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Abstract23

Anthropogenic carbon emissions and associated climate change are driving rapid warm-24

ing, acidification, and deoxygenation in the ocean, which increasingly stress marine ecosys-25

tems. On top of long-term trends, short term variability of marine stressors can have ma-26

jor implications for marine ecosystems and their management. As such, there is a grow-27

ing need for predictions of marine ecosystems on monthly, seasonal, and multi-month timescales.28

Previous studies have demonstrated the ability to make reliable predictions of the sur-29

face ocean physical and biogeochemical state months to years in advance, but few stud-30

ies have investigated forecasts of multiple stressors simultaneously or assessed the fore-31

cast skill below the surface. Here, we use the Community Earth System Model (CESM)32

Seasonal to Multiyear Large Ensemble (SMYLE) along with novel observation-based bio-33

geochemical and physical products to quantify the predictive skill of dissolved inorganic34

carbon, dissolved oxygen, and temperature in the surface and subsurface ocean. CESM35

SMYLE demonstrates high physical and biogeochemical predictive skill multiple months36

in advance in key oceanic regions and frequently outperforms persistence forecasts. We37

find up to 10 months of skillful forecasts, with particularly high skill in the Northeast38

Pacific (Gulf of Alaska and California Current Large Marine Ecosystems) for temper-39

ature, surface DIC, and subsurface oxygen. Our findings suggest that dynamical marine40

ecosystem prediction could support actionable advice for decision making.41

Plain Language Summary42

Human-driven climate change is driving major alterations within the global ocean, with43

strong warming, increasing acidity, and declining oxygen trends. On top of long-term44

trends, short term variations can lead to rapid changes that can have major effects on45

marine ecosystems. There is a growing need to predict these short-term changes in or-46

der to better inform marine fisheries managers. In this study, we use a climate model47

designed to predict changes in the real world months-to-years in advance to better de-48

termine our ability to forecast changes. Previous studies with similar goals have been49

limited by sparse observations of acidity and oxygen. We utilize brand new observational50

products that estimate acidity and oxygen levels in the subsurface ocean for the first time51

to analyze subsurface forecasts. Our results demonstrate a high potential to predict warm-52

ing, acidity, and oxygen levels in key marine ecosystems with this climate model. These53

results suggest that there is potential for eventual operational forecasts of marine ecosys-54

tems to better inform marine managers.55

1 Introduction56

The global ocean is facing growing threats from the accumulation of excess heat57

and carbon dioxide in the Earth System, leading to ocean warming, acidification, and58

deoxygenation (Bopp et al., 2013; Doney et al., 2009; Kwiatkowski et al., 2020; Whit-59

ney, 2022; Levin, 2018; Gruber, 2011). On top of long-term trends, climate variability60

and extremes on shorter timescales can rapidly alter temperature and have major effects61

on regional biogeochemistry (Di Lorenzo & Mantua, 2016; Bednaršek et al., 2018; Mo-62

gen et al., 2022). Since marine organisms and ecosystems are highly sensitive to changes63

in their environment across a range of timescales, climate variability and trends will likely64

alter their success and spatial distribution (Cheung et al., 2022; Doney et al., 2009; Ban65

et al., 2022; Bednaršek et al., 2016; Pörtner, 2010), which is of great concern for fisheries66

and aquaculture systems (Moore et al., 2021; Cheung et al., 2022; Mills et al., 2013; Duarte,67

2022; Greene et al., 2022). Multiple methods are used to make forecasts of marine sys-68

tems, including statistical forecasts that rely on empirical relationships and dynamical69

models that simulate fluid dynamics and basic ecosystem processes (Tommasi et al., 2017;70

Jacox et al., 2020). Persistence forecasts are a type of statistical forecast that propagate71

anomalies in the ocean state into the future using, for example, autocorrelation and pro-72
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vide regionaly valuable predictions that can act as a useful baseline for other forecast73

methods (Jacox et al., 2019; Hervieux et al., 2019).74

New developments in Earth System Model forecast systems have enabled short-75

term predictions of variability in ocean physical and biogeochemical state that suggest76

the possibility of forecast utility for future marine resource management. Accurate fore-77

casts of the ocean state months to years in advance have the potential to inform man-78

agement practices such as fisheries closures and annual catch limits to rapidly address79

expected climate variability and change (Tommasi et al., 2017; The State of World Fish-80

eries and Aquaculture 2022 , 2022). Earth System Model (ESM) forecast systems assim-81

ilate anomalies in the ocean state and simulate the evolution of these anomalies using82

a coupled, dynamic model (Merryfield et al., 2020; Brady et al., 2020; Lovenduski et al.,83

2019). Studies conducted with ESM forecast systems have illustrated high forecast skill84

months to years in advance for regional sea surface temperature (Jacox et al., 2019), ma-85

rine heatwaves (Jacox et al., 2022), subsurface temperature and salinity (Payne et al.,86

2022), regional surface carbonate chemistry and carbon fluxes (Li et al., 2019; Brady et87

al., 2020; Ilyina et al., 2021; Spring et al., 2021), surface chlorophyll (Park et al., 2019),88

and local scale processes (Siedlecki et al., 2016; Fennel et al., 2019).89

The validation of forecasts of marine stressors is challenged by sparse observations.90

As such, many short-term prediction studies of ocean biogeochemistry have relied on ESM91

reconstructions for forecast validation (so-called model predictability) (Lovenduski et al.,92

