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Key Points: 

• We developed a water quality risk index (WQRI) that highlights places where watershed-

scale interventions can improve water quality across extremes. 

• Using the WQRI we found that the highest priority areas for interventions in the Cape 

Fear River Basin comprise 16% of the watershed. 

• Our approach can easily be adapted for locally specific water quality concerns and 

tailored to unique event thresholds. 
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Abstract 

Extreme weather conditions are associated with a variety of water quality issues that can pose 

harm to humans and aquatic ecosystems. Under dry extremes, contaminants become more 

concentrated in streams with a greater potential for harmful algal blooms, while wet extremes 

can cause flooding and broadcast pollution. Developing appropriate interventions to improve 

water quality in a changing climate requires a better understanding of how extremes affect 

watershed processes, and which places are most vulnerable. We developed a Soil and Water 

Assessment Tool model of the Cape Fear River Basin (CFRB) in North Carolina, USA, 

representing contemporary land use, point and non-point sources, and weather conditions from 

1979 to 2019. The CFRB is a large and complex river basin undergoing urbanization and 

agricultural intensification, with a history of extreme droughts and floods, making it an excellent 

case study. To identify intervention priorities, we developed a Water Quality Risk Index (WQRI) 

using the load average and load variability across normal conditions, dry extremes, and wet 

extremes. We found that the landscape generated the majority of contaminants, including 90.1% 

of sediment, 85.4% of total nitrogen, and 52.6% of total phosphorus at the City of Wilmington’s 

drinking water intake. Approximately 16% of the watershed contributed most of the pollutants 

across conditions—these represent high priority locations for interventions. The WQRI approach 

considering risks to water quality across different weather conditions can help identify locations 

where interventions are more likely to improve water quality under climate change. 

 

Plain Language Summary 
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Extreme weather is associated with water quality problems that harm humans and aquatic life. 

Dry conditions can cause higher pollution concentrations and harmful algal blooms, while wet 

conditions can cause flooding and increase pollution from urban and agricultural land. 

Developing appropriate interventions to improve water quality requires a better understanding of 

how extreme weather affects watersheds. We developed a water quantity and quality model for 

the Cape Fear River Basin in North Carolina, USA, representing current land use, pollution 

sources, and weather conditions from 1979 to 2019. This large and complex river basin has 

extensive agriculture and growing urban centers, and has a history of both droughts and floods. 

To identify intervention priorities, we developed a Water Quality Risk Index based on pollution 

amounts and variability under normal, dry, and wet conditions. We found that the landscape 

generated most pollution in waterways, including 90.1% of sediment, 85.4% of nitrogen, and 

52.6% of phosphorus at the City of Wilmington’s drinking water intake. Approximately 16% of 

the watershed contributed most pollution--these represent high priorities for further investigation. 

Considering pollution risks across weather conditions can help identify the best places to 

implement strategies to improve water quality in a changing climate. 

 

1. Introduction 

A high-quality supply of water is critical to the well-being of both human and natural systems, 

yet these resources face a number of threats. Freshwater makes up <1% of the surface water on 

the planet, yet supports 7-12% of all species, including one third of all vertebrates; many more 

species not restricted exclusively to freshwater habitats depend on these resources for at least 

some part of their life cycle (Abramovitz & Peterson, 1996; Dudgeon et al., 2006; Balian et al., 
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2010). Billions of people rely directly on freshwater, not only for their basic needs, but also for 

fisheries, agriculture, energy production, industry and other uses (Lynch et al., 2016; Pascual et 

al., 2017; Royal C. Gardner & Max Finlayson, 2018). Wetlands are being lost at three times the 

rate of forests (Gardner & Finlayson, 2018) and freshwater biota are declining more rapidly than 

taxa across other environments (Reid et al., 2018). The number of stressors on freshwater 

environments has increased and some threats have intensified, including not only direct loss and 

hydrologic alteration, but also invasive species, infectious diseases, salinization, emerging 

contaminants, and climate change (Reid et al., 2018). Climate change has already altered 23 of 

31 ecological processes that support key freshwater functions, with perturbations from the level 

of genes, to communities, to the environment as a whole (Scheffers et al., 2016). 

