
jy  are the 144 

observation equivalents of the ensemble member ( )f k
jx .  145 
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 From the prior forecast of observation equivalents ( 1)f k
j

+y  an innovation vector is 146 

computed as:  147 

( 1) ( 1) ( 1)innov k observ k f k
j

+ + += −y y y  (2),  148 

where ( 1)observ k+y , ( 1)f k
j

+y , and ( 1)innov k+y  are the observations of nature, the average of 149 

ensemble observation equivalents, and the innovations at time (k+1). 150 

From the time update in Eqs. (1-2), we can also compose matrices of ensemble 151 

perturbations in the state and observational space.  152 

( 1) ( 1) ( 1)f k f k f k
j

+ + += −Z X x  (3) and  153 

( 1) ( 1) ( 1) ( 1)
1 , ,

ens

f k f k f k f k
N j

+ + + + = − Y y y y  (4), 154 

where  ( )f kX , ( )f kZ , and  ( )f kY  are the matrices holding the ensemble of forecasts, 155 

ensemble of forecast perturbations, and ensemble of forecast perturbations in the 156 

observational space, and Nens is the ensemble size. The average of the forecast ensemble 157 

members in the state space and observational space are defined as ( 1)f k
j

+x  and ( 1)f k
j

+y  158 

respectively. 159 

In the measurement update step of the ensemble Kalman Filter, a posterior 160 

estimate of the ensemble members is computed through a linear combination of forecast 161 

(prior) ensemble members: 162 

( 1) ( 1)

( 1)

( 1) ( 1) ( 1) ( 1)
{ , , }

( 1) ( 1) ( 1) ( 1)
{ , }

( ) :

( ) :

f k innov k

f k

a k f k f k k

a k a k f k k

a

b

+ +

+

+ + + +

+ + + +

 = +


= +

Y R y

Y R

x x Z w

X x Z W
 (5) 163 

Where ( 1) ( 1)
( 1)
{ , , }f k innov k
k

+ +
+
Y R y

w  and ( 1)
( 1)

{ , }f k
k

+
+

Y R
W  are the ensemble transformation vector and 164 

matrix for the mean state and the ensemble perturbations, respectively. Specific forms of 165 
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the transformation matrices depend on the update algorithm and are discussed in section 166 

3 below. The subscripts ( 1) ( 1)
{ , , }

f k innov k+ +
Y R y  and ( 1)

{ , }
f k+

Y R  indicate that the weights are 167 

functions of the observation perturbations, observation errors, and innovations.  168 

The original implementation of the EnKF filters in JEDI is based on the square-169 

root form of the EnKF, where the ensemble of analyzed states ( 1)a k+X  is obtained using a 170 

single transformation matrix ( ( 1)
( 1)

{ , }f k
k

+
+

Y R
W ) and a single mean innovation ( )innov ky . This is in 171 

contrast to alternative formulations of the EnKF that use perturbed observations 172 

(Evensen, 2004) or use Kalman gain matrices that differ for each ensemble member 173 

(Buehner, 2020). Such implementations are possible in the JEDI local volume solver 174 

framework; however, they were not implemented at the time this paper was written.  175 

2.2 Local volume solver approximation 176 
In the context of the local volume solver, the measurement update step is 177 

performed for each local collection of model states x(i) as follows. First a local innovation 178 

vector is computed by applying the selection operator ( )
observ
iS  (orange circle in Figure 2) 179 

that selects innovations close to the grid point (i):  180 

( 1) ( 1)
( ) ( )

innov k observ innov k
local i i

+ +=y S y  (6). 181 

Then, if R-localization is used (Hunt et al., 2007), the observation error 182 

covariance R  is inflated as a function of the distance between the location of the update 183 

point loc(i) and the observation locations loc(y): 184 

( ) ( )( ) ( )( ) ( ) ( ) ( )

T
observ observ

local i iloc i loc y loc i loc y− −=R Ψ S R Ψ S  (7), 185 

where ( ) ( )loc i loc y−Ψ  is the localization value computed as a function of the distance 186 

( ) ( )loc i loc y−  between observation location loc(y) and analysis location loc(i). We discuss 187 
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different forms of the localization function in section 5.1. Note that the R-localization in 188 

(Hunt et al., 2007) only applies to diagonal matrix R in Eq. (7). An alternative to the R-189 

localization in Eq. (7) is Z-localization (Kotsuki & Bishop, 2022), which attenuates 190 

columns of the Y matrix and can be used in presence of the non-diagonal R matrix. Since 191 

Z localization is not yet implemented in JEDI, we will use observation localization and 192 

R-localization interchangeably referring to Eq. (7) above.  193 

Lastly, the local update is calculated using local versions of the innovations 194 

( 1)
( )

innov k
local i

+y  and the inflated observational errors localR : 195 

( 1) ( 1)
( ) ( )

( 1)
( )

( 1) ( 1) ( 1) ( 1)
( ) ( ) ( ) { , , }

( 1) ( 1) ( 1) ( 1)
( ) ( ) ( ) { , }

f k innov k
locali i

f k
locali

a k f k f k k
i i i

a k a k f k k
i i i

+ +

+

+ + + +

+ + + +

 = +


= +


Y R y

Y R

x x Z w

X x Z W
 (8), 196 

where ( ) ( )
state

i i=x S x   are the variables local to the grid points (i) selected using model-state 197 

selection operator ( )
state
iS . Examples of model-state selection operator ( )

state
iS  include: all 198 

model variables associated with a single vertical column (based on the horizontal 199 

distance, i.e. the 2D iterator in JEDI notation); or all model variables associated with a 200 

single 3D grid point (based on horizontal and vertical distance, i.e. the 3D iterator in 201 

JEDI notation). In principle, one may choose to select local points in more complex 202 

ways, for example, only temperature variables located within the oceanic mixed layer. 203 

To simplify notation, time indices (k) and (k+1) will be dropped going forward, as 204 

these indices are obvious outside of the context of the time update step in Eq. (1). 205 

