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Introduction

This supplementary material provides mathematical derivations and descriptions of the nu-

merical schemes used for generating the results shown in the main text. Supplemental figures

support the results in the main text.

Text S1. Quantitative derivations

Model setup, temperature profile and temperature-dependent rheology

The geometry of the model is shown in Figure 1a. The magma chamber is a spherical cavity

with radius ro and depth d from the surface. The magma chamber is subjected to a pressure

0
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forcing that results in crustal deformation, stresses, and surface uplift. The response of the

crust to the given pressure forcing depends on its rheology, which we assume to be viscoelastic

(Maxwell model), with uniform elastic rigidity and a temperature-dependent shear viscosity.

We consider the system to be an infinite domain while solving for the temperature and crustal

stresses, then correct the full-space solution to satisfy stress free boundary conditions on a flat

interface (the Earth’s surface). This allows us to obtain surface displacements as a first order ap-

proximation (we match boundary conditions at the free surface exactly but only approximately

at the chamber, (McTigue, 1987)).

Spatial variation in viscosity is found by solving a steady state heat equation with spherical

symmetry (a function of radial distance r, with r0 ≤ r ≤ d), namely

∇2T = 0, T (ro) = Tin, T (d) = Tsurface, (1)

where Tin is the chamber temperature and Tsurface = 0oC is the temperature approximated for

the radial distance of chamber depth. The solution to (1) is T (r) = −Tin 1
d/ro−1+ Tin

r/ro−r/d , shown

in Figure1A in the main text. The temperature gradient at the surface caused by the spherically

symmetric temperature profile is dT/dr|r=d = − Tin
d2/ro−d and is a reasonable approximation of

the expected magmatic geotherm above the chamber that includes a background vertical gradi-

ent (Del Negro et al., 2009), if the temperature gradient meets or exceeds the expected vertical

gradient. Figure S1 shows the surface thermal gradient varying with chamber temperature and

depth for two different chamber sizes. If the vertical gradient is−20◦C/Km, a 1000◦C chamber

meets this requirement for depths shallower than 8km. In our study, examples are shown for a

chamber with 1000◦C at a depth of 5km.
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We model spatially variable shear viscosity η(r) as temperature dependent according to the

Arrhenius formula (Del Negro et al., 2009)

η(r) = Ade
E

RT (r) (2)

where Ad is the Dorn parameter, E is the activation energy, and R is the Boltzmann constant.

The viscosity increases away from the chamber with decreasing temperature (Figure1 A).

Constitutive relations for a Maxwell viscoelastic material with radial symmetry and including

variable viscosity are

σ̇rr +
µ

η(r)
σrr =

µK

η(r)
(
∂u

∂r
+

2u

r
) + (K − 2

3
µ)(

∂u̇

∂r
+

2u̇

r
) + 2µ

∂u̇

∂r
,

σ̇θθ +
µ

η(r)
σθθ =

µK

η(r)
(
∂u

∂r
+

2u

r
) + (K − 2

3
µ)(

∂u̇

∂r
+

2u̇

r
) + 2µ

u̇

r
,

σ̇ϕϕ +
µ

η(r)
σϕϕ =

µK

η(r)
(
∂u

∂r
+

2u

r
) + (K − 2

3
µ)(

∂u̇

∂r
+

2u̇

r
) + 2µ

u̇

r
,

(3)

where σrr,θθ,ϕϕ(r, t) are the stresses in the crust, u(r, t) is the radial displacement in the crust,

and the overhead dot denotes the time derivative. The viscosity η(r) is calculated from (2), K

and µ are the elastic bulk modulus and instantaneous elastic shear modulus of the crust, here

assumed as constant and uniform.

The crustal stresses and displacement are governed by quasistatic equilibrium equations, the

explicit boundary condition at the chamber wall, and the implicit boundary condition infinitely

far from the chamber, namely,

∇ · σ = 0, σrr(ro, t) = −P (t), u(∞, t) = 0, (4)

where P (t) is the given time-dependent chamber overpressure relative to an assumed lithostatic

state (Dragoni & Magnanensi, 1989). For a given function P (t), the constraints (4) lead to a

unique solution containing approximate surface displacements.