Extreme events are associated with a variety of risks related to both water quantity and water 

quality. Extremely wet weather conditions (i.e., flood events) can release pollutants over very 

large areas, posing concern for contamination of surface water and shallow groundwater (Du et 

al., 2020; Schaffer-Smith, 2020). Under extremely dry conditions (i.e., seasonal low flow periods 

or extended droughts), contaminants can become more concentrated in streams with a greater 

potential for harmful algal blooms to occur (Mosley, 2015). These distinct water quality issues 

can both cause harm to aquatic systems, including low dissolved oxygen levels, fish kills, and 

more (Ascott et al., 2016; Blaszczak et al., 2018; Golladay & Battle, 2002; Lake, 2003; Mallin et 

al., 2006; Mosley, 2015). Some watersheds also have persistent water quality issues under 

normal conditions—while these long-term ‘press’ disturbances may not always represent acute 

problems, their effect on environmental degradation and public health cannot be discounted (Frei 

et al., 2021; Lake, 2003).  
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Extreme events are becoming more frequent and severe under climate change (IPCC, 2018). 

Among recent natural disasters, 74% have been related to water, with at least 1 billion people 

impacted by droughts and floods from 2001 – 2018 (UNESCO & UN-Water, 2020). Droughts 

have become more frequent and intense, impacting larger areas for longer durations due to 

human activities (Chiang et al., 2021). Tropical cyclone driven precipitation events over the U.S. 

East Coast have increased by 2 to 4 mm/decade over the last three centuries, with most of the 

increase taking place over just the past 60 years (Maxwell et al., 2021). Climate change is 

expected to worsen the accelerating prevalence of harmful algal blooms (Chapra et al., 2017; 

Paerl & Paul, 2012). These climate-induced impacts to freshwater wetland systems will 

disproportionately impact the lives and livelihoods of vulnerable communities, particularly in 

coastal zones (IPCC, 2018).  

Land use, land management, and appropriation of water resources can exacerbate the impacts of 

extreme events on people and ecosystems even further. Land use changes associated with 

ongoing urban and agricultural expansion, as well as intensification of these land uses, have had 

profound impacts on water and nutrient cycling (Shi et al., 2017; Tong & Chen, 2002). Loss of 

floodplains and coastal wetlands to urbanization and other land uses reduces the capacity of the 

landscape to buffer extreme conditions (Kris A. Johnson et al., n.d.; Narayan et al., 2017). Dams 

and water extraction activities are associated with increased hydrologic drought (Wada et al. 

2013). Urbanization and population growth drive an increase in water use, as well as loadings of 

contaminants to streams (Foley, 2005; McDonald et al., 2011; Paul & Meyer, 2001). Despite the 

growing footprint of urban land use, agriculture is often the dominant water consumer, 

accounting for as much as 92% of the human water footprint (Foley, 2005; Hoekstra & 

Mekonnen, 2012; Power, 2010). Nutrients, sediment, bacteria, heavy metals and other 
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contaminants in runoff from agricultural land uses can substantially reduce water quality (Foley, 

2005; Gordon et al., 2010; Koneswaran & Nierenberg, 2008; Power, 2010). These compounding 

modifications to the water cycle may impose greater stress on water resources in the future 

(Haddeland et al. 2014).  

How more frequent extreme events will impact water quality into the future is not well 

understood. Some previous studies have found that increasing extreme precipitation is 

intensifying erosion, and the delivery of nitrogen and phosphorus (Sinha et al., 2017; Z. Tan et 

al., 2021). More frequent hurricane events are heightening the risks of pollutant transport from 

vulnerable infrastructure and non-point sources, with consequences for both inland and estuarine 

water quality (Paerl et al., 2018; Schaffer-Smith, 2020). Formulating appropriate interventions 

that will deliver durable benefits requires understanding how both extreme dry and wet extreme 

events can affect water quality.  

Strategies that rely on technical solutions or hardened infrastructure alone may not reduce 

vulnerability to droughts (Walker et al., 2022) or floods (Haghighatafshar et al., 2020). For 

example, reliance on built infrastructure for flood protection can cause a ‘levee effect’ where 

development in perceived ‘safe’ areas of floodplains produces a bigger catastrophe when a storm 

exceeds the defense capabilities of protective infrastructure (Di Baldassarre et al., 2009). Most 

current water distribution and treatment infrastructure, sewage, and stormwater management 

systems in the U.S. were designed using event intensity, duration, frequency information that did 

not consider climate and land use change (Wright et al., 2019). For rural areas, hardened 

infrastructure solutions may be less desirable given the high costs of engineering and design, 

permitting, implementation over large land areas, and long-term maintenance (Alves et al., 2018; 

Browder et al., 2019; Hovis et al., 2021; Suttles et al., 2021).  
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Nature-based solutions, such as wetland and forest conservation, restoration, agricultural field 

measures, and managed retreat can play an important role for improving the resilience of 

watersheds to extreme events (Antolini et al., 2020; Johnson et al., 2020; Keesstra et al., 2018; 

Suttles et al., 2021). These solutions may not only be less costly and faster to implement than 

hardened infrastructure solutions, but also may provide additional co-benefits for improved 

access to greenspace and recreation, opportunities for improving economies, as well as benefits 

for fish and wildlife habitat and biodiversity (A.M. Bassi et al., 2021; Chausson et al., 2020; 

DeLong et al., 2021; Keesstra et al., 2018). Among nature-based solutions, floodplain restoration 

is expected to have the greatest benefits for both water quality and flood-risk reduction (Suttles 

et al., 2021). 