2019; Krumhardt et al., 2020; Spring & Ilyina, 2020). Among those studies that assess93

true model skill using observations, nearly all focus on forecast validation in the surface94

ocean, where observations tend to be more plentiful (Park et al., 2019; Li et al., 2019;95

Brady et al., 2020). Recent advances in ocean biogeochemical observing systems (e.g.,96

Biogeochemical Argo (Argo, 2022)), together with the widespread use of machine-learning97

techniques in oceanography, have led to the development of novel global mapped, observation-98

based products that provide estimates of dissolved oxygen (DO) and dissolved inorganic99

carbon (DIC) in four dimensions (latitude, longitude, depth, and time) (Sharp et al., 2022;100

Keppler et al., 2022). These new observation-based products facilitate, for the first time,101

observation-based skill assessment in the interior ocean for short-term forecasts of ocean102

biogeochemistry.103

Here, we use output from a state-of-the-art ESM forecast system and innovative104

observation-based products to quantify short-term forecast skill in the physical and bio-105

geochemical state of the surface and subsurface ocean. We focus on the model’s ability106

to make skillful forecasts of marine ecosystem stressors, as these have the greatest po-107

tential to inform future management decisions. As we will demonstrate, the ESM gen-108

erates skillful predictions of temperature, dissolved inorganic carbon, and in the surface109

and subsurface ocean up to one year in advance. We further assess where and when our110

dynamic model forecasts outperform persistence forecasts and we estimate the as-yet-111

unrealized forecast skill in marine ecosystem stressors.112

2 Data and Methods113

2.1 CESM-SMYLE114

Our primary research tool is the Community Earth System Model version 2 (CESM2)115

Seasonal-to-Multiyear Large Ensemble (SMYLE; (Yeager et al., 2022)). CESM2 simu-116

lates the ocean with 60 vertical levels at 1◦ × 1◦ resolution using the Parallel Ocean Pro-117

gram version 2 (POP2) grid (Danabasoglu et al., 2020). CESM2 includes the Commu-118

nity Atmosphere Model version (CAM6), the Community Land Model version 5 (CLM5),119

and the CICE version 5.1.2 (sea-ice model; CICE5) (Danabasoglu et al., 2020). CESM2120

includes an explicit rendering of marine biogeochemistry from the Marine Biogeochem-121

istry Library (MARBL), which is configured with three explicit phytoplankton functional122
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groups (diatoms, diazotrophs, and picophytoplankton), one implicit group (calcifiers),123

a single zooplankton type, multi-nutrient co-limitation (N, P, Si, Fe), and prognostic ma-124

rine carbonate chemistry (J. Moore et al., 2001; J. K. Moore et al., 2004, 2013; Long et125

al., 2021). CESM2 is well validated with available ocean observations and renalysis prod-126

ucts, marking an improvement over many structural model aspects as compared to pre-127

vious generations, with accurate atmospheric and oceanic teleconnections (Danabasoglu128

et al., 2020). CESM2 is also noted for well represented marine biogeochemistry, apart129

from the large biases associated with deep North Pacific oxygen ventilation (Long et al.,130

2021).131

As detailed in the SMYLE prediction system description paper (Yeager et al., 2022),132

CESM SMYLE hindcasts are initialized with physical and biogeochemical output from133

the Forced Ocean-Sea Ice (FOSI) simulation of CESM2 (SMYLE FOSI). SMYLE FOSI134

is a simulation of the ocean and sea ice components of CESM2 forced with the Japanese135

55-year Reanalysis (JRA-55; (Kobayashi et al., 2015)) momentum, heat, and freshwa-136

ter fluxes from 1958 to 2019 and atmospheric CO2 concentrations (Figure 1a). CESM2137

SMYLE forecasts are initialized quarterly from February 1, 1970 to November 1, 2019138

using ocean physical and biogeochemical state variables from SMYLE FOSI. The atmo-139

sphere is initialized from JRA-55 output directly interpolated onto the CAM6 grid. The140

land is initialized from a forced, land-only simulation within CLM5 forced by the merged141

Climate Research Unit (CRU) and JRA forcing dataset (CRU-JRAv2) applied until equi-142

librium was achieved. Micro-perturbations of the initial atmospheric temperature state143

(order 10−14K) are applied to generate a 20-member ensemble for each initialization; each144

ensemble member is integrated for 24 months using the fully coupled CESM2 under his-145

torical (1970-2014) and the shared socioeconomic pathway (SSP) 3-7.0 scenario(2015-146

2019) (Figure 1a). CESM SMYLE has previously demonstrated skillful predictions of147

ENSO indices and surface ocean physical and biogeochemical tracers (Yeager et al., 2022).148

We also examine the CESM2 Large Ensemble (CESM2-LE) as an uninitialized model149

reference for CESM SMYLE. CESM2-LE includes 100 ensemble members integrated over150

1850 to 2100, produced to examine the roles of internal climate variability and external151

forcing in a changing climate (Rodgers et al., 2021). The historical forcing for SMYLE152

FOSI is identical to that used in ensemble members 51-100 of CESM2-LE. Members 51-153

100 have slightly different parameters for ocean deep diffusion, sea ice albedo settings,154

and MARBL, but still act as a useful benchmark for analysis with CESM SMYLE (Yeager155

et al., 2022). In contrast to SMYLE FOSI which is forced by reanalysis, CESM2-LE evolves156

freely with greenhouse gas forcing over two centuries. As the radiative forcing in CESM2-157