3 Generic solvers 206 
At the time of writing, there were two basic solvers implemented in JEDI: the 207 

LETKF that uses observation space localization (R-localization) and the GETKF that 208 



 10 

uses a combination of the model space localization (B-localization) in the vertical 209 

direction and observation space localization (R-localization) in the horizontal. 210 

3.1 LETKF 211 
The LETKF filter (Hunt et al., 2007) can be written (and is implemented in JEDI) 212 

as a two-step operation. First, the local update weights 
( )( ){ , , }f innov

local iiY R y
w  and 

( ){ , }f
localiY R

W  are 213 

computed and, second, the update weights are applied to rotate, scale, and translate the 214 

local prior perturbations ( )
f
iZ . The weight computation requires an inverse of the 215 

Nens*Nens matrix. This is performed using eigen solver as follows: 216 

( ) 1
( ) ( ) ( )

( 1)TT f f ens
vec val vec local i local i local ieigen

N
ρ

− −
← = +A A A A Y R Y I  (9). 217 

Where vecA  and valA  are the eigen vectors and eigen values, I is the identity 218 

matrix, and ρ is the forgetting (inflation) factor (which will be discussed in section 4.1). 219 

We provide two options for this computation: one using a generic C++ Eigen library 220 

(Eigen, 2023), and one using direct calls to the LAPACK library (Anderson et al., 1999). 221 

After the eigen decomposition is performed, update weights are computed as follows: 222 

( )
( ) ( )

1/2

1 1 ( 1)
( ) ( ) ( )

T
LETKF ens vec val vec

T T innov k
LETKF vec val vec local i local i local i

N −

− − +

=

=

W A A A

w A A A Y R y
 (10). 223 

The update weights are then applied to the ensemble perturbations and the 224 

ensemble mean, giving the ensemble mean increment ( )
inc
ix  and the ensemble perturbations 225 

( )
inc
iX : 226 

 ( ) ( )

( ) ( ) ( )

inc f
i i LETKF

inc inc f
i i i LETKF

=

= +

x Z w

X x Z W
  (11). 227 
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3.2 GETKF 228 
The JEDI implementation of GETKF follows Lei et.al (2018), with some minor 229 

changes as described below. The GETKF solver initializes a vertical localization matrix 230 

vertL consisting of the Neig columns j vert−l  of the square root of the vertical localization 231 

vertC .  232 

T
vert vert vert=C L L  (12). 233 

Vectors j vert−l can either be conditioned on the background state or read from an 234 

external file.  235 

The localization operator vertL  is used to compute the modulated ensemble modZ  , 236 

by applying the Schur product between each column lj-vert in Lvert , and each column 237 

𝑧𝑧𝑗𝑗
𝑓𝑓in Zf: 238 

mod
1 1.. , ,

ens eig ens

f f f
vert n n n

 = =  Z L Z l z l z      (13). 239 

The complete modulated ensemble in Eq. (13) is never computed. We either compute Neig 240 

modulations of a single original ensemble member 1 , ,
eig

f f
j N j

 
 l z l z    during the 241 

oserver step, or all modulated ensemble members corresponding to a local geometry 242 

iterator mod
( )iZ  during the measuremnt-update step. 243 

 244 

The GETKF computes two observation perturbation matrices. First, identical to 245 

Eq. (4), we compute perturbations in the observational space for the original ensemble 246 

perturbations fZ : 247 

[ ]1 1, , ( ), , ( )obs f f
j nens j = − = − Y y y y x x y H H  (14). 248 



 12 

Unlike in Lei et.al (2018), the full nonlinear observation operator ( )xH  is used here 249 

instead of the linearized operator Hz .  250 

Second, we compute observation perturbations to the modulated ensemble modZ : 251 

mod mod mod
1( ), , ( )

ens eig

f f f
j n n j j

 = + + − Y z x z x yH H  (15). 252 

 We compute update weights using Eqs. 8-10 in Lei et.al (2018) as follows. First 253 

the eigen decomposition is computed using modulated observation perturbations modY :  254 

( )mod 1 mod
( ) ( ) ( )

1
1

TT
vec val vec local i local i local ieigen

ensN
−← =

−
A A A A Y R Y  (16). 255 

Then update weights are computed as: 256 

( )

( )( )

1/2
1 mod 1/2

( ) ( )

1
mod 1 ( 1)

( ) ( ) ( )

1

1

TT
GETKF vec val val vec local i local i

TT innov k
GETKF vec val vec local i local i local i

ρ

ρ

−
− −

−
− +

    = −  − +       

 
= + 

 

W A I A I A A Y R Y

w A A I A Y R y

 (17). 257 

The weights are applied to compute analysis perturbations and increments as: 258 

mod
( ) ( )

mod
( ) ( ) ( ) ( )

inc
i i GETKF

inc inc f
i i i i GETKF

=

= + +

x Z w

X x Z Z W
 (18). 259 

3.3 LETKF-OI 260 
Frolov et.al (2022) introduced a deterministic form of the LETKF algorithm that 261 

uses R-localization to define a parametric error covariance model for univariate variables. 262 

In JEDI, this can be implemented by providing the LETKF with two pseudo ensemble 263 

members that are generated from a deterministic forecast step xf , and the standard 264 

deviation of the background error σf as following: 265 
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2

f
f

ix x σ
= ±  (19). 266 

This gives an ensemble mean of xi , and an ensemble spread (standard deviation) of σf. 267 

3.4 Coupled solvers 268 
To support strongly coupled data assimilation, the JEDI framework will need to 269 

implement abstract containers for coupled model states, increments, and operators. At the 270 

time of this writing these capabilities were in the early development stages and were not 271 

yet integrated in the framework of the local volume solver. Instead, we implemented 272 

strongly coupled data assimilation using the interface solver approximation (Frolov et al., 273 

