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Contents of this file 

Figures S1 to S8 

Table S1 

Introduction  

This supplementary information provides the figures of block-wise cross-validation (Figure S1), 

Ksat values at different depth computed with CoGTF (Figures S2 and S3), spatial distributions of 

Ksat and different environmental covariates in India (Figure S4), effect of clustering of Ksat 

samples on global map (Figure S5), global Ksat maps predicted with remote sensing or soil 

covariates (Figure S6) and a comparison between CoGTF and Dai et al., 2019 (Figures S7 and S8). 

At the end, a table lists the environmental covariates used in this study. 
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Figure S1  Regionalization of global map for validation of CoGTF model. a) 5 degrees by 5 degrees 

grids plotted with positions of Ksat dataset (6,814 samples). A total of 168 grid cells contains the 

data points. b) 30 blocks of data were removed randomly (i.e 20% of 2,525 Ksat dataset) for 

validation. The 2,525 Ksat samples are a subset of the totally 6,814 samples because samples from 

Europe and North America were excluded (they were used to train Rosetta 3 model and could not 

be considered for model validation).  
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Figure S2 Ksat maps at different depths a) 0 cm b) 30 cm, b) 60 cm, c) 100 cm computed with 

CoGTF 
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Figure S3 Cumulative distribution function CDF for global maps of Ksat at different depths (0, 30, 

60 and 100 cm) computed with CoGTF. 
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Figure S4  Ksat values for India predicted with CoGTF (a), spatial patterns of the Rosetta 3 Ksat 

map b), and the first four most important covariates (c-f, see figure3 in the main text): sand fraction 

(%), elevation (meters above sea level), bulk density (g/cm3) and clay fraction (%). Other covariates 

important for soil formation liked with Ksat are shown as well (g-i): mean annual rainfall (mm), 

fraction of absorbed photosynthetically active radiation (FAPAR, values in %) and kaolinite (in %) 

clay mineral. 
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Figure S5 The difference between Ksat map including all Florida samples (a) and using only 1% 

of these Florida Ksat points (b) to build the CoGTF model. In the maps of differences (c), blue 

color represents higher values when all Florida points are included, yellow represents 

approximately the same value in both maps, and red shows locations with higher Ksat when only 

1% of Florida samples are included. The Florida cluster showed a large impact on the sandy regions 

such as Sahara and center part of Africa and middle east as it significantly increased the Ksat values. 

A similar effect was observed in parts of South America and Australia. On the other hand, south of 

Africa and higher Nothern latitude showed high Ksat values for map that includes 1% of Florida 

samples. 
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Figure S6 Ksat maps computed with Random Forest approach for soil depth of 0 cm. a) Only 24 

remote sensing covariates were used to build model and to compute the map. b) Only soil properties 

were used (sand content, clay content and bulk density). Note that high contrast in northern latitudes 

in Eurasia are controlled by changes in bulk density (a dominant pattern in Rosetta 3 map). 
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Figure S7 a) Ksat map at 0-5 cm depth from Dai et al. (2019) computed from an ensemble of 16 

pedotransfer functions. The map used soil information from Global Soil Dataset for Earth System 

Models (GSDE; Shangguan et al., 2017) and SoilGrids (Hengl et al., 2017). b) CoGTF Ksat map 

at 0 cm.   
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Figure S8 Difference in probability density functions (PDF) of Ksat values: (a) between global 

CoGTF map (yellow) and Dai et al. (2019) (black dotted line), measured (red) and fitted (blue) 

Ksat values at the sampling sites; (b) cumulative distribution functions for Dai et al. (2019)  map 

(black dotted line) and CoGTF map (yellow) for soil depth 0 cm.  
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Table S1 List of covariates used for creating the Ksat map 

 

S.

no 

 

List of  Covariates Source 

 Climate  
1 clm_annual mean 

temperaturebio1_m_1km_s0..0cm_1979-

2013_v1.0 

http://chelsa-

climate.org/bioclim/ 

 