LE is identical to that of CESM2 SMYLE, any difference in behavior stems from initial-158

ization. Figure 1a shows the evolution of the CESM2-LE ensemble mean DIC in the Cal-159

ifornia Current surface.160

2.2 Observation-based products161

We utilize three mapped, global, observation-based products to assess forecast skill:162

the Roemmich and Gilson (2009) Argo-derived temperature product, the Keppler et al.163

(2022) dissolved inorganic carbon product, and the Sharp et al. (2022) dissolved oxygen164

product. The Roemmich-Gilson product provides monthly temperature estimates for the165

upper ∼2000 m at 1◦ horizontal resolution over 2004 to present using Argo float data.166

Temperature and salinity data from the global fleet of Argo floats is interpolated to cre-167

ate a mapped observational product. The Roemmich and Gilson (2009) product is well168

validated, has been used for more than a decade for global ocean analyses, and is reg-169

ularly updated to include new float data (Roemmich et al., 2015).170

Recent work has leveraged combined Argo and Global Ocean Data Analysis Project171

(GLODAP) climatologies, along with machine learning algorithms to derive gap-filled,172

gridded, depth-resolved products for both DIC (2004-2019) (Keppler et al., 2022) and173
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Figure 1. Temporal evolution of monthly surface ocean dissolved inorganic carbon anoma-

lies (mmol C m−3) averaged over the California Current Large Marine Ecosystem from 2000 to

2020 in (red line) four randomly-selected CESM SMYLE ensemble forecasts, (black line) SMYLE

FOSI, (gray line) CESM2-LE, and (blue line) the observation-based product of Keppler et al.

(2022). DIC anomalies (mean between 2000 and 2020 removed) are plotted (a) with seasonal

cycle and long-term trend present, and (b) with seasonal cycle and long-term trend removed.

DO (2004-2022) (Sharp et al., 2022) on monthly timescales. These novel products allow174

for the first sub-surface model skill assessments at global and regional scales for biogeo-175

chemistry. The Mapped Observation-Based Oceanic DIC (MOBO-DIC) machine learn-176

ing approach uses GLODAP cruise data for DIC, along with a series of physical and bio-177

geochemical predictor data to derive a relationship between the tracers and applies this178

relationship to obtain mapped monthly fields of DIC in the upper 1500 m of the global179

ocean ((Keppler et al., 2022); Figure 1). Similarly, Sharp et al. (2022) train machine learn-180

ing algorithms with GLODAP DO and delayed-mode quality-controlled Argo DO data,181

matched with physical and spatiotemporal predictor data, to derive empirical relation-182

ships and create a gap-filled upper ocean DO product - Gridded Ocean Biogeochemistry183

from Artificial Intelligence – Oxygen (GOBAI-O2). Uncertainty estimates in MOBO-184

DIC include uncertainties stemming from the GLODAP measurements, the representa-185

tion of measurements on a monthly 1◦ grid, and the prediction uncertainty of the method.186

The global mean total uncertainty in MOBO-DIC is 18 µmol kg−1. Uncertainties in GOBAI-187

O2 are assessed in a similar fashion, with a global mean total uncertainty in of about188

6 µmol kg−1.189

Observation-based datasets of DIC and DO fill large spatial and temporal gaps.190

As such, we average over relatively large regions in this analysis (see Section 2.3). As these191

regions have sufficient training data from GLODAP and/or ARGO, we are confident in192

the regionally-aggregated estimates of DIC and DO. These observation-derived products193

do not include estimates of DIC or DO for the Arctic Ocean, and MOBO-DIC excludes194

the Mediterranean Sea.195
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MOBOGLODAP GOBAIGLODAP GOBAIARGO

Gulf of Alaska 195 232 1020
California Current 179 173 771
Kuroshio Current 292 641 490
Bay of Bengal 214 94 1096
Norwegian Sea 218 98 680
Greenland Sea 608 260 802

Table 1. The number of direct observations used in the creation of MOBO-DIC

(MOBOGLODAP ) and GOBAI-O2 (GOBAIGLODAP and GOBAIARGO) observational prod-

ucts in six select large marine ecosystems (LMEs): The Gulf of Alaska (GOA), California Current

(CalCS), Kuroshio Current, Bay of Bengal, Norwegian Sea, and the Greenland Sea. LMEs noted

here are shown in Figure S1.

2.3 Statistical approach196

We present forecast skill for three tracers - temperature, DIC, and - at two depths197

- the surface and below the mixed layer at 300 meters. Model skill analysis was completed198

at two spatial scales: large scale U.N. F.A.O. Fisheries Regions (dividing the open ocean)199

and Large Marine Ecosystems (LMEs, dividing the coastal ocean). We focus our anal-200

ysis on LMEs with a relatively large number of DIC and DO observations in GLODAP201

and BGC Argo, including three LMEs in the North Pacific - the Kuroshio Current LME,202

the California Current LME, and the Gulf of Alaska LME - and three other regions - the203

Bay of Bengal LME, the Norwegian Sea LME, and the Greenland Sea LME (Table 1,204

Figure S1).205

We remove long-term anthropogenic trends (1st order, linear) and seasonal clima-206

tologies from all data before assessing forecast skill (see, e.g., Figure 1b). We remove model207

drift from SMYLE forecasts by creating anomalies from model climatology that vary with208

lead time. Forecast skill at each month after initialization is quantified via the anomaly209

correlation coefficient (Pearsons r-value; Figure S2) and mean absolute error (MAE) of210

the ensemble mean forecast and the observational product. MAE values for each tracer211

are normalized by the standard deviation of each tracer at each depth in a given region.212