2016; Sluka et al., 2016). The interface solver uses independent solvers for each 274 

component of the Earth system model. However, each of the independent solvers has 275 

access to the complete set of Earth system observations (or at least to the relevant sub-set 276 

of Earth system observations). In other words, the interface solver is coupled in the 277 

observational space.  278 

To illustrate the concept of the interface solver, we consider in Figure 3 an 279 

example of assimilation into an atmosphere, ocean, and near surface SST coupled model 280 

(similar to Akella et al., 2017 and Frolov et al., 2020). Ensembles of coupled states 281 

consist of atmospheric, oceanic, and skin SST variables. The EnKF atmospheric observer 282 

processes atmosphere-centric observations like radiosondes and radiances (including 283 

surface sensitive radiances). The EnKF ocean observer processes ocean-centric 284 

observations (such as Argo profiles or retrievals of the ocean SST). We choose to 285 

delegate observations of surface sensitive channels to the atmospheric observer, because 286 

the atmospheric states usually have all the required information for these observations 287 

already interpolated onto the atmospheric grid. We choose to delegate processing of the 288 
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SST retrievals to the ocean solver because SST retrievals are usually consistent with the 289 

ocean temperature observed by the ocean drifters at 1 m depth. Ocean temperature at 1m 290 

depth is more consistent with the gridded oceanic state than with the skin temperature 291 

produced by the near-surface SST model. We remind readers that Figure 3 is used for the 292 

illustration of the coupled interface solver concept and how it could be implemented by 293 

users in their system. We will provide some illustrations of this implementation in section 294 

7.1. However, we also suggest that other users might choose to configure their interface 295 

solver differently (e.g., based on direct radiance assimilation that would include the 296 

window channels that are primarily sensitive to the SST instead of relying on the SST 297 

retrievals as illustrated in our example presented in Figure 3).  298 

4 Available inflation methods 299 
Several options for prior and posterior inflation were implemented in JEDI at the 300 

time of writing.  301 

4.1 Prior inflation 302 
Prior inflation is supported in the form of a forgetting factor (Pham et al., 1998) 303 

denoted  1
ρ

 in Eqs. (9) and (17). For ρ greater than one, the prior ensemble is inflated. 304 

For values of ρ  between 0 and 1, the prior ensemble is contracted. Values of ρ less or 305 

equal to zero are not admissible.  306 

4.2 Posterior inflation 307 
Two options for posterior inflation are supported: relaxation to the prior 308 

perturbations (RTPP; Zhang et al., 2004); and relaxation to prior spread (RTPS; Whitaker 309 

& Hamill, 2012). RTPP is defined as:  310 



 15 

'
( ) RTPP ( ) RTPP ( )(1 )a a f

j j jα α= − +x x x  (20), 311 

where RTPP (0,1]α ∈  is the scalar inflation coefficient, and ( )
a

jx  and '
( )
a

jx  are the analyzed 312 

ensemble members (j) before and after RTPP inflation. 313 

RTPS is defined as a grid point operation:  314 

( ) ( )'
( )( ) RTPS ( )( )

( )

( )f a
i ia a

i j i ja
i

σ σ
α

σ
−

=x x (21), 315 

Where RTPS (0,1]α ∈  is the scalar inflation coefficient, ( )
f
iσ  and ( )

a
iσ are the standard 316 

deviations (spread) of the prior and posterior ensemble, and ( )( )
a
i jx  and '

( )( )
a
i jx  are the 317 

analyzed ensemble members (j) at the (i)th grid point before and after RTPS inflation.  318 

5 Localization 319 

5.1 Observation space localization for Earth system 320 
components 321 

Observation space localization ( ( ) ( ) , )loc i loc y ψ−Ψ  in Eq. (7) inflates 322 

observations errors for local observations as a function of some distance between the 323 

location of the local volume ( )loc i , the location of the observation ( )loc y , and the 324 

localization length scale ψ . It is customary to use the inverse of a correlation-like 325 

function, such as the Gaspari-Cohn (Gaspari & Cohn, 1999), that is equal to 1 at the 326 

location of the local volume and decays to zero (infinite inflation) over some support 327 

radius ψ .  328 

When localization in more than one dimension is required (e.g., horizontal and 329 

vertical), different localization scales (e.g., horψ  and vertψ ) in each dimension might be 330 
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required. The total localization function can then be composed as a function of 331 

multidimensional distance in one of the two ways.  332 

One could add all normalized distances and then compute the localization 333 

function:  334 

2 2

2 2

( ) ( ) ( ) ( )
( ) ( ) ,( , ) ( )hor vert

hor vert

loc i loc y loc i loc y
loc i loc y hor vert ψ ψ

ψ ψ − −
− +=Ψ Ψ  (22). 335 

Alternately, one could assume that the localization functions are separable and 336 

compose the total localization function as a product of each individual localization: 337 

2 2

( ) ( ) , 2 2

( ) ( ) ( ) ( )
( , ) hor vertloc i loc y hor vert

hor vert

loc i loc y loc i loc y
ψ ψ

ψ ψ
−

   − −
   =
   
   

Ψ Ψ Ψ  (23). 338 

The JEDI implementation uses the second option for two reasons. First, using 339 

separable localizations allows us to keep track of distances in each dimension within the 340 

object that implements each of the localization blocks. And second, each localization 341 

block can use a different correlation function; for example, horizontal localization could 342 

use the Gaspari-Cohn function while vertical localization could use the Gaussian 343 

function.  344 

Specifying observation localization for each observation stream independently 345 

allows the JEDI local volume solver to be flexible. For example, one could specify wider 346 

localization for radiosonde observations than for radar reflectivity observations. In the 347 

case of the coupled data assimilation example given earlier, one could specify different 348 

localization scales for the SST, the ocean in-situ temperature, and for the atmospheric 349 

wind observations.  350 

Finally, the observation space localization (as implemented in JEDI) allows users 351 

to limit the number of observations used in a local volume analysis (by selecting those 352 
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closest to the analysis grid point). Hamrud et al. (2015) showed that selecting the closest 353 

observations allows for a significant speed up of the LETKF algorithm with no loss in the 354 

fidelity of the LETKF update. 355 

5.1.1 Horizontal, distance-based localization 356 
Several options for horizontal R-localization are supported by JEDI, including 357 