Watershed models, such as the Soil and Water Assessment Tool (SWAT), can provide insight 

into how interactions between, landform, soils, land use and climate interact and predict in-

stream flow and water quality across watersheds  (Gassman et al., 2014; J. G. Arnold et al., 

2012). SWAT is one of the most widely used watershed models, and it has been previously 

applied to examine future changes in watershed processes by incorporating climate projections to 

evaluate resulting impacts on water quantity ( Tan et al., 2021; Xu et al., 2019), with fewer 

studies examining water quality (e.g., Ouyang et al., 2018). A number of studies have explored 

contemporary extreme events with SWAT, including a sub-daily model of flash flooding for 

ungaged watersheds in Spain (Jodar-Abellan et al., 2019), examinations of streamflow response 

to climate variability and land use (Li & DeLiberty, 2020; Zhang et al., 2017), exploration of 

how more extreme rainfall has affected erosion and nutrient runoff into the Gulf of Mexico (Z. 

Tan et al., 2021), and assessment of impacts from frequent hurricane activity on water quality 

(Ouyang et al., 2022). While it is a well-established tool to guide placement of BMPs (e.g., 
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Abimbola et al., 2020; Admas et al., 2022; Chiang et al., 2021), SWAT has not been used 

previously to identify priority locations for interventions to improve watershed resilience with 

explicit consideration of both extreme dry and wet conditions.  

As many watersheds are already experiencing more frequent extreme events, retrospective 

analysis of extreme events can help to highlight places where additional attention and mitigation 

strategies may be warranted. The Cape Fear River Basin (CFRB) in North Carolina (NC), USA, 

represents an ideal study location given its dynamic hydrology, with a history of both droughts 

and floods, including 5 distinct 500-year flood events since 2016. A variety of interventions have 

been proposed to help manage water quantity and quality in the watershed, including both 

human-managed infrastructure and nature-based solutions. To evaluate the distribution of water 

quality risks across the basin, we developed a SWAT water quantity and quality model for the 

CFRB, representing contemporary land use and management under weather conditions spanning 

1979-2019. We created a Water Quality Risk Index (WQRI) quantifying hotspot dynamics 

across conditions, and used the WQRI to identify strategic locations where landscape-based 

interventions could improve water quality and enhance the resilience of freshwater systems.  

2. Methods 

2.1 Study area 

The CFRB is the largest river basin fully contained within NC, at >9,100 mi2 (Fig. 1). The CFRB 

is divided into two major physiographic regions. The upper basin is in the Piedmont plateau east 

of the Southern Appalachian Mountains, with rolling topography from 450 – 100 m elevation. 

Below the confluence of the Deep and the Haw Rivers, the Piedmont drops into the lower basin 

on the Atlantic Coastal Plain, with sandy soils that slope gently to meet the Atlantic Ocean. The 
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region is characterized by a humid subtropical climate, with average temperatures ranging from 

−1 °C during the winter to 31.7 °C in the summer. Snow is rare below the mountains, with most 

precipitation falling as rain in the Piedmont (112-122 cm/year) and Coastal Plain (112-142 

cm/year). The CFRB is the most populous watershed in NC, home to growing cities such as 

Greensboro, Durham, Chapel Hill, Fayetteville and Wilmington, with millions of people directly 

dependent on the river for drinking water. Approximately 26% of NC residents, mainly rural 

communities, rely on privately owned shallow groundwater wells which are vulnerable to 

contamination (MacDonald Gibson & Pieper, 2017; Naman & Gibson, 2015). The watershed 

also features outstanding aquatic biodiversity (NatureServe, 2022; NC Wildlife Resources 

Commission, 2015).  
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Figure 1. Landscape hydrography (a) and land use from the National Land Cover Database for 

2019 (b) within the Cape Fear River Basin, North Carolina, USA. Abbreviations: water (WATR), 

non-forested wetland (WETN), forested wetland (WETF),  deciduous forest (FRSD ), mixed forest 

(FRST), evergreen forest (FRSE), range arid (SWRN), range grassland (RNGE), range shrubland 

(RNGB), hay (HAY), row crops (AGRR), urban (URBN). 
 