The significance (95% Confidence Interval) of correlation coefficients for SMYLE skill213

assessment is calculated relative to zero for each lead-time. We generate persistence fore-214

casts by correlating the observed state at initialization with a future state, and multi-215

plying by the autocorrelation function of the observed state at this lag (‘damped’ per-216

sistence). The skill of the uninitialized forecast is assessed via the CESM2-LE ensem-217

ble mean state (Figure S2). Potential predictability in CESM SMYLE is calculated via218

correlation of CESM SMYLE with SMYLE FOSI. In the interest of brevity, we primar-219

ily focus our presentation in this manuscript on the February SMYLE initialization but220

we include key results from all initializations in the Supplemental.221

We assess the unrealized forecast skill, or the difference between the potential pre-222

dictability of CESM SMYLE and the realized forecast skill as compared to the obser-223

vational products, using the following approach. First, we count the total number of fore-224

cast lead months in the first 13 months for which CESM SMYLE forecast skill (r) is larger225

than 0.5 and exceeds statistical persistence forecasts. Then, we repeat this process for226

model predictability (wherein SMYLE FOSI is the baseline), and compare the counts.227

We further quantify the impact of El Nino-Southern Oscillation (ENSO) on background228

model state by calculating the correlation coefficient between the Nino3.4 index and the229

tracers of interest in SMYLE FOSI.230
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2.4 Model validation231

We assess the ability of the model reconstruction to capture spatiotemporal vari-232

ability in temperature, DIC, and DO by correlating seasonal climatologies and detrended,233

deseasoned anomalies. In the U.N. F.A.O. Major Fishing Areas, modeled Temperature,234

DIC, and DO climatologies are well matched with those from the observation-derived235

products (Figure S3, S4). Seasonal climatologies are highly correlated for most of the236

U.N. fisheries regions (Figure S3). In certain subsurface regions, such as the southeast-237

ern Pacific and eastern equatorial Atlantic (DIC) and the northwest and northeast cen-238

tral Pacific (DO), we find low climatological correlations or anticorrelations, potentially239

limiting forecast skill (Figure S3). Anomalies are also highly correlated, with good agree-240

ment between observation-derived products and SMYLE FOSI in much of the surface241

and subsurface ocean for all tracers (Figure S4), however we note a lack of high corre-242

lation in subsurface DIC and DO.243

3 Results244

3.1 U.N. F.A.O. Fisheries Regions245

CESM SMYLE exhibits high forecast skill for surface temperature, DIC, and DO246

one month after initialization in nearly all U.N. fisheries regions (Figure 2, 1st column).247

Subsurface DIC forecast skill is notably absent one month after initialization, while tem-248

perature and DO exhibit higher subsurface skill in the majority of regions. Although there249

is a general decline in skill as the fully coupled forecast model evolves further from its250

initial state (beyond the first lead-time), we find long-lasting (multi-month) skill in many251

regions that display high skill in the first months after initialization, including in the East-252

Central and Northeast Pacific (Figure 3a-f). Corresponding to the decline in skill with253

forecast lead time, there is also growth in the normalized MAE as the model evolves fur-254

ther from initialization (Figure 3s-x).255

Persistence forecasts are more consistently skillful than initialized forecasts one month256

after initialization (Figure 2, 2nd column) which likely reflects poor agreement between257

observations and CESM SMYLE. As with initialized forecast skill, persistence forecasts258

generally demonstrate a decline in skill with forecast lead time (Figure 3g-l). Three tracer-259

depth combinations show particularly high persistence forecast skill: surface and sub-260

surface DIC and subsurface DO, with anomaly correlation coefficients close to one with261

12 months lead-time.262

Is the initialized model capable of producing forecasts whose skill exceeds that of263

statistical persistence? We answer this question by comparing initialized forecast skill264

to persistence forecast skill across a range of forecast lead times (Figure 3). While the265

persistence skill often matches (or even exceeds) initialized forecast skill in the 1-2 months266

following initialization (see, e.g., Figure S2), we find that some U.N. fisheries regions ex-267

hibit higher initialized forecast skill than persistence skill after this period, and that this268

behavior tends to be relatively long-lasting (up to 13 months post-initialization; Figure 3).269

To draw attention to this multi-month period for which initialized skill exceeds persis-270

tence, we count the total number of months in which forecast skill is both high (r > 0.5)271

and exceeds persistence for the first 12 months after initialization for each of the U.N.272

fisheries regions (Figure 4, S5, S6, S7). We find up to 10 months of high, persistence-exceeding273

forecast skill for most tracer-depth combinations across the U.N. fisheries regions, with274

consistently high counts in the North Pacific (Figure 4). Temperature in both the sur-275

face and subsurface demonstrated high, persistence-exceeding forecast skill in many fish-276

eries regions for up to 10 months, while surface DIC and DO generally display lower counts.277

Subsurface DIC is nearly devoid of high, persistence-exceeding forecast skill - this is a278

reflection of low forecast skill combined with particularly high subsurface persistence skill279
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Figure 4. The total number of lead-months over which forecast skill is both high (r>0.5), and

exceeds persistence forecast skill in the first 12 months following February model initialization in

the U.N. F.A.O. fisheries regions for surface (top) and subsurface (bottom) variables. Hatching

indicates that there are 0 skillful months.