Box Car, Gaspari-Cohn, and the second order auto regressive (SOAR) function (see 358 

Figure 4). Computing great-circle distances between two points on a sphere can be 359 

computationally expensive. Instead of the direct computation of the distances, we use 360 

KD-tree lookups. Horizontal observation localization also selects the nearest N 361 

observations closest to the updated volume.  362 

5.1.2 Vertical localization 363 
The Box Car, Gaspari-Cohn, and SOAR functions are also supported for vertical 364 

localization. The vertical distance between the local volume and the observation is 365 

computed in the vertical coordinate of choice (e.g., pressure, depth, or height). An 366 

optional log transformation to the vertical coordinate is also supported before the vertical 367 

distance is computed.  368 

To implement R-localization in the vertical, the vertical location of each 369 

observation must be included in the observation file, and the model interface must then 370 

return a matching vertical location for each analysis grid point. For some observation 371 

types and model grids this might not be possible. For example, satellite radiances observe 372 

integrated vertical properties, which can be difficult to relate to a specific observation 373 

height. Alternatively, many ocean-specific implementations of the Kalman filter analyze 374 

the entire vertical column of grid points, again making it difficult to assign a specific 375 
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height to the analysis volume. In such cases, model space localization discussed in 376 

section 5.2 might be a more appropriate vertical localization strategy.  377 

5.1.3 Component-specific examples 378 

5.1.3.1 Brasnett localization for land DA 379 
To enable localization of land-specific observations like snow, JEDI includes  the  380 

Brasnett localization (Brasnett, 1999), which attenuates the localization as a function of 381 

horizontal distance and the vertical difference in the orography of the observation 382 

location and the analyzed grid point:  383 

 ( )
2

(1 )exp exp z
brasnett x x x x

z

lL c l c l
c

  
 = + − −        

 (24), 384 

Where brasnettL  is the Brasnett correlation function, lx is the horizontal distance 385 

between the two points in meters, lz is the vertical (terrain) difference between the two 386 

points in meters, cx is the horizontal lengthscale in m-1 (default value recommended in 387 

Brasnett, (1999) is 0.000018 m-1, which is equivalent to a 120km e-folding scale), and cz 388 

is the horizontal coefficient in meters (default is 800 m). Figure 4 in Brasnett (1999) 389 

provides a nice illustration how steep terrain in the Western United States affects 390 

correlation structures modeled by Eq. (24).  391 

5.1.3.2 Rossby-radius based localization for ocean DA 392 
Because water has a higher density than air, the first Rossby radius of deformation 393 

for baroclinic instabilities varies latitudinally in the ocean from ~300 km near the equator 394 

to 3 km in the Arctic ocean (Chelton et al., 1998). This variability affects error correlation 395 

scales in eddy resolving models. To accommodate this variability, we introduced a 396 
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variant of the Gaspari-Cohn function with the support radius varying as a function of the 397 

local Rossby radius as following:  398 

 ( ){ }0 ( ) min maxmin max max , , ,rossby r r g iL L m L m a L L = +   (25) 399 

where Lrossby is the support radius provided to the Gaspari-Cohn function; Lmax and Lmin 400 

are the user-specified maximum and minimum support radii; L0 is the user-specified base 401 

value of the localization radius; Lr is the Rossby radius of first baroclinic deformation 402 

from (Chelton et al., 1998); ( )ia  is the square root of the grid cell area at the location of 403 

the analysis volume; and mr and mg are the user-specified multiples. Eq. (25) provides a 404 

lot of flexibility to model localization radius Lrossby. The default values for Eq. (25) are 405 

L0=0, mr=1.0 and mg=1.0,  Lmax=inf, and Lmin=0.0. 406 

5.2 Model space localization 407 
The GETKF solver described in section 3.2 supports model-space localization in 408 

the vertical direction, similar to the original description in Lei et.al (2018). We expect 409 

that future implementations might also support model space localization in the horizontal 410 

direction, similar to the MLGETKF solver introduced by Wang et al. (2021).  411 

Currently several options are supported for specifying the vertical localization 412 

matrix. One option is for the model interface to return the vertical coordinate of the 413 

model; then a correlation matrix can be computed based on the localization scale 414 

specified in this vertical coordinate. Examples of the vertical coordinates include model 415 

level numbers and log pressure. Another option is for the GETKF solver to read the 416 

square root of the horizontally-varying vertical localization matrix from disk (one model 417 

increment file for each column of the square root). These files can be generated in several 418 

ways. For example, one can compute the correlation matrix from a random sample drawn 419 
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from the parametrized form of the vertical localization operator used in the ensemble 420 

variational solver (EnVAR). Alternatively, a user can implement their own vertical 421 

localization operator that can output the square root of the vertical correlation as a 422 

collection of increment files.  423 

6 Object-oriented abstraction for the local volume 424 
solver in JEDI 425 

To enable a generic implementation of the local volume solver with different 426 

update formulas and model implementations, JEDI uses an object-oriented design. 427 

Specifically, the key elements of the local solver framework are abstracted as objects that 428 

can provide internal storage for variables and standard methods that can be overloaded 429 

based on the solver formalism. The design includes basic abstraction classes provided by 430 

the Object-Oriented Prediction System (OOPS) library (Figure 1) and spatialized classes 431 

that were developed to implement local volume solvers.  432 

6.1 Parallel data distribution 433 

6.1.1 Model-space data distribution 434 
Model implementations (lower left block in Figure 1) implement the Message 435 

Passing Interface (MPI) distribution of the model states in JEDI. These distributions can 436 

vary depending on the model implementation.  437 

6.1.2 Observation-space distribution 438 
Several options for parallel distribution of observations are available in JEDI at 439 

the time of this writing: 440 
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• Round robin distribution, which randomly distributes observations across 441 

all available processing elements (PEs) to optimize the balance of 442 

observations across PEs.  443 

• Inefficient distribution, which replicates all observations on each 444 

processor.  445 

• Halo distribution, which stores overlapping sets of observations on each 446 

PE. This distribution assumes that the model grid is distributed across PEs 447 

in tiles (blue and black grids in Figure 2). The overlapping observations 448 

sets are described by a user-specified circle centered on the geometric 449 

center of the local model tile (large blue circle centered on the blue tile in 450 