(Karger et al., 2017) 2 clm_temperature seasonalitybio4_ m_1km_ 

s0..0cm_1979-2013_v1.0 

3 clm_max temperature of warmest 

monthbio5_m_1km_ s0..0cm_1979-2013_v1.0 

4 clm_min temperature of coldest monthbio6_ 

m_1km_ s0..0cm_1979-2013_v1.0 

5 clm_annual precipitationbio12_ 

m_1km_1979_2013_v1.0 

6 clm_precipitation of wettest monthbio13_ 

m_1km_1979_2013 

7 clm_precipitation of driest monthbio14_ 

m_1km_1979_2013 

8 clm_cloud.fraction_earthenv.modis.annual_m_1

km_s0..0cm_2000..2015_v1.0 

http://www.earthenv.org/cloud 

 

(Wilson & Jetz, 2016). 

9 clm_diffuse.irradiation_solar.atlas.kwhm2.100_

m_1km_s0..0cm_2016_v1 

 

https://globalsolaratlas.info/do

wnload/world 10 clm_direct.irradiation_solar.atlas.kwhm2.10_m

_1km_s0..0cm_2016_v1 

11 clm_lst_mod11a2.annual.day_m_1km_s0..0cm_

2000..2017_v1.0 

https://lpdaac.usgs.gov/product

s/mod11a2v006/ 

12 clm_lst_mod11a2.annual.day_sd_1km_s0..0cm

_2000..2017_v1.0 

13 clm_precipitation_sm2rain.annual_m_1km_s0..

0cm_2007..2018_v0.2 

https://zenodo.org/record/3405

563#.XlgdNTFKhaQ 

(Brocca et al., 2019) 

 Digital terrain model  

14 dtm_twi_merit.dem_m_1km_s0..0cm_2017_v1.

0 

https://zenodo.org/record/1447

210#.XllTejFKhaQ 

 

(Yamazaki et al., 2017) 
15 dtm_slope_merit.dem_m_1km_s0..0cm_2017_v

1.0 

16 dtm_aspect.cosine_merit.dem_m_1km_s0..0cm

_2018_v1.0 

17 dtm_elevation_merit.dem_m_1km_s0..0cm_20
17_v1.0 

18 dtm_lithology_usgs.ecotapestry.acid.plutonics_

p_1km_s0..0cm_2014_v1.0 

http://chelsa-climate.org/bioclim/
http://chelsa-climate.org/bioclim/
http://www.earthenv.org/cloud
https://globalsolaratlas.info/download/world
https://globalsolaratlas.info/download/world
https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://zenodo.org/record/3405563#.XlgdNTFKhaQ
https://zenodo.org/record/3405563#.XlgdNTFKhaQ
https://zenodo.org/record/1447210#.XllTejFKhaQ
https://zenodo.org/record/1447210#.XllTejFKhaQ
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 Surface reflectance  

19 lcv_landsat.nir_wri.forestwatch_m_1km_s0..0c

m_2018_v1.2 

Hansen et al. (2013) 

 

 20 lcv_landsat.red_wri.forestwatch_m_1km_s0..0c

m_2018_v1.2 

21 lcv_landsat.swir2_wri.forestwatch_m_1km_s0..

0cm_2018_v1.2 

22 lcv_snow_probav.lc100_p_1km_s0..0cm_2017_

v1.0 

Tsendbazar et al. (2017) 

23 lcv_wetlands.regularly.flooded_upmc.wtd_p_1k

m_b0..200cm_2010..2015_v1.0 

https://doi.pangaea.de/10.1594/

PANGAEA.892657 

(Tootchi et al., 2019) 

 

 Vegetation covariates  

24 veg_fapar_proba.v.annnual_d_1km_s0..0cm_20

14..2019_v1.0 

https://land.copernicus.eu/glob

al/products/fapar 

 Predicted soil properties  

25 sol_clay.wfraction_usda.3a1a1a_m_1km_b0_10

_30_60_100_200cm_ 

1950..2017_v0.2 

 

 

 

https://www.openlandmap.org/ 

 

Hengl et al. (2017) 

26 sol_sand.wfraction_usda.3a1a1a_m_1km_ 

b0_10_30_60_100_200cm _1950..2017_v0.2 

27 sol_bulk_density.wfraction_usda.3a1a1a_m_1k

m_ b0_10_30_60_100_200cm 

_1950..2017_v0.2 
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