Water quality and quantity are highly variable in the CFRB. Severe drought in 2007 resulted in 

widespread water supply concerns across the state –  79% of water customers faced restrictions 

and ~600 wildfires occurred in August alone (Davis, 2015). Yet more recently NC has 

experienced 5 distinct 500-year storms between 2016 and 2020, with additional extreme rainfall 

events impacting the CFRB (Davis, 2020). The basin has a long history of water quality issues, 

due in part to excessive nutrient pollution from both point and non-point sources (DeMeester et 

al., 2019; NC Department of Environment & Natural Resources, 2005), including the largest 
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concentrations of concentrated animal feeding operations (CAFOs) in the entire U.S (Brown et 

al., 2020).  

2.2 Watershed Modeling 

2.2.1 Model Setup 

To better understand the dynamics of hydrology and water quality of the CFRB, we developed a 

SWAT model representing contemporary land use, soil and slope, and historical weather 

conditions from 1979-2019 (SWAT version 2012, revision 681). SWAT is a semi-distributed 

hydrologic model that simulates a variety of watershed processes including the water balance, 

plant growth, and sediment and nutrient transport across the landscape and in-stream (Arnold et 

al., 2012). SWAT has been widely used in hydrologic studies and is well-suited to studies of 

agricultural landscapes (Gassman et al., 2014). We modified a SWAT model (SWAT version 

2012, revision 664) originally developed by the U.S. Geological Survey (USGS) South Atlantic 

Water Science Center as part of a study of water availability and water use under population 

growth, land use change and climate change (U.S. Geological Survey, 2018). USGS delineated 

2,928 subbasins comprised by 13,596 hydrologic response units (HRUs) and calibrated the 

model to represent unimpaired flow from 2000-2014.  

Building on this prior work by USGS, we developed a new water quantity and quality model 

incorporating additional elements to capture water storage capacity and water quality in the 

basin. We updated the climate record using 1-km gridded weather data 1979-2019, spanning 

multiple drought periods and large storm events (Thornton et al., 2017). We included reservoirs, 

lakes, ponds and wetlands which store water and process nutrients based on the National 

Wetland Inventory (U.S. Geological Survey, National Geospatial Program, 2018). Contributions 

of flow, sediment, nitrogen and phosphorus from wastewater treatment plants, and other 



 

12 
 

permitted emitters, were incorporated in the model using measured data 1994 – 2019 (NC 

Department of Environmental Quality, Division of Water Resources, 2019), and monthly 

averages for the period preceding recordkeeping. We also incorporated annual average 

atmospheric nitrogen deposition (National Atmospheric Deposition Program (NRSP-3), 2020). 

Nutrient and sediment loads from non-point sources were represented principally through land 

management practices, including cropping patterns and rotations, tillage, fertilizer and manure 

applications on crops, pastures, pine plantations, and lawns. We used a mass balance approach to 

parameterize fertilizer and manure applications considering fertilizer sales data (John & 

Gronberg, 2017), manure generated by grazing livestock (USDA-NASS, 2018), and by animals 

in concentrated animal feeding operations (College of Agriculture and Life Sciences, NC State 

University, 2019; Environmental Working Group & Waterkeeper Alliance, 2016; NC 

Department of Environmental Quality, 2019). Given differences in the physiography and land 

use in the Piedmont and Coastal Plain, we parameterized these regions separately. More detail 

regarding model development is provided in the Supporting Information.  

2.2.2 Model Calibration and Validation 

We calibrated and validated the model using observed streamflow and water quality monitoring 

records for the period 2000-2019 using a MATLAB routine integrated with SWAT; daily 

observations from 2010-2019 were used for calibration, while we retained observations from 

2000-2009 for validation. The calibration and validation periods were chosen to represent a 

range of hydrologic flow conditions, as well as high and low loads of sediment and nutrients. 

Daily streamflow data spanning 2000-2019 were available at USGS gage #02105769 (Cape Fear 

River at Lock and Dam #1 near Kelly, NC). Loads of water quality parameters were calculated 

using streamflow measured at USGS gage #02105769 and in-stream concentrations measured at 
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nearby state monitoring stations using available data through March 2020. Sediment data 

retrieved from the Water Quality Portal was provided from NC Division of Water Resources’ 

monitoring station #B8349000, while total nitrogen and total phosphorus were collected from the 

NC Department of Water Quality’s monitoring station #B8350000, both near Lock and Dam #1. 