Figure 2 or blue triangle in Figure 5). The default halo radius (halo size) is 451 

set large enough to encompass all observations on Earth, which reduces 452 

the Halo distribution to the Inefficient distribution. Figure 5 shows the 453 

details of how Halo distribution is computed. In practice, the Halo size is 454 

selected to be just large enough to contain observations that are necessary 455 

to update all grid points on a PE.  456 

The solver step of the local volume solvers (Eq. (5)) assumes that all observations 457 

that are required to make an analysis update at a particular model point are available on 458 

the PE owning this model point, and no communications are needed. Thus, only 459 

Inefficient or Halo distributions can be used for the solver step. Because the solver has to 460 

store the ensemble of observations, Inefficient distribution can easily run out of memory 461 

available to each PE on the computational node. Using Halo distribution is highly 462 

recommended for global observational counts above 1 million.  463 
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In contrast to the solver step, the observation step of the local volume solvers (Eq. 464 

(1)) uses any of the distributions listed above. For the observation step, the round robin 465 

distribution provides the best load balancing between different PEs, and has the best 466 

time-to-completion because it uses non-overlapping distributions of observations. 467 

Inefficient distribution provides the longest time to completion, doesn’t scale with the 468 

number of PEs, and is impractically slow for observation counts on the order of 1 million. 469 

Halo distribution provides a practical balance between the two options.  470 

The current implementation of the local ensemble solver in JEDI also allows the 471 

use of different observation distributions during the observer (Eq. (1)) and the solver (Eq. 472 

(5)) steps. This is accomplished by executing the EnKF application in the observer-only 473 

mode (e.g., using the most efficient round robin distribution for the observer step), 474 

followed by the execution of the EnKF application in the solver-only mode (e.g., using 475 

the most efficient Halo distribution for the solver step). The redistribution of the 476 

observations between the two runs is accomplished by writing and reading of the 477 

intermediate observer files. Future implementations of JEDI might support this 478 

observation space redistribution in memory without the need to dump intermediate files 479 

to disk.   480 

6.1.3 Ensemble transpose  481 
Ensemble DA algorithms benefit from optimized storage of ensembles of model 482 

states and observations, with the ensemble dimension as the fastest varying dimension in 483 

multidimensional arrays. At the time of writing, such optimized storage has not yet been 484 

implemented in JEDI. Instead, model states, observations, and all ensemble containers 485 

provide the ‘packEigen()’ method that can pack local observations and local model states 486 
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into consecutive memory that can be passed to linear algebra libraries like LAPACK or 487 

Eigen. A companion ‘setEigen()’ method is also provided that can assign data from a 488 

packed array for local observations and model increments back to JEDI objects.  489 

Figure 6 illustrates how the ‘packEigen()’ and ‘setEigen()’ methods operate on the 490 

ensemble of observations stored in the JEDI native format. JEDI stores each ensemble of 491 

observations as a list of lists. In this storage configuration, only the observations from the 492 

same observation type for a given ensemble member are stored consecutively in memory. 493 

Performing ‘packEigen()’ and ‘setEigen()’ operations requires costly non-sequential 494 

memory operations. Optimization of the ensemble storage for the local volume solver in 495 

JEDI is an avenue for future optimization. 496 

7 Case studies 497 
To illustrate usage of the developed local volume solvers in realistic applications, 498 

we provide a summary of case studies that involve assimilation of the atmospheric, 499 

oceanic, land, and atmospheric composition measurements. These case studies include 500 

assimilation of single observations that illustrate how information is spread from 501 

observation location to grid points. We also present limited cycling experiments that 502 

compare forecasts from the local volume analysis against a combination of other 503 

reference systems (e.g. variational or systems with no data assimilation). 504 

7.1 Single observation experiments 505 
Figures 7 and 8 illustrate the impact of model space localization on spreading of 506 

the innovation vertically in the atmosphere from assimilation of a single surface pressure 507 

observation (Figure 7) and a lower-troposphere temperature observation (Figure 8).  508 
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In Figure 7, the surface pressure observation is localized by modulating the 3D 509 

pressure field, instead of prescribing localization directly between surface pressure and 510 

the rest of the 3D state. Figure 7 shows that the surface pressure is more correlated with 511 

the mid- and high- tropospheric temperatures and layer pressures than with the 512 

temperature and layer pressure in the boundary layer directly above the surface. This 513 

finding is intuitive as surface pressure measures the integral of the vertical column and is 514 

sensitive to the location of the large-scale weather systems that tend to locally displace 515 

the tropopause, resulting in areas of high- and low-pressure systems.  516 

To date, the applications of JEDI in atmosphere and ocean have been developed 517 

in a weakly-coupled DA framework, in which observations of different fluids cannot 518 

directly impact other fluids. Applications in the strongly coupled framework are still in 519 

the early proof-of-concept stage. For example, Figure 9 illustrates the impact on the 520 

ocean temperature profile from assimilating a single sea surface temperature (SST—blue 521 

line) and a single atmospheric surface temperature (AST—red line) observation. No 522 

vertical localization is used for either the within-fluid (SST-ocean) or the across-fluid 523 

(AST-ocean) assimilation. Both SST and AST assimilation have a large impact on the 524 

ocean temperatures in the top 100 meters of the water column. Overall, both increments 525 

warm and deepen the ocean mixed layer.  526 

The increments presented in Figure 9 illustrate the cross-fluid assimilation 527 

capabilities of the JEDI local volume solver, but we caution readers from over-528 

interpreting the scientific merit of these increments. For example, unlike the SST 529 

increment which is confined to the top 100 meters, the AST increment has a strong 530 

negative increment between 300 and 400 meters deep. We speculate that this deep 531 