(Figure 3d, 3p). The number of skillful months does not does demonstrate large vari-280

ability with different months of initialization.281

We find high, persistence-exceeding potential predictability (forecast skill quanti-282

fied using SMYLE FOSI, rather than observations) in surface and subsurface temper-283

ature and DO across many of the U.N. fisheries regions (Figure 2) for up to 10 months284

(Figure S8). In contrast, surface and subsurface DIC potential predictability displays sub-285

stantially lower lead-month counts (Figure S8) due to long-lasting persistence forecast286

skill in SMYLE FOSI.287

We find large potential to gain long-lasting forecast skill (Figure 5). We compare288

the number of skillful (Figure 4) and predictable (Supplemental Figure S8) forecast months289

and find that potential gain is long-lasting in surface and subsurface temperature and290

DO, whereas we find almost no potential to gain long-lasting forecast skill in surface and291

subsurface DIC (Figure 5). The lack of potential gain in surface and subsurface DIC is292

related to the high persistence forecast skill in both observations and model reconstruc-293

tions, as seen in Figure 3 i-j, where model forecast predictability is high but falls below294

persistence forecasts. The consistent potential for gain in model skill relative to model295

predictability indicates that improvements in both the initialized model and observational296

products could enhance forecast skill.297

3.2 Large Marine Ecosystems298

On smaller regional scales, CESM SMYLE displays high, long-lasting skill in three299

observation-rich North Pacific Large Marine Ecosystems. In Figure 6, we compare tem-300

perature, DIC, and DO initialized forecast skill with persistence forecast skill and unini-301

tialized model forecast at the surface and 300 m for the first 13 months post-initialization.302

The Gulf of Alaska (a-f) displays high skill in both the initialized and persistence fore-303

casts at the surface that decays with forecast lead time. In contrast to the surface, skill304

is very long-lasting at depth with high skill (r = 0.6) for over a year following initializa-305

tion at 300 m. We found skillful forecasts in the surface of the Gulf of Alaska for 7 months306

and ∼10 months in the subsurface. The California Current (g-l) has high surface and307

subsurface skill for temperature with some skill up to 1 year in advance and relatively308

high surface skill for DO. In contrast, the Kuroshio Current demonstrated low skill, par-309

ticularly notable in the subsurface. In the Kuroshio Current (m-r), there is high skill (r310

= 0.7) in the surface for DIC, and moderate skill for surface temperature and DO. In311

contrast, at 300m, there are no skillful forecasts (excepting DIC persistence). The month312

of initialization has some impact on forecast skill in North Pacific LMEs, with certain313
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Figure 5. The potential gain in the number of months of forecast skill, estimated as the dif-

ference in the number of months for which predictability is high (r>0.5) and exceeds persistence

(Supplemental Figure S8), and the number of months for which forecast skill is both high and

exceeds persistence (Figure 4) in the first 12 months following February model initialization in

the U.N. F.A.O. fisheries regions for surface (top) and subsurface (bottom) variables. Positive

numbers indicate that predictability exceeds forecast skill.

initializations outperforming others; this stands in contrast with the number of skillful314

months in Fisheries Regions, which was relatively insensitive to month of initialization315

(Figure 4).316

We find relatively low forecast skill in three other observation-rich regions outside317

of the North Pacific (Figure S9). In the Bay of Bengal, only temperature forecasts dis-318

play high and long-lasting skill in both the surface and subsurface; subsurface persistence319

and uninitialized forecasts for DO are also high and long-lasting. In the North Atlantic,320

neither the Greenland Sea nor Norwegian Sea display consistently high skill. The Green-321

land Sea is highly persistent in the subsurface for DIC and DO. The Norwegian Sea ex-322

hibits skillful surface forecasts for all three tracers, and for subsurface temperature and323

DO. Although subsurface DIC is highly persistent, we find low initialized forecast skill324

except for the November model initialization.325

Across the observation-rich LMEs, those whose physical and biogeochemical prop-326

erties are highly correlated with the El Niño-Southern Oscillation (ENSO) are also the327

LME and tracer combinations that tend to exhibit high forecast skill. We calculated the328

correlation between the Niño3.4 index and a given variable in each LME of interest for329

a range of ENSO lead times (Table 2, Table S1). For example, temperature, and to some330

extent DIC and DO variations in the Gulf of Alaska and California Current LMEs are331

highly correlated with ENSO (Table 2, Table S1); the forecast skill for these tracers/LMEs332

is also relatively high (Figure 6). In contrast, the other LMEs of interest (aside from sur-333

face temperature in the Bay of Bengal) show little relationship with ENSO and also low334

forecast skill. We speculate that representation of ENSO state at initialization along with335

good ENSO prediction characteristics of CESM SMYLE in the first 12 forecast months336

(Yeager et al., 2022) are key contributing factors to high prediction skill for ocean bio-337

geochemical fields in the eastern North Pacific.338

4 Conclusions and Discussion339

We use an ESM forecast system and new ocean biogeochemical observational prod-340

ucts to quantify forecast skill for surface and subsurface ecosystem stressor variations341

1-13 months in advance. We find high skill values for three marine stressors – temper-342

ature, oxygen, and dissolved inorganic carbon – up to 12 months in advance at two spa-343

tial scales. The initialized, dynamic forecast system (CESM SMYLE; (Yeager et al., 2022))344
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Figure 6. (solid) Forecast skill, (dashed) persistence forecast skill, and (dotted) uninitialized

forecast skill in three North Pacific Large Marine Ecosystems for quarterly model intializations

over 13 lead-months. Triangles indicate statistically significant skill at the 95% confidence inter-

val.
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GOA CalCS. Kuroshio Bay of Greenland Norwegian
Bengal Sea Sea