Observations of total nitrogen in most cases were aggregated from individual measurements of 

total Kjeldahl nitrogen and inorganic nitrogen (nitrite and nitrate) recorded on the same day. For 

days with missing observations, we estimated daily constituent loads using the LOADEST model 

(regression model #0, Runkel et al., 2004); there were 256 true measurements of daily sediment 

(3.32%), 388 true measurements of daily total nitrogen (9.38%), and 308 true measurements of 

daily total phosphorus (5.13%) available. We used all available data to generate load estimates, 

and retained the load estimates 2000-2019 for calibration and validation of the model. Beginning 

with flow, followed by sediment, phosphorus, and nitrogen, calibration was performed 

iteratively, changing one parameter at a time. Sensitive parameters were altered in order to first 

achieve satisfactory hydrologic calibration, and then water quality calibration according to best 

practices for model evaluation (Moriasi et al., 2007; Arnold et al., 2012; Scavia et al., 2017). We 

relied on metric-based approaches for calibration and validation against streamflow and load 

estimates, including using the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE) 

and percent bias (Moriasi et al., 2007; Arnold et al., 2012). We also employed graphical 

approaches to ensure that SWAT predictions generally captured the trends of true observations 

measured at in-stream gages. Additional details are included in the Supporting Information.  

2.2.3 Simulations 

To assess hydrology and water quality dynamics across many conditions, we ran a daily 

simulation with weather conditions from 1979-2019, with the first three years serving as a 
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warmup period. To evaluate the relative importance of point vs. non-point sources of water 

quality contaminants, we also ran the model without point sources for 2010-2019.  

2.3 Assessing the Importance of Point and Non-point sources 

We examined the relative importance of point and non-point sources in terms of the average and 

standard deviation (sd) of the load from each source by month for 2010-2019. We also separately 

examined an extremely dry year (2011) and an extremely wet year (2016). These two extreme 

years were characterized by consistent departures from normal flows at both USGS gage 

#02102500 Cape Fear River at Lillington in the middle basin, and USGS gage #02105769 at 

Lock and Dam #1 relative to the entire period of record at these in-stream gages (National Water 

Quality Monitoring Council, 2021; Read et al., 2017).  

2.4 Tracking Landscape Source Hotspots Across Conditions 

Watershed-scale, nature-based solutions implemented on the landscape are expected to help 

improve water quality under both extreme dry and wet conditions, and also have benefits for 

moderating water quantity; therefore we focused the bulk of our analysis on landscape-derived 

sediment and nutrient source hotspots across conditions. Landscape sources include non-point 

source pollution, as well as applications of manure from permitted CAFOs, but do not include 

point-source dischargers like wastewater treatment plants and industrial emitters.  

To better understand landscape source dynamics, we examined the spatial distribution of 

landscape-derived sediment and nutrient hotspots under dry, normal, and wet conditions, 

respectively. We defined climate extremes for each subbasin, respectively, based on runoff 

amounts generated over the full simulation period. We defined ‘dry’ conditions as the lower 25% 

of runoff volumes, ‘normal’ conditions as the middle 50%, and ‘wet’ conditions as the upper 
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25% of runoff. For each subbasin, we calculated the mean and sd of the load for each parameter 

under each climate condition. To facilitate comparisons across parameters and conditions, we 

standardized each measure, generating a z-score (eq. 1) with a mean at zero and sd equal to 1, 

capped at 3.5 sd to avoid undue influence from outliers. Z-scores are widely used to compare 

measurements with different scales to one another (Dixon, 1960), and can be used to create 

composite scores incorporating multiple factors (Song et al., 2013).  

 
𝑧 =

x − 𝑥̅

𝜎
 

(1) 

Where:  

z = z-score 

𝑥 = observed value 

𝑥̅ = population mean 

𝜎 = population standard deviation 

 

By eq. 1 the average load z-score for sediment under dry conditions would be calculated as: 

 

𝑧𝑎𝑣𝑔(𝑠𝑒𝑑)𝑑𝑟𝑦 =
x(sed)𝑑𝑟𝑦 − 𝑥̅(𝑠𝑒𝑑)𝑑𝑟𝑦

𝜎(𝑠𝑒𝑑)𝑑𝑟𝑦
 

Where:  

𝑧𝑎𝑣𝑔(𝑠𝑒𝑑)𝑑𝑟𝑦= average load z-score under dry conditions 

𝑥 = observed value of the average load under dry conditions 

𝑥̅ = population mean of