Viscoelastic transfer function for radially varying temperature
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The constitutive relations and boundary conditions (3)-(4) are cast in frequency space using

Fourier transforms. Our model assumes that the temporal evolution of any (radially symmetric)

quantity f(t, r) can be represented in terms of its Fourier transform f̂(ω, r), namely

f(t, r) =

∫ ∞
−∞

f̂(ω, r)eiωtdω, (5)

where ω is the frequency with corresponding time period τ = 2π/ω. As all quantities consid-

ered in our study are real valued, f̂(−ω) and f̂(ω) are always complex conjugates, hence we

consider only positive values for ω for the rest of this study. The special case ω = 0 corresponds

to the constant component in the time series and is chosen such that the displacement is 0 prior

to chamber pressurization.

The transfer function between maximum vertical surface displacement and chamber over-

pressure is defined as

H{uz|P} = ûz/P̂ (6)

where ûz and P̂ are the Fourier transforms of the maximum vertical surface displacement and

the chamber pressure. In this section we derive the transfer function starting from the viscoelas-

tic rheology.

Applying the Fourier transform to the constitutive relation (3) leads to constitutive relations

in frequency space that mimic an elastic medium,

σ̂rr = (K − 2

3
µ∗)(

∂û

∂r
+

2û

r
) + 2µ∗

∂û

∂r
,

σ̂θθ = σ̂ϕϕ = (K − 2

3
µ∗)(

∂û

∂r
+

2û

r
) + 2µ∗

û

r
,

(7)

where σ̂rr,θθ,ϕϕ(r, ω) and û(r, ω) are the (complex) Fourier transforms of the stress components

and radial displacement. The complex rigidity µ∗ can be expressed in terms of the spatially

varying Deborah number De(r) and the spatially varying viscoelastic relaxation time η(r)/µ,
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given by

µ∗(r, ω) = µ
iDe(r)

1 + iDe(r)
, De(r) = ω

η(r)

µ
. (8)

We apply the equilibrium condition∇ · σ̂ = 0, which reduces to

1

r3
d
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4

3
µ∗)r4

d
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(
û
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))
= 0,
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4

3
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(
û

r

)
= C,

(9)

where complex constant C is a function of ω but independent of r. Eq (9) applies for both

the elastic and viscoelastic cases with either uniform or non-uniform complex rigidity. For

a magma chamber in elastic rock (i.e., no viscous relaxation of crust), the complex rigidity

becomes a uniform real value µ∗,el = µ, which after substituting into (9) with implicit boundary

condition u/r(r →∞) = 0 leads to

0− ûel

r
=

Cel

K + 4
3
µ

∫ ∞
r

dx

x4
, (10)

which, in combination with the constitutive relation (7), leads to the elastic solution

σ̂elrrr
3 =

4µ

3K + 4µ
Cel, ûelr2 = − 1

3K + 4µ
Cel, (11)

derived in classical magma chamber models (McTigue, 1987; Dragoni & Magnanensi, 1989).

We observe from the elastic solution (11) that the following relation holds for all r:

−r
4µ

σ̂elrr
ûel

= 1, (12)

which shows that the stress and displacement are always in phase and proportional — a charac-

teristic of the elastic domain with radial symmetry.

To obtain surface displacements, we assume that the chamber is sufficiently deep (d & ro) so

that a simple correction for stress free conditions on the surface approximates the true boundary

conditions (McTigue, 1987). The Fourier transform of the maximum vertical ground deforma-
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tion for a spherical chamber ûelz in an elastic halfspace can then be approximated as

ûelz =
P̂ r3o
µ

1

d2
(1− ν), (13)

where P̂ is the Fourier transform of the chamber’s overpressure P (t), and ν is the Poisson’s

ratio of the elastic crust. The elastic case corresponds to the transfer function as defined in the

main text, between the maximum vertical surface displacement and chamber overpressure

H{uelz |P} =
r3o
µ

1

d2
(1− ν). (14)

The viscoelastic case now follows from the elastic case through the well known ‘Correspon-

dence Principal’ (Fung, 1965) where µ∗ is complex-valued and varies with r. Assuming the

same implicit boundary condition, we obtain

0− û

r
= C

∫ ∞
r

dx

x4(K + 4
3
µ∗(x))

, (15)

which leads to

û = −Cr
∫ ∞
r

dx

x4(K + 4
3
µ∗(x))

σ̂ =
C

r3

(
1− 3Kr3

∫ ∞
r

dx

x4(K + 4
3
µ∗(x))

)
.