Surface Temp. 0.42 0.48 0.08 0.40 0.16 0.21

300m Temp. 0.42 0.48 0.08 0.4 0.16 0.21

Surface DIC 0.44 0.16 0.32 0.17 0.19 0.06

300m DIC 0.6 0.28 0.17 0.25 0.18 0.13

Surface Oxygen 0.3 0.41 0.04 0.07 0.12 0.26

300m Oxygen 0.61 0.22 0.16 0.05 0 0.1

Table 2. Correlation (r) of SMYLE FOSI surface and 300 m temperature, DIC, and oxygen

concentration and the Niño3.4 Index in observation-rich large marine ecosystem regions at zero-

lag months

often produces higher forecast skill than both persistence forecasts and uninitialized fore-345

casts using the same ESM. We also find large potential to gain multi-month forecast skill346

in temperature and DO, but not for DIC. Ocean biogeochemical skill is seemingly in-347

sensitive to month of initialization in large regions, SS7), but shows some sensitivity in348

smaller-scale LMEs.349

In some observation-rich Large Marine Ecosystems, such as the Gulf of Alaska, we350

find that both the initialized forecast skill and statistical persistence skill tend to be higher351

in the subsurface than at the surface. As 300 m is well below the dynamic mixed layer352

and isolated from the atmosphere, we tend to observe long-lasting initialized and per-353

sistence forecast skill here. At these depths, statistical persistence skill often outperforms354

initialized forecast skill. This leads to very few months for which initialized skill is both355

high (r>0.5) and exceeds the persistence forecast skill. The most notable exception to356

increasing skill with increasing depth is the lack of model skill in the subsurface Kuroshio357

Current. This is likely a reflection of the inability of the model to effectively represent358

the complex dynamics of western boundary currents. As expected, we note that unini-359

tialized forecasts generally perform worse than initialized and persistence forecasts, ex-360

cept for subsurface DO in the Bay of Bengal (uninitialized outperforms initialized). We361

also note an unexpected cyclical pattern in uninitialized forecasts in the Bay of Bengal362

for surface DIC and in the subsurface of some North Pacific LMEs, despite the seasonal363

climatologies having been removed from all data.364

We find that month of initialization has little impact on forecasts in large regions,365

but can impact smaller scale regions (LMEs). We attribute the sensitivity of smaller scale366

region predictions to month of initialization to the influence of coastal processes and dy-367

namics on prediction. Coastal regions (e.g., LMEs in this study), exhibit seasonally-varying368

dynamics (e.g. spring upwelling in the California Current System), which might lend skill369

that varies with the month of initialization.370

While we demonstrate high forecast skill in many cases, comparison with model371

predictability highlights variables and regions for which skill could be improved further.372

The potential gain in model skill (i.e., it’s shortcoming relative to predictability) is ap-373

parent, especially for temperature and DO forecasts. In contrast, DIC forecasts show rel-374

atively little gain possible relative to predictability, primarily a result of the high skill375

of statistical persistence forecasts. DIC is relatively insensitive to temperature variabil-376

ity, in contrast with DO which is highly temperature dependent. High memory for DIC377
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indicates that persistence forecasts might continue to be effective in many regions, al-378

though it is important to recognize that DIC is not the equivalent of acidity.379

Increases in ocean biogeochemical in situ observations (e.g., DO measurements on380

Biogeochemical Argo floats) will be crucial for realizing potential gains in model skill,381

by offering new tools for validation and improvements in initialization. The spatial vari-382

ation in ocean biogeochemical prediction skill likely stems both from limits in the ob-383

servational record and issues in Earth System Model representation of regional processes.384

Regions with high observational density are both better understood and simulated. Ob-385

servational data can be also used to better identify issues with current model structures386

and lead to improvements. The assimilation of ocean biogeochemical observations into387

earth system odels (Verdy & Mazloff, 2017, e.g.,) will be key for the development of op-388

erational biogeochemical forecasting in the future.389

The fisheries and aquaculture industry is expected to grow by up to 14% by 2030,390

with aquaculture projected to overtake capture fisheries as the largest source (The State391

of World Fisheries and Aquaculture 2022 , 2022). As marine ecosystems are increasingly392

altered by anthropogenic climate change and fisheries adapt, the need for accurate fore-393

casts of multiple marine stressors months to years in advance will grow. The CESM ini-394

tialized dynamical forecast system can successfully predict variations in biogeochemical395

stressors in both the surface and subsurface ocean. In addition to previous work focused396

primarily on physical variables (Payne et al., 2017; Tommasi et al., 2017; Jacox et al.,397

2020), dynamical forecasting of biogeochemistry is thus a promising new direction for398

the fisheries and aquaculture industry.399

Future work should expand on the drivers of skill of physical and biogeochemical400

stressors within dynamical modelling prediction systems and explore prediction systems401

using alternate dynamical model structures. In this study, we note that regions of high402

skill (primarily in the Northeast Pacific) are also regions with large influences from ENSO.403

ENSO is a predictable phenomena in both linear inverse and dynamical modelling ex-404

periments (Barnston et al., 2019; Shin et al., 2020; Yeager et al., 2022). While ENSO405

can be closely connected to marine stressors, as noted by Capotondi et al. (2019), this406

relationship can only explain up to ∼36% of variability.407

In this study, we focus on dynamical forecasts and simple statistical forecasts (per-408

sistence), but there exist other statistical approaches for short-term predictions. Statis-409

tical Linear Inverse Models (LIMs) have been used to make accurate predictions of El410

