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Text S1
Introduction 
This supplement provides two sample calculations that demonstrate how the Larché-Cahn equation can be used to calculate stress-induced composition change for isotropic (garnet) and anisotropic (plagioclase) solid solutions. They are intended to bring clarity to what each of the terms in the Larché-Cahn equation mean and how the values are obtained and used. 
While the calculations here are limited to binaries, they can be extended to additional endmembers. For a solid solution with N endmembers, N – 1 relative chemical potentials can be defined. The Larché-Cahn equation then becomes a system of equations, and the composition which simultaneously satisfies all equations is the equilibrium composition.
The equations in these calculations are written in terms of indicial notation and Einstein summation convention. These conventions are widely used and can be reviewed in any standard continuum mechanics text.


Text S1.

1.1.  Calculating composition change for pyrope-grossular solid solution in garnet.

The Larché-Cahn equation is the key equation which links relative chemical potential, concentration, and stress for solid solution minerals (after Larché and Cahn, 1985; eq. 4.21):



where  is the relative chemical potential (J mol-1) between independent species I and dependent species K at given stress,  (Pa), and composition,  (mole fraction);  is the Gibbsian chemical potential (J mol-1) of species I or K defined at a reference pressure P (Pa) and T (K); R is the ideal gas constant (J mol-1 K-1);  is the activity of species I or K;  is the molar volume of the solid (m3 mol-1) at the reference pressure, P, temperature, T, and initial composition;  is the partial molar strain tensor between species I and K;  is the Kronecker delta; and  is the compliance tensor.

Simplifications can be made to this equation. For example, in many solid solutions, the change in elastic constants with composition change is small and can be neglected to first order. Consequently, the rightmost term in equation (S.1) can be dropped, yielding



Additionally, since in this first calculation we are investigating a structurally isotropic mineral (garnet), further simplifications can be made. As garnet is isotropic, it does not matter which axis stress is applied to. Consequently, stress terms can be summed and the partial molar strain becomes a scalar (after Larché & Cahn, 1985; eq. 4.23):



In this calculation, we assume that there is a chemical reservoir which fixes the relative chemical potential of the surroundings. 

We take the reference pressure and temperature to be 1 GPa and 600 oC and the initial garnet composition to be XPy = 0.8, XGrs = 0.2. The constant relative chemical potential can be calculated using standard thermodynamic datasets (e.g., Holland & Powell, 2011; “HP11” herein). 

Let us assume that grossular is the dependent endmember. The choice is arbitrary and the final result is the same if pyrope is chosen. The relative chemical potential for a hydrostatically stressed solid can be defined as (after Larché & Cahn, 1985; eq. 4.17):

	
Here,  and  are the chemical potentials (J mol-1) of the pure endmembers pyrope and grossular at the reference pressure and temperature (1 GPa and 600 oC), and  and  are the activities of the endmembers calculated at the given compositions. At these conditions, the pure endmember chemical potentials of pyrope and grossular are -6,546,212 J mol-1 and -6,883,821 J mol-1, respectively. The activities of pyrope and grossular are 0.745 and 0.074, respectively, using the activity model of White et al. (2014). With this information, we can calculate the relative chemical potential:






Since the surroundings acts as a chemical reservoir, this relative chemical potential is the value that the stressed garnet must ultimately attain. Consequently,  where the 0 subscript indicates the initial composition at the reference pressure, P. That is, the relative chemical potential of the stressed garnet at stress  and final composition  must be equal to the calculated relative chemical potential at P = 1 GPa and .

The foregoing defines the left-hand side of equation (S.3). Next, we turn to the right-hand side. The pure chemical potential terms at the reference pressure (1 GPa) have already been defined above and do not change. The activity terms and compositions must be solved for numerically. We will turn to these shortly. But first we discuss the stress and strain terms.

The volume term, , is the molar volume (m3 mol-1) at the reference composition (XPy = 0.8), pressure (1 GPa), and temperature (600 oC). This is again readily available for garnet using the HP11 dataset. At this P and T, the HP11 dataset gives the molar volumes of pyrope and grossular as 11.434 J bar-1 mol-1 and 12.657 J bar-1 mol-1, respectively. The conversion to m3 mol-1 is 1 J bar-1 = 10-5 m3 (i.e., divide the J bar-1 mol-1 values by 105). 

To find the reference volume, we assume that the volume changes linearly with composition. Then, the reference volume is:
 


Next, the partial molar strain term, , must be determined. It is a scalar for an isotropic solid such as garnet. In this case, Larché and Cahn (1985; eq. 4.8) provide a simple equation to calculate  :



Finally, we turn to the stress and pressure terms. The term  in equation (S.2) is a second-order tensor. The symbol i represents the rows and j, the columns. Let us say in our example that the -0.5 GPa stress (where negative values denote compressional stresses) is applied in the x-direction. Then,  is:



Note that in all calculations the units will have to be in Pa (where 1 GPa = 109 Pa). In an isotropic solid, it does not matter which axis the stress is applied to as they all impart the same strain. Therefore, only the trace of the stress tensor, , is necessary as shown in equation (S.3). This is the sum of the diagonal elements of 



Finally, the last remaining term is the pressure term. Here, it is especially critical to be mindful of conventions. Compressive stresses are negative in linearly elasticity. But pressure is positive by convention. These should not be confused. Adding the stress and pressure together, we obtain:



Note that if stress is equal to pressure, the above sum is zero, and the stress term in equation (S.3) disappears. Thus, there would be no composition change.