(16)

The relation in (16) describes displacement and stress in an infinite viscoelastic domain. We

find that with decreasing temperature away from the chamber, the response of the viscoelastic

crust becomes effectively elastic, satisfying equation (12) when r becomes sufficiently large:

as shown in Figure S2, when r approaches 2ro, the elastic relation (12) becomes asymptoti-

cally true for forcing periods smaller than 106 days, with close to 0 phase shift between the

displacement and stress, as well as a factor of −4µ between their amplitudes. Of course, our

assumptions of radial symmetry break down at large spatial scales and long forcing periods

(which effectively define a transition to crustal-scale isostatic response).
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Assuming a sufficiently localized viscosity structure, we denote an effective ductile-brittle

transition radius rc for the magma chamber, such that for r > rc, the response of the crust is

elastic, and the solutions satisfy (12). The assumption that rc resides in the model domain and

is close to the chamber is required for the robustness of our method. Based on this assumption,

the surface displacement can be obtained from the elastic stress at rc, following a first order

correction (Segall, 2010), namely

ûz = − σ̂rr(r)r
3

µ

1

d2
(1− ν)(for r > rc). (17)

We can verify that for a fully elastic domain (Pr3o = σrrr
3 for all r), the surface displacement

recovers the elastic counterpart (13).

Substituting equation (16) into (12) for r > rc reveals the value of the integral∫∞
r

r3dx
x4(K+ 4

3
µ∗(x))

= 1
3K+4µ

, which leads to invariant values within the effective elastic domain,

given by

σ̂rr =
C

r3
4µ

3K + 4µ
, û = −C

r2
1

3K + 4µ
(for r > rc). (18)

Using the boundary condition at the reservoir wall σ̂rr(ro) = −P̂ , and the precise solution to

equation (16) for the whole domain, we find

P̂ = −C
r3o

(
1− 3Kr3o

∫ ∞
ro

dx

x4(K + 4
3
µ∗(x))

)
. (19)

Hence, the relation between the stress in the effective elastic domain and the chamber pressure

is

σ̂(r) = − 4µ

3K + 4µ

r30
r3

P̂

1− 3Kr3o
∫∞
ro

dr
r4(K+ 4

3
µ∗)

, for r > rc, (20)

which can be substituted into (17) to obtain the surface displacement ûz, namely

ûz =
1− ν
µd2

P̂ r3o

4µ
3K+4µ

1− 3K
3K+4µ

r3o
R3

o
− 3Kr3o

∫ Ro

ro
dr

r4(K+ 4
3
µ∗)

. (21)
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The transfer function between uz and chamber overpressure is therefore

H{uz|P} =
1− ν
µd2

r3o

4µ
3K+4µ

1− 3K
3K+4µ

r3o
R3

o
− 3Kr3o

∫ Ro

ro
dr

r4(K+ 4
3
µ∗)

. (22)

In comparison with the elastic counterpart (14), we can define the normalized transfer function

presented in main text equation (2) as

H̄ =
{uz|P}
{uelz |P}

=

4µ
3K+4µ

1− 3Kr3o
∫∞
ro

dr
r4(K+ 4

3
µ∗)

. (23)

The normalized transfer function is a correction based on the viscoelastic relaxation around the

chamber on the elastic deformation generated by chamber pressurization

ûz = ûelz H̄. (24)

Expanding µ∗ we can also express the normalized transfer function as the local Deborah number

shown in the main text

H̄ =

(
1− 3r3o

∫ ∞
ro

dr

r4 (iDe(r)/ζ + 1)

)−1
(25)

where ζ = K
K+ 4

3
µ

.

Expanding the transfer functionH using its amplitude and phase angle

H = |H|eiϕ

which corresponds to frequency-dependent amplitude A = |H| and phase lag of −ϕ reported

in Figure 2 in the main text.

An effective discrete viscoelastic shell for variable coefficient problems

When the pressure forcing consists of a single frequency, the response of the viscoelastic

space with non-uniform viscosity becomes identical to that of an elastic crust consisting of a

discrete viscoelastic shell of uniform viscosity. The effective radius, temperature, viscosity,
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and Deborah number in the uniform viscoelastic shell (shown in Figure 2 in the main text) are

obtained via the following derivations.

Assume the effective system consists of a viscoelastic shell extending from ro to Reff , of

uniform temperature Teff corresponding to a uniform complex rigidity µ∗,eff .