 25 

increment is likely due to spurious correlations between the ocean and the atmosphere 532 

and should be attenuated with an appropriate cross-fluid localization. We also note that 533 

within the mixed layer, the magnitude of the AST increment is larger than the SST 534 

increment. We attribute this to the poorly calibrated ensemble spread in the coupled 535 

ensemble, where ocean temperatures are under spread compared to the atmospheric 536 

temperatures.  537 

7.2 Cycling experiments 538 
This section presents limited results that illustrate cycling of the local volume 539 

solvers in three distinct application areas: ocean, land, and aerosol assimilation. When 540 

appropriate, we compare cycling results for the local volume solvers against other 541 

systems (such as variational solvers or runs without data assimilation). Several results 542 

presented in this section were obtained from early engineering studies focused on 543 

demonstrating the feasibility of cycling with a family of JEDI solvers. We expect that, as 544 

these systems mature, separate scientific evaluations will be published by the respective 545 

research groups fully detailing scientific findings from their cycling experiments.   546 

7.2.1 Ocean 547 
In this section, we use the LETKF with a small representative subset of marine 548 

observations and compare its performance to the 3DVar data assimilation scheme using 549 

the JCSDA’s Sea-Ice, Ocean and Coupled Assimilation (SOCA) framework for the 550 

MOM6 Hurricane North Atlantic (HAT10) domain. This regional study uses the SOCA-551 

SCIENCE code repository (JCSDA, 2023e) to cycle the experiments. The experiments 552 

are cycled every 24 hours. The horizontal resolution of the model is 1/4°, and it has 75 553 

vertical levels. The DA schemes assimilate absolute dynamic topography (ADT) and sea 554 
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surface temperatures (SST) only. The assimilated ADT observations include data from 555 

CRYOSAT-2, JASON-3, Saral/ALTIKA, Sentinel-3A, and Sentinel-3B. The level 4 556 

AVISO ADT from Copernicus Marine Services is used to estimate forecast errors but is 557 

not assimilated. The SST observations are from the Visible Infrared Imaging Radiometer 558 

Suite (VIIRS) instrument onboard the Suomi National Polar-Orbiting Partnership (Suomi 559 

NPP) spacecraft. The LETKF here uses Rossby radius-based localization scales, which 560 

were found to be better (not shown) compared to the Gaspari-Cohn method.  561 

The results indicate that the LETKF is performing as expected, and even with 562 

minimal tuning it is able to outperform the existing 3DVAR (Figure 10). Both data 563 

assimilation schemes lead to better performance overall than the no DA case, however, 564 

the 3DVAR does show degradations in certain areas near the western boundary currents 565 

that the LETKF does not suffer from (Figure 11). This is particularly noticeable in the 566 

SST observation departure (O-B) RMSD along the Equatorial currents (Figure 11 a/b) 567 

and in the ADT O-B RMSD along the Gulf Stream (Figure 11 c/d). This is likely due to 568 

the fact that the LETKF is able to apply the velocity increments while 3DVAR currently 569 

does not, leading to overall better-balanced state estimation by LETKF. These findings 570 

demonstrate that the JEDI-LETKF is both technically and scientifically capable of further 571 

development for ensemble ocean data assimilation. 572 

7.2.2 Land 573 
Figure 12 demonstrates the application of the LETKF-OI to assimilate snow depth 574 

observations into NOAA's land-surface model, Noah-MP.  Point-based snow depth 575 

observations from NOAA's Global Historical Climatology Network Daily (GHCN; 576 

Menne et al., 2012) are assimilated once daily into an offline (land-only) version of the 577 
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Noah-MP model, from 1 September 2019 to 1 May 2020. The model is run at 1-degree 578 

resolution, and forced with archived output from NOAA's GDAS/GFS system. As 579 

expected, the LETKF-OI effectively improves the fit between the forecasts and 580 

observations, reducing the mean daily O-F standard deviation from 72.0 mm to 51.3 mm, 581 

and reducing the mean daily O-F mean from -14.1 mm to 0.2 mm. The snow depth 582 

LETKF-OI is being prepared for implementation in the NOAA operational system. This 583 

system is based closely on the OI-based snow analyses in use at other weather prediction 584 

centers (Brasnett, 1999; Gichamo & Draper, 2022; de Rosnay et al., 2012), and will 585 

assimilate both station snow depth observations and remotely sensed snow cover 586 

observations. 587 

7.2.3 Atmospheric composition 588 
A global aerosol data assimilation system for the NOAA Global Ensemble 589 

Forecast System - Aerosols (GEFS-Aerosols; Zhang et al., 2022) was recently developed 590 

based on the three-dimensional ensemble-variational (3D-EnVar) framework in JEDI. In 591 

this system, the aerosol optical depth (AOD) that represents the total amount of aerosols 592 

in a column was assimilated to constrain aerosol concentrations in the GEFS-Aerosols 593 

initial conditions. Briefly, the one-member control aerosol analysis was obtained by the 594 

3D-EnVar solver in JEDI that used the pure ensemble-estimated background error 595 

covariance for aerosols. The background ensemble was updated by the LETKF or 596 

GETKF solver as described in this manuscript. Detailed system descriptions and 597 

evaluations in the retrospective and near-real-time experiments were documented in 598 

Huang et al. (n.d.). In this section, we present the initial AOD assimilation application 599 

using the 3D-EnVar solver in JEDI in combination of the LETKF and GETKF solvers 600 
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(hereafter referred to as EnVar-L and EnVar-G, respectively). Two six-hourly cycled 601 

AOD assimilation experiments that employed EnVar-L and EnVar-G, respectively, were 602 

performed in June 2016 to assimilate within GEFS-Aerosols the Visible Infrared Imaging 603 