Niño-Southern Oscillation (Capotondi et al., 2019; Shin et al., 2020), coastal sea surface411

height and temperature (Shin & Newman, 2021), and the North Atlantic Oscillation (Albers412

& Newman, 2021) that are competitive with dynamical forecast systems. Various ma-413

chine learning (ML) techniques have also been used to create forecasts that are compet-414

itive with dynamical modeling systems for predicting tracers such as sea surface tem-415

perature and height anomalies (Shao et al., 2021; Wolff et al., 2020), and forecasts of at-416

mospheric events, such as atmospheric rivers (Chapman et al., 2019). Future work will417

likely rely on ML techniques to both accelerate model integration and assimilate obser-418

vations into models (Gettelman et al., 2022), as in Gloege et al. (2022) with marine car-419

bon fluxes. These statistical approaches have also demonstrated promise in predicting420

different aspects of the Earth System and are often computationally inexpensive when421

compared with initialized dynamical models, although few studies have directly stud-422

ied the statistical predictability of marine biogeochemical tracers of interest.423

Here, we demonstrate the ability to predict short-term variations in the state of424

marine stressors, but our results also suggest that there may be potential for forecast-425

ing extreme events. Marine heatwaves, for example, can have profound impacts on bio-426

geochemistry throughout the water column (Burger et al., 2020; Mogen et al., 2022). Prior427

work has demonstrated that dynamical, initialized modelling systems can effectively pre-428

dict heatwaves (Jacox et al., 2022), but has not examined the potential co-occuring bio-429
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geochemical effects which often interact with warm temperatures to redistribute species430

and affect human uses of the ocean. Future work should focus on using dynamical mod-431

eling systems to study the ability to predict ocean biogeochemical extreme events (ocean432

acidification extremes, deoxygenation events), and their connectivity to physical climate433

extremes.434

CESM SMYLE demonstrates high physical and biogeochemical predictive skill mul-435

tiple months in advance in key oceanic regions and frequently outperforms persistence436

forecasts. Our results highlight predictive skill in large scale fisheries regions globally,437

and smaller scale LMEs in the North Pacific. The continued development of ESM fore-438

casting systems and novel observation-based products may allow for improved marine439

management in the coming decades.440

Open Research Section441

The CESM Seasonal to Multiyear Large Ensemble and SMYLE FOSI are available442

at: https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2.smyle.html. The CESM2443

Large Ensemble data are available at: https://www.earthsystemgrid.org/dataset/444

ucar.cgd.cesm2le.output.html445

Argo data were collected and made freely available by the International Argo Pro-446

gram and the national programs that contribute to it. (http://www.argo.ucsd.edu,447

http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing448

System. GOBAI-O2 data are available at https://doi.org/10.25921/z72m-yz67. A preprint449

for the MOBO-DIC summary paper can be found at DOI: essoar.167160635.51342340/v1.450

Shapefiles for Large Marine Ecosystems were found at https://www.sciencebase451

.gov/catalog/item/55c77722e4b08400b1fd8244. Shapefiles for U.N. FAO Fisheries Re-452

gions were found at https://www.fao.org/fishery/en/area/search453

Acknowledgments454

SCM and NSL were supported by the National Oceanic and Atmospheric Administra-455

tion (NA20OAR4310405) and the National Science Foundation (OCE 1752724). SGY456

acknowledges support from the Regional and Global Model Analysis (RGMA) compo-457

nent of the Earth and Environmental System Modeling Program of the U.S. Department458

of Energy’s Office of Biological & Environmental Research (BER) under Award Num-459

ber DE-SC0022070. This work also was supported by the National Center for Atmospheric460

Research, which is a major facility sponsored by the National Science Foundation (NSF)461

under Cooperative Agreement No. 1852977. We also thank the National Center for At-462

mospheric Research Earth System Working Group for their development of invaluable463

software tools used in processing CESM SMYLE: https://github.com/CESM-ESPWG/ESP-464

Lab.465

References466

Albers, J. R., & Newman, M. (2021, April). Subseasonal predictability of the North467

Atlantic Oscillation. Environmental Research Letters, 16 (4), 044024. Re-468

trieved 2023-02-06, from https://iopscience.iop.org/article/10.1088/469

1748-9326/abe781 doi: 10.1088/1748-9326/abe781470

Argo. (2022). Argo float data and metadata from Global Data Assembly Centre471

(Argo GDAC). SEANOE. Retrieved 2023-01-31, from https://www.seanoe472

.org/data/00311/42182/ (Type: dataset) doi: 10.17882/42182473

Ban, Z., Hu, X., & Li, J. (2022, October). Tipping points of marine phytoplankton474

to multiple environmental stressors. Nature Climate Change. Retrieved 2022-475

10-27, from https://www.nature.com/articles/s41558-022-01489-0 doi:476

–15–



manuscript submitted to Earth’s Future

10.1038/s41558-022-01489-0477

Barnston, A. G., Tippett, M. K., Ranganathan, M., & L’Heureux, M. L. (2019,478

December). Deterministic skill of ENSO predictions from the North American479

Multimodel Ensemble. Climate Dynamics, 53 (12), 7215–7234. Retrieved 2023-480

02-03, from http://link.springer.com/10.1007/s00382-017-3603-3 doi:481

10.1007/s00382-017-3603-3482
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Figure S1. Locations of key Large Marine Ecosystems of interest.
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Figure S2. Forecast skill (anomaly correlation coefficient) as a function of forecast lead time