Integrating (9) across the effective shell, we find

û(ro)

ro
=
û(Reff )

Reff

− C

3K + 4µ∗,eff
(

1

r3o
− 1

R3
eff

);

substituting this into the constitutive relation σ̂rr = 3K û
r

+ C
r3

, the inner-shell boundary condi-

tion σ̂rr(ro) = −P̂ , the elastic relation (12) at the outer shell boundary Reff , we find the stress

generated by the effective system measured at the shell’s outer boundary is

σ̂rr,eff (Reff ) = −P̂
iωτeff + 3K

3K+4µc

iωτeff

(
Reff

r0

)3
+ 3K

3K+4µc

, (26)

where τeff = ηeff/µ is the effective (uniform) viscoelastic relaxation time in the shell with uni-

form viscosity ηeff and uniform temperature Teff . Substituting (17) into (26), and comparing

with the elastic solution (13) leads to

ûz,eff = Heff û
el
z , (27)

where the transfer function Heff (ω) of the effective system consisting of a viscoelastic shell

with relaxation time τeff and outer shell radius at Reff is

Heff (ω) =
iωτeff + 3K

3K+4µ

iωτeff +
(

ro
Reff

)3
3K

3K+4µ

=
iDeeff + 3K

3K+4µ

iDeeff +
(

ro
Reff

)3
3K

3K+4µ

=
iDerel +R3

eff/r
3
o

iDerel + 1
, (28)

whereDeeff = ωτeff is the uniform Deborah number in the shell,Derel = 3K+4µ
3K

ωτeffR
3
eff/r

3
o

is a Deborah number based on viscoelastic relaxation time for a uniform shell identified by

(Dragoni & Magnanensi, 1989). The above relation (28) is used for finding the effective size

(i.e., Reff ) and effective temperature of the viscoelastic shell, and the phase shift caused by
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the effective transfer function shown in Figure 2 in the main text. The transfer function of the

uniform shell sheds light on two rheological endmembers for the chamber+host rock system.

The first is that of a purely elastic crust with viscoelastic shell thickness is 0, whereHeff = 1 (no

amplification, no phase delay). An elastic endmember is also reached when ω → 0, associated

with full relaxation of stresses in the shell r ≤ Reff (noting that σ̂rr,eff (r = Reff ) = −P̂ in

equation 26).

For the case of an increasing Reff , the whole crust eventually becomes viscoelastic with

uniform viscosity. The transfer function can be obtained through an analagous derivation, sub-

stituting the Laplace transform with the Fourier transform, as described in the next section. For

fixed shell radius, the phase lag caused by the effective transfer function depends on the uniform

Deborah number in the shell. Differentiating (28) withDeeff we obtain the maximum phase lag

ϕmax = tan−1
(

1
2

(
Reff

ro

)−3/2 (R3
eff

r3o
− 1
))

, which is achieved when Deeff = ζ
(
Reff

ro

)−3/2
with ζ = K/(K + 4/3µ). As shown in Figure 2D this is associated with a phase lag less than

the viscous fluid limit of π/2. In general Deeff and Reff are coupled through ω so this formula

does not hold precisely for the variable coefficient examples in the main text.

Transfer function for a viscoelastic crust with uniform viscosity

The transfer functions obtained in the previous two sections are based on the assumption that

the crust becomes effectively elastic at sufficiently far distances from the chamber. Assuming

that the crust is viscoelastic with uniform temperature, the complex rigidity becomes indepen-

dent of radius. Earlier studies showed that the surface displacement in Laplace space for a

viscoelastic crust can be obtained from the surface displacement of an elastic crust (13) via sub-

stituting the elastic constants by the complex rigidity and Poisson’s ratio (Bonafede & Ferrari,

2009). We obtain the surface displacement of the viscoelastic crust (with uniform viscosity) in
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Fourier space via substituting µ and ν in the elastic formula (13) with complex counterparts µ∗

and ν∗ = (3K − 2µ∗)/(6K + 2µ∗). Comparing the displacement ûviscoel for this special case

with the elastic counterpart, we find the transfer function

H{uviscoelz |uelz } =
(iDe+ 1)

iDe

iDe+ 3K
3K+4µ

iDe+ 3K
3K+µ

, (29)

which describes the correction to the elastic displacement by viscoelastic effects H̄with uniform

properties. The combination of (29) and the discrete transfer function (28) describe the response

of a partially or fully viscoelastic crust with uniform viscosity. Equation (29) also corresponds

to a physical scenario for the discrete shell system with an infinitely large viscoelastic shell. We

can obtain from (29) a phase lag that monotonically increase with forcing period. When the

forcing period is infinitely long, the phase lag becomes π/2, equivalent to the phase lag of a

viscous fluid (Figure 2D in main text).