Radiometer Suite (VIIRS) 550 nm AOD retrievals produced by the National 604 

Environmental Satellite, Data, and Information Service (NESDIS) at NOAA (Jackson et 605 

al., 2013).  The AOD assimilation impacts were investigated by comparing with another 606 

cycled experiment without AOD assimilation (hereafter referred to as NODA) in the 607 

same period.  608 

Figure 13 compares simulated AOD from the NODA six-hour forecast, the one-609 

member control and ensemble mean analyses in the EnVar-L and EnVar-G experiments 610 

against assimilated VIIRS AOD retrievals. As expected, compared to the NODA six-hour 611 

forecast, both the control and ensemble mean analyses in the two AOD assimilation 612 

experiments showed significantly improved agreement with VIIRS AOD retrievals in 613 

terms of AOD value, biases and root-mean-square errors (RMSEs), suggesting the 614 

substantial benefits of assimilating VIIRS AOD retrievals within GEFS-Aerosols. In 615 

these two AOD assimilation experiments, the one-member control analyses obtained 616 

from EnVar showed slightly lower biases and RMSEs than their corresponding ensemble 617 

mean analyses produced by LETKF and GETKF, respectively. In addition, the biases and 618 

RMSEs in the one-member control analysis in the EnVar-L experiment were marginally 619 

lower than those in the EnVar-G experiment, while their ensemble mean analyses were 620 

comparable. The differences of the resulting control and ensemble mean analyses in these 621 

two AOD assimilation experiments could be attributed to their specific localization 622 

strategies as discussed in this manuscript and their sensitivities to localization length 623 
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scales and inflation factors. Further tuning of localization length scales and inflation 624 

factors in EnVar-L and EnVar-G will be performed to optimize their assimilation 625 

performance in the future.  626 

8 Summary, conclusions, and future work 627 
This paper describes a model agnostic implementation strategy for the local 628 

volume solvers in the JEDI framework. We found that EnKF implementations that target 629 

Earth system assimilation need to support a wide variety of ensemble localization 630 

strategies, as appropriate for the different components of the Earth system. For example, 631 

model space localization (GETKF) was requested by the atmospheric community, 632 

observation-space localization (LETKF) with localization distance condition on the 633 

Rossby radius of deformation was requested by the oceanic community, and terrain-634 

dependent localization was requested by the land-modeling community. Our preliminary 635 

demonstration of a strongly coupled DA example (Figure 9) demonstrates that further 636 

work is needed to develop, implement, and test methods for cross-fluid localization 637 

operators.  638 

Another challenge specific to a generic DA framework such as JEDI, is efficiently 639 

distributing computations and memory across PEs. To our knowledge, EnKF-specific 640 

implementations like DART have engineered their PE distributions to be optimized 641 

specifically for the EnKF computations, by distributing both the model grid points and 642 

observations randomly across the PEs (method 4.a of (Anderson & Collins, 2007)). This 643 

ensures good load balancing at the expense of inter-processor communication. By 644 

contrast, the JEDI framework supports a number of applications with different load 645 

balancing requirements, such as forward model simulations, observation operators, 646 
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variational solvers, and EnKF solvers. We found that in a generic framework like JEDI, it 647 

is more challenging to develop grid and observation containers that were optimized 648 

specifically for the EnKF computation. At the time of writing, our implementation 649 

inherited grid point distributions from the model interfaces (e.g., cubed-sphere for the 650 

FV3 model) and implemented a new (“Halo”) observation distribution that stores only 651 

observations required for the local volume computation on each PE (Figure 2). This is 652 

similar to method 4.b of Anderson and Collins (2007).  We are currently exploring ways 653 

to improve load and memory balancing for local volume computations.  654 

During the development of the framework for local volume solvers, we benefited 655 

greatly from the large number of contributors to the JEDI framework, who tested the 656 

generic local volume solvers that we developed in this paper using atmospheric, oceanic, 657 

land, and aerosol test cases. Our brief summary of the cycling results showed that 658 

different variants of the local volume solver (GETKF, LETKF, LETKF-OI) all compared 659 

well to a variety of reference solutions including a free running model (land and aerosols) 660 

and variational solvers (ocean and aerosols).  661 

Testing of the developed solvers in the cycling system also revealed that further 662 

work is needed to improve scalability, computational performance, and memory 663 

management of the local volume solver implementation in JEDI. We chose not to 664 

highlight specific computational results in this paper as the JEDI code optimization is 665 

rapidly progressing and any results with regard to the computational performance 666 

presented in this paper are likely to become quickly obsolete. 667 

Finally, we believe that this local volume framework lays the ground work for 668 

future algorithmic developments. Specifically, JEDI can benefit from implementation of 669 
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the serial solver (Anderson, 2001), which replaces the matrix inverse in Eqs. (10) and 670 

(17) with a sequence of scalar inverse problems. The serial solver is a pre-requisite to the 671 

implementation of non-linear filters, such as the local particle filters (Poterjoy, 2016), or 672 

the Gamma, Inverse-Gamma, and Gaussian (GIGG) filter (Bishop, 2016). The most 673 

natural implementation of serial filters in JEDI would involve replacing the Ensemble 674 

Transform computation for each of the local volumes with the serial EnKF update 675 

(similar to method 4.b in  Anderson & Collins, 2007). Another intriguing direction would 676 

be to implement iterative Kalman Filters, which can exploit the existing library of 677 

linearized observation operators in JEDI (Bocquet & Sakov, 2014). Implementation of 678 

the multi-scale localization operators similar to (Wang et al., 2021) would be yet another 679 

beneficial development.  680 
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Open Research 692 
The software code for the generic JEDI solvers is available in the OOPS code repository 693 

(JCSDA, 2023d). Software implementations for land, atmosphere, and composition are 694 

available in the FV3-JEDI code repository (JCSDA, 2023a). Software implementation for 695 

the ocean and ice components is available in the SOCA code repository (JCSDA, 2023f). 696 

The Unified Forecast System model is available in the UFS code repository (UFS, 2023). 697 

Training and documentation for the JEDI software are available in JCSDA (2023b) and 698 