(months) for sea surface temperature in the Pacific, Eastern Central U.N. F.A.O. Fisheries region

for 13 months following initialization. Triangles indicate statistically significant forecast skill.
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Figure S3. Correlation of the monthly seasonal cycle averaged in the observational products

and SMYLE FOSI for (a,d) surface and 300 m temperature (2004-2021), (b,e) surface and 300 m

DIC (2004-2019), and (c, f) surface and 300 m oxygen (2004-2021) in the U.N. F.A.O. fisheries

regions.
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Figure S4. Correlation of the detrended, deseasoned anomalies averaged in the observational

products and SMYLE FOSI for (a,d) surface and 300 m temperature (2004-2021), (b,e) surface

and 300 m DIC (2004-2019), and (c, f) surface and 300 m oxygen (2004-2021) in the U.N. F.A.O.

fisheries regions.
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Figure S5. Same as Figure 4, but for May initialization.
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Figure S6. Same as Figure 4, but for August initialization.
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Figure S7. Same as Figure 4, but for November initialization.
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Figure S8. Same as Figure 4, but for predictability.
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Figure S9. (solid) Forecast skill, (dashed) persistence forecast skill, and (dotted) uninitialized

forecast skill in four global Large Marine Ecosystems for quarterly model intializations over 13

lead-months. Triangles indicate statistically significant skill at the 95% confidence interval.
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Surface Temp. GOA CalCS. Kuroshio Bay of Bengal Greenland Sea Norwegian Sea
0 0.42 0.48 0.08 0.40 0.16 0.21
1 0.41 0.48 0.04 0.36 0.14 0.21
2 0.41 0.49 0 0.29 0.14 0.21
3 0.4 0.49 0.03 0.21 0.14 0.21
4 0.41 0.5 0.05 0.14 0.14 0.21
5 0.41 0.51 0.08 0.08 0.13 0.19
6 0.42 0.5 0.09 0.04 0.12 0.17
7 0.43 0.49 0.08 0.01 0.09 0.16

300m Temp. GOA CalCS. Kuroshio Bay of Bengal Greenland Sea Norwegian Sea

0 0.42 0.48 0.08 0.4 0.16 0.21
1 0.41 0.48 0.04 0.36 0.14 0.21
2 0.41 0.49 0 0.29 0.14 0.21
3 0.4 0.49 0.03 0.21 0.14 0.21
4 0.41 0.5 0.05 0.14 0.14 0.21
5 0.41 0.51 0.08 0.08 0.13 0.19
6 0.42 0.5 0.09 0.04 0.12 0.17
7 0.43 0.49 0.08 0.01 0.09 0.16

Surface DIC GOA CalCS. Kuroshio Bay of Bengal Greenland Sea Norwegian Sea

0 0.44 0.16 0.32 0.17 0.19 0.06
1 0.43 0.16 0.32 0.14 0.22 0.06
2 0.41 0.16 0.32 0.1 0.25 0.06
3 0.41 0.16 0.32 0.04 0.28 0.06
4 0.4 0.16 0.32 0.03 0.3 0.06
5 0.41 0.17 0.33 0.1 0.31 0.06
6 0.42 0.18 0.32 0.16 0.31 0.07
7 0.43 0.19 0.32 0.2 0.29 0.07

300m DIC GOA CalCS. Kuroshio Bay of Bengal Greenland Sea Norwegian Sea

0 0.6 0.28 0.17 0.25 0.18 0.13
1 0.56 0.27 0.16 0.25 0.18 0.13
2 0.51 0.27 0.14 0.25 0.18 0.14
3 0.46 0.26 0.13 0.25 0.18 0.15
4 0.4 0.24 0.13 0.25 0.18 0.16
5 0.35 0.21 0.12 0.24 0.18 0.17
6 0.31 0.18 0.12 0.24 0.18 0.17
7 0.28 0.15 0.12 0.23 0.18 0.17

Surface Oxygen GOA CalCS. Kuroshio Bay of Bengal Greenland Sea Norwegian Sea

0 0.3 0.41 0.04 0.07 0.12 0.26
1 0.32 0.4 0.01 0.1 0.11 0.25
2 0.34 0.4 0.03 0.13 0.11 0.23
3 0.35 0.39 0.04 0.14 0.13 0.2
4 0.36 0.38 0.06 0.14 0.14 0.17
5 0.36 0.38 0.08 0.12 0.15 0.14
6 0.35 0.36 0.08 0.1 0.14 0.12
7 0.33 0.34 0.06 0.07 0.12 0.1

300m Oxygen GOA CalCS. Kuroshio Bay of Bengal Greenland Sea Norwegian Sea

0 0.61 0.22 0.16 0.05 0 0.1
1 0.57 0.24 0.16 0.02 0 0.11
2 0.51 0.26 0.15 0 0 0.11
3 0.45 0.28 0.16 0.03 0.01 0.11
4 0.39 0.3 0.15 0.06 0.02 0.1
5 0.32 0.31 0.13 0.08 0.02 0.09
6 0.27 0.31 0.12 0.11 0.03 0.08
7 0.22 0.3 0.1 0.14 0.04 0.06

Table S1. Correlation (r) of SMYLE FOSI surface and 300 m temperature, DIC, and oxygen

concentration and the Niño3.4 Index in observation-rich large marine ecosystem regions, when

Niño leads by 0-7 months.
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