Viscous-elastic strain partitioning for the variable coefficient problem

In this section we show the steps for obtaining Fourier domain elastic and viscous components

of the total deviatoric strain, and thus the spatial region where viscoelastic response occurs in

the domain.

Maxwell viscoelastic rheology is

σdevij

2η
+
σ̇devij

2µ
= ε̇devij , (30)

where the deviatoric strain and stress σdevij = σij − 1
3
Tr(σij)δij , and the isotropic stress and

strain satisfies Tr(σij) = 3KTr(εij). In spherical coordinates with radial symmetry, the above

relation is equivalent to (3). Observing (30) we can separate the total deviatoric strain rate εdevij

into a viscous part εdev,viscous and an elastic part εdev,el if the total deviatoric stress is known,
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namely

ε̇dev,viscousrr = σdevrr /2η, ε̇dev,elrr = σ̇devrr /2µ. (31)

With radial symmetry the deviatoric strain εdevrr = 2r
3
d
dr

(
u
r

)
. Substituting the Fourier trans-

form of the above relation into the general solution (9), we find the Fourier transforms of the

deviatoric strain and stress are given by

ε̂devrr =
C(ω)

3
2
r3(K + 4

3
µ∗)

, σ̂devrr = 2µ
iω

iω + µ/η
ε̂devrr , (32)

where complex value C is the same shown in the general solution (16). The elastic and viscous

components in the deviatoric strain are therefore

ε̂dev,elrr =
iω

iω + µ/η
ε̂devrr , ε̂dev,viscousrr =

1

iωη/µ+ 1
ε̂devrr , (33)

and the coefficient C can be obtained from applying the general solution (16) to the boundary

condition of σrr(ro) = −Pch, namely

C(ω) = − P̂ch

1/r3o −
∫∞
ro

3Kdr
r4(K+ 4

3
µ∗)

. (34)

For the special case of a monochromatic pressure forcing, the maximum total deviatoric strain

and viscous deviatoric strain are obtained directly from observing (32) and (33):

εdevmax =
2|C(ω)|

3r3|K + 4
3
µ iDe
iDe+1

|
, εdev,viscousmax =

1

|iDe+ 1|
2|C(ω)|

3r3|K + 4
3
µ iDe
iDe+1

|
, (35)

where De(r) = ωη(r)/µ is the r-dependent local Deborah number defined by the frequency of

the forcing and the viscosity structure. We define the partition of the viscous strain by its ratio

εdev,viscousmax

εdevmax
= 1
|iDe(r)+1| and find that for an effective viscoelastic region defined by εdev,viscousmax

εdevmax
>=

10%, an effective boundary can be defined by the radius corresponding to local Deborah number

De ∼ 10, similar to the finding in Rucker et al. (2022).

For a broadband input of chamber pressure (e.g., square pulse), we calculate the solution

for the strain components as function of radius and time using the inverse Fourier transform.
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Combining (32) to (34), the Fourier transforms for the elastic deviatoric strain and viscous

deviatoric strain are

ε̂dev,elrr (r, ω) =

(
iωτ

iωτ + 1

)
2C(ω)

3r3(K + 4
3
µ∗)

, ε̂dev,viscousrr (r, ω) =

(
1

iωτ + 1

)
2C(ω)

3r3(K + 4
3
µ∗)

.

(36)

The above solutions (36) in Fourier space are inverted to generate spatial-temporally resolved

solutions on a grid with ∆r = 0.01ro. The time-maximum values for the strains are also

obtained from (36), and the partition of the viscous strain extracted as a function of r, generating

results in Figure 2b in the main text.

Text S2. Time domain solutions from transfer functions

The transfer functions identified in (23) allow for rapid computation of surface displacement

in response to chamber pressure forcing that is a smooth function in time. In the main text we

illustrate two examples: pressure forcing that is a square pulse in time, and pressure forcing

that consists of repeated square pulses with varying duration and repose time in between the

pulses. Obtaining the output time sequences demand a numerical scheme that a) computes the

frequency spectra by applying the (discrete) Fourier transform on the input signal; b) modifies

the frequency spectra based on the transfer function; and c) generates output signals by applying

the inverse Fourier transform on the output frequency spectra. We implement these procedures

using the symbolic toolbox of Matlab (2021b) (for integration and generating input signal) and

Fourier transform codes (Carlos Adrian Vargas Aguilera (2022)).