JCSDA (2023c), respectively.  699 

Figures: 700 
Figure 1: Separation of concerns in JEDI. Image adopted from JEDI academy 701 

slides (http://academy.jcsda.org/2021-10/slides/2021-06-21-WhyOOPSJEDI.pptx). 702 

Model implementation acronyms correspond to different model implementations and are 703 

defined in the main text of the paper. Other acronyms include: OOPS—Object Oriented 704 

Prediction System; SABER—System Agnostic Background Error Representation; 705 

UFO—Unified Forward Operator; VADER—Variable Derivation Repository; and IODA-706 

-Interface for Observational Data Access. 707 

Figure 2: Local volume solver domain decomposition. Blue grid: grid points 708 

stored on the current (this) processing element (PE). Black grid: grid points on the 709 

neighboring PE. Green square indicates the updated, analysis point x(i). Dots indicate 710 

observations: (orange) observations used in the analysis; (red) observations that are 711 

needed to update all points on this PE; (gray) other observations that are not needed to 712 

update grid points on this PE. Circles indicate: (orange) the area used to collect local 713 

observations for the current local analysis, (blue) halo region that contains all possible 714 
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observation locations needed to update grid points on this PE, (gray) observations halo 715 

region that contains all possible observation locations needed to update grid points on 716 

neighboring PE.  717 

Figure 3: Example of interface solver implementation in JEDI framework. A pair 718 

of LETKF observers are run first obtaining ensemble observations of all atmospheric and 719 

oceanic variables. In this illustration, the near surface SST forecast (nsst) from the diurnal 720 

layer model is used as a first guess by the atmospheric observer for observations of the 721 

surface-sensitive radiances. Ocean state is used by the ocean observer to estimate the 722 

forecast of SST retrievals. Then a pair of LETKF solvers is executed one producing 723 

analysis on the atmospheric and the second on the oceanic grids. Each solver can use a 724 

combination of atmospheric and oceanic observations. In this example atmospheric 725 

solver is tasked to produce the analysis of the nsst variable as it has more complete 726 

picture of atmospheric observations that can potentially influence the nsst estimate.  727 

Figure 4: Localization as a function of normalized distance and localization type. 728 

For illustration purposes, distance was scaled by a factor of 8 before the SOAR function 729 

was calculated to achieve a near zero value for normalized distance of 1 (e.g. the SOAR 730 

function value is 0.003 for the distance of 8).   731 

Figure 5: Halo distribution of observations. Shown are (blue grid) the grid points 732 

stored on this PE. (Blue triangle) halo center computed as a center of the grid points. 733 

(Blue circle) patch radius Rpatch that encloses all the grid points on this PE; (Orange 734 

circle) halo size radius Rhalo size that is added to the patch circle. In practice, Rhalo size is 735 

related to the localization radius. (Green circle) the total halo circle that is computed as a 736 

summation of Rpatch + Rhalo size. Observations can then be divided in to patch observations 737 
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that exclusively belong to this PE based on the shortest distance to the patch center (the 738 

blue dot). Halo observations (green dots) that are within the green total halo radius. And 739 

observations that are not stored on this PE because they are outside of the total halo 740 

radius (gray dots). 741 

Figure 6: packEigen and setEigen methods operating on observational data in 742 

OOPS. Top row present data stored in generic containers for observational data in OOPS. 743 

Observational data stored as vectors of vectors, with each blue rectangle stored as 744 

contiguous data but with potential extraneous memory between blocks. Bottom row 745 

shows contiguous storage of ensembles of local observational data. The entire record is 746 

contiguous with the ensemble dimension as a leading index.  747 

Figure 7: Increment to the vertical column of atmospheric temperature (a) and 748 

layer pressure (b) from assimilation of single surface pressure observation at 40.5°N, 749 

160.5°E and innovation of 6 hPa. Background ensemble valid for 2015-12-05 18:00Z. 750 

GETKF vertical localization was  used with localization scale of 30 levels and 10 eigen 751 

vectors capturing 96% of the variance.  752 

Figure 8: Increment to the vertical column of atmospheric temperature (a) and 753 

layer pressure (b) from assimilation of single temperature observations at 40.5°N, 754 

160.5°E, 950 hPa, and innovation of 1 K. Background ensemble valid for 2015-12-05 755 

18:00Z. GETKF vertical localization was  used with localization scale of 30 levels and 10 756 

eigen vectors capturing 96% of the variance.  757 

Figure 9: Increment to the vertical column of ocean temperature from assimilation 758 

of a single atmospheric temperature observations at 27.5°S, 154.5°W, 950 hPa (red) and 759 

sea surface temperature observation at the same horizontal location (blue). Both with the 760 
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innovation of 1 K. Background ensemble valid for 2015-12-05 18:00Z. No vertical 761 

localization was used. 762 

Figure 10: RMSE for the 24-hour forecast of (a) SST and (b) ADT observations. 763 

Colors indicate: (black) no data assimilation, (green) 3DVAR algorithm, and (red) 764 

LETKF.   765 

Figure 11: RMSE for the difference between run with no data assimilation and 766 

3DVAR (left column, panels a and c) and LETKF (right column, panels b and d). Top 767 

row shows differences for SST (panels a and b) and the bottom row shows differences for 768 

ADT (panels c, d). 769 

Figure 12: RMSE for the 6-hour forecast of the snow depth (GHCN network). 770 

Colors indicate: (black) no data assimilation, and (red) LETKF-OI assimilation of snow 771 

depth measurements. Line style indicates: (solid) standard deviation of error (dashed) 772 

mean error.  773 

Figure 13: (a) Time-series of 550 nm AOD means from VIIRS (gray), no data 774 

assimilation six-hour forecast (black), the one-member control and ensemble mean 775 

analyses in the EnVar-L (blue and green, respectively) and EnVar-G (red and orange, 776 

respectively) experiments in a six-hourly interval in June 2016, and their corresponding 777 

(b) biases and (c) root-square-mean errors (RMSEs) against VIIRS AOD retrievals. (d)-778 

(f) are the temporally means of the corresponding (a)-(c) over the last three weeks in June 779 

2016.  780 
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