Now equation (S.3) can be solved for the equilibrium composition of the stressed garnet:




yielding



The activities of pyrope and grossular which satisfy the final expression must be determined numerically. In this case, the solution is  and  using the White et al. (2014) activity model. This corresponds to a composition of XPy = 0.851 and XGrs = 0.149. Thus, a -0.5 GPa applied stress changes the equilibrium composition of this garnet solid solution by about 0.05 mole fraction. 


1.2.   Calculating composition change for anorthite–albite solid solution in plagioclase.

Similar calculations can be done for a mineral with any crystal symmetry. Let us examine the equilibrium composition change in plagioclase for an applied uniaxial stress with a constant relative chemical potential. 

The reference pressure and temperature are 1 GPa and 600 oC. The initial composition of the plagioclase is taken as XAn = XAb = 0.5 and the relative chemical potential is assumed to remain fixed. We choose albite as the dependent species for defining relative chemical potential, but again, the choice is arbitrary. 

Now, let an additional -0.5 GPa stress be applied to the c-axis of the plagioclase grain, noting again that a negative stress is compressive. We will calculate the equilibrium composition under this new stress state.

In this example, we must solve the fully anisotropic equation (S.2) for plagioclase: 



As before, we can use standard thermodynamic datasets to determine the reference relative chemical potential. At the given reference pressure, temperature, and composition, using the HP11 dataset and the Holland and Powell (2003) activity model, the relative chemical potential is:






The relative chemical potential for the system (left-hand side of equation (S.5)) is now defined. On the right-hand side of equation (S.5), the endmember chemical potentials are defined as above using standard thermodynamic datasets. The activity terms will be solved for last. So, we turn our attention to the stress terms.

First, we will determine the reference volume, , of the plagioclase. In our calculations we use the data of Brown et al. (2016). For the endmembers, this gives:

	
	a (Å)
	b (Å)
	c (Å)
	α (deg)
	β (deg)
	γ (deg)

	Anorthite
	8.17893
	12.87176
	14.17657
	93.1945
	115.8933
	91.1953

	Albite
	8.13662
	12.78572
	14.31646
	94.253
	116.605
	87.7562



Again, we make the assumption that the crystal lattice changes linearly between the two endmembers with composition change. The data of Brown et al. (2016) show that this assumption isn’t necessarily optimal for plagioclase because the lattice parameters change faster as the composition nears pure albite. The implication from the non-linear change is that composition change with stress is likely to be larger than calculated for more albite-rich compositions and smaller than calculated for more anorthite-rich compositions.

For the purposes of these simple sample calculations, however, we will carry on with the assumption. The axial lengths and lattice angles of our reference plagioclase composition will thus be:

	
	a (Å)
	b (Å)
	c (Å)
	α (deg)
	β (deg)
	γ (deg)

	Plagioclase
	8.15778
	12.82874
	14.24652
	93.724
	116.249
	89.4756



Using the equations described in Appendix S3 of Wheeler (2018), these values can be transformed into a matrix of column vectors, each describing one of the crystallographic axes. The values are lengths in Å and for each column vector, the first, second, and third entries correspond to the x-, y-, and z directions, respectively. The first column vector is the crystallographic a-axis, the second, the b-axis, and the third the c-axis. The c-axis is aligned with the z-axis in this case. 








These column vectors provide us all the data we need to calculate  and . 

To determine , we use the identity that gives the volume of a parallelepiped (such as a triclinic crystal) as the dot product of one axial vector with the cross product of the other two:



If this is done with the plagioclase column vectors, the volume can be calculated:



The value needs to be converted to m3 mol-1. For this, it is necessary to note that these axial lengths represent 8 unit cells. Thus, the conversion is:




Next, we must determine . Since plagioclase is triclinic, the full partial molar strain tensor is required. Again, appendix S3 of Wheeler (2018) discusses how to determine  for any mineral given its axes as column vectors as above. 

The composition strain between the two endmembers, albite and anorthite, is defined by a tensor, D, that maps one to the other: LAn = DLAb. Here, L is the matrix of column vectors (given above) and D is the “deformation” matrix between them. D can be found by calculating .

Once D is known, the partial molar strain can be calculated as follows if we assume the lattice dimensions vary linearly with composition (Wheeler, 2018; Appendix S3):







where  is the transpose of . Since  is a second-order tensor, orientation becomes relevant. As plagioclase is triclinic, the orientation is somewhat complicated. In the above expressions this tensor is oriented so that the partial molar strain along the c-axis is aligned with the z-axis. In some of the calculations done in the body of our paper, however,  is rotated to align the desired axes with the desired stresses. 

Now, we examine the stress and pressure terms. As stated at the beginning of the problem, the -0.5 GPa uniaxial stress is being applied along the z-axis, and the other axes remain at the reference pressure. Therefore, the stress tensor is:



The  term is defined in matrix form as follows:



Thus, the summation of the stress and pressure term, , is:



This indicates that the only change relative to the reference pressure is the -0.5 GPa of stress added along the z-axis. 

Next, the term can be evaluated with partial molar strain. The term  indicates that the terms of  are summed with the resulting tensor from :







Thus, all terms except the composition/activity of the solution have been determined. We can now input the values into equation (S.5):




yielding





Again, we must numerically determine the composition (and corresponding activities) which satisfy the last expression. The mole fractions are XAn = 0.615 and XAb = 0.385, corresponding to  and  .
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