It is worth noting that to compute the output time sequences, the frequency content for ω = 0

is required. Because the zero-frequency component corresponds to a constant value in time, we

account for this by assuming a zero displacement initial condition prior to chamber pressuriza-

tion uz(t = 0−) = 0.
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Figure S1. Contours of surface temperature gradient predicted by the radially symmetric

temperature solution shown for two different chamber radius (1km and 2km).
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Table S1. Symbols of the constants used in the study

symbol definition typical value/expression

constants

K bulk modulus of crust 10GPa

µ shear modulus of crust 1Gpa

ζ 3K
3K+4µ

Tin magma chamber temperature 800-1200oC

ro magma chamber radius

d magma chamber depth 5-10ro

Ad Dorn parameter 109 Pa.s

E activation energy 129KJ/mol

R Boltzmann constant 8.314 J/mol.K

T crust temperature

η crust viscosity η = Ade
E
RT

De Deborah number ωη/µ

variables
ω forcing frequency

σrr,θθ,ϕϕ components of stress tensor

σ̂rr,θθ,ϕϕ Fourier transforms of stress components

u crustal displacement

û Fourier transform of displacement u(r, t)

uz space-maximum surface vertical displacement

ûz Fourier transform of uz

P chamber pressure

P̂ Fourier transform of chamber pressure

H{fout(t)|fin(t)} transfer function between the input quantity and output quantity

H̄{fout(t)|fin(t)} transfer function normalized by the elastic limit
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Figure S2. Amplitude and phase lag between σ̂r3 and −4µûr2 calculated from (16) for a

complex rigidity determined by Tin = 1000oC, µ = 1GPa, K = 10GPa, and depth d = 5ro.

According to equation (12), for an elastic domain the amplitude is 1 and phase lag is 0. Black

lines indicate amplitude approximated as 1 and phase lag approximately at 0 (with 0.001 error).
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Figure S3. Additional results on surface displacements resulting from a square pulse pressure

forcing of different durations. (a) shows the normalized vertical ground displacement and am-

plitude frequency spectra for a square pulse forcing with duration of 1 day. (b) shows ground

displacement and frequency spectra for a square pulse forcing with duration of 1 year. A longer

forcing duration results in higher viscoelastic amplification of the elastic displacement.
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Figure S4. Difference between the transfer functions in amplitude and phase lags. The values

for amplification and phase lags correspond to the results shown in main text Figure2 (a,b) for

the two cases of different chamber temperatures: d = 5ro, 1000oC and d = 5ro, 1200oC. Left

axis (black) shows the ratio of the amplitude |H|, where a value of 1 indicates that the two

cases amplify the elastic displacement by the same amplification factor; a value larger than 1

indicates that the system with hotter temperature (1200oC) amplify the input signal by a larger

factor. Red curve (right axis) shows the difference between their phase shift angles φ; a positive

value indicate that the hotter system has a larger phase delay. The result shows that the hotter

system always amplifies the elastic displacement more strongly than the colder chamber for all

frequency content. However, the hotter system has a larger phase delay for frequency content

with periods smaller than 100 days, and for forcing signals with longer period, the colder system

leads to more delay.
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Figure S5. Time lag of transfer functions as functions of forcing period/frequency. The time

lags correspond to the phase lags ϕ shown in Figure2d in the main text with the relation of time

lag tlag = ϕ
ω

. The time-lags increase with increasing period. Insert shows the zoom in with

linear scale.
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Figure S6. Phase lag of transfer function Heff calculated according to (28) as function

of uniform Debporah number for different viscous shell thickness Reff (solid lines) for a

system with K = 10GPa, µ = 1GPa. The maximum phase lag is analytically predicted

ϕmax = tan−1
(

1
2

(
Reff

ro

)−3/2 (R3
eff

r3o
− 1
))

with corresponding Deborah number Demax =

3K
3K+4µ

(Reff/ro)
−3/2. Vertical dash-lines and circles show the location and value of the pre-

dicted maximum phase lag and De number, which coincide with the peaks of the curves.
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