Vanessa Monteiro

and 5 more

Improved urban greenhouse gas (GHG) flux estimates are crucial for informing policy and mitigation efforts. Atmospheric inversion modelling (AIM) is a widely used technique combining atmospheric measurements of trace gas, meteorological modelling, and a prior emission map to infer fluxes. Traditionally, AIM relies on mid-afternoon observations due to the well-represented atmospheric boundary layer in meteorological models. However, confining flux assessement to daytime observations is problematic for the urban scale, where air masses typically move over a city in a few hours and AIM therefore cannot provide improved constraints on emissions over the full diurnal cycle. We hypothesized that there are atmospheric conditions beyond the mid-afternoon under which meteorological models also perform well. We tested this hypothesis using tower-based measurements of CO2 and CH4, wind speed observations, weather model outputs from INFLUX (Indianapolis Flux Experiment), and a prior emissions map. By categorizing trace gas vertical gradients according to wind speed classes and identifying when the meteorological model satisfactorily simulates boundary layer depth (BLD), we found that non-afternoon observations can be assimilated when wind speed is >5 m/s. This condition resulted in small modeled BLD biases (<40%) when compared to calmer conditions (>100%). For Indianapolis, 37% of the GHG measurements meet this wind speed criterion, almost tripling the observations retained for AIM. Similar results are expected for windy cities like Auckland, Melbourne, and Boston, potentially allowing AIM to assimilate up to 60% the total (24-h) observations. Incorporating these observations in AIMs should yield a more diurnally comprehensive evaluation of urban GHG emissions.
We evaluated the ability of a simple ecosystem carbon dioxide (CO2) flux model, the Vegetation Photosynthesis and Respiration Model (VPRM), to capture complex CO2 background conditions observed in Indianapolis, IN. Using simulated biogenic CO2 fluxes and mole fraction tower influence functions, we estimated biogenic CO2 mole fractions at three background towers in the Indianapolis Flux Experiment (INFLUX) network from April 2017 to March 2020. The model captures afternoon average CO2 enhancements, the difference between the background towers and a common reference tower, at a monthly time scale with no significant bias, with monthly mean residuals rarely differing significantly from zero. Although not central to our application, the model could not capture day-to-day variations of observed afternoon average CO2 enhancements. Random errors, when averaged over monthly to yearly time scales, were an order of magnitude smaller than typical urban enhancements. VPRM captured site-to-site differences in the average observed daily cycle of CO2 fluxes at agricultural eddy covariance flux sites well. For 13 of 14 site-months, the modeled peak afternoon NEE was within 30% of that observed despite the observed peaks ranging from about -7 to -70 µmol m-2s-1. VPRM can be effectively used in CO2 inversions to represent complex seasonal variations in background conditions observed in Indianapolis. Indianapolis, a modest-size city surrounded by strong ecosystem fluxes, represents a rigorous test for the VPRM system. Further, this study presents an evaluation system that can be applied to assess the performance of other ecosystem CO2 flux models in cities with similar monitoring networks.

Yaxing Wei

and 49 more

The ACT-America project is a NASA Earth Venture Suborbital-2 mission designed to study the transport and fluxes of greenhouse gases. The open and freely available ACT-America datasets provide airborne in-situ measurements of atmospheric carbon dioxide, methane, trace gases, aerosols, clouds, and meteorological properties, airborne remote sensing measurements of aerosol backscatter, atmospheric boundary layer height and columnar content of atmospheric carbon dioxide, tower-based measurements, and modeled atmospheric mole fractions and regional carbon fluxes of greenhouse gases over the Central and Eastern United States. We conducted 121 research flights during five campaigns in four seasons during 2016-2019 over three regions of the US (Mid-Atlantic, Midwest and South) using two NASA research aircraft (B-200 and C-130). We performed three flight patterns (fair weather, frontal crossings, and OCO-2 underflights) and collected more than 1,140 hours of airborne measurements via level-leg flights in the atmospheric boundary layer, lower, and upper free troposphere and vertical profiles spanning these altitudes. We also merged various airborne in-situ measurements onto a common standard sampling interval, which brings coherence to the data, creates geolocated data products, and makes it much easier for the users to perform holistic analysis of the ACT-America data products. Here, we report on detailed information of datasets collected, and the workflow for datasets including storage and processing of the quality controlled and quality assured harmonized observations, and their archival and formatting for users. Finally, we provide some important information on the dissemination of data products including metadata and highlights of applications of datasets for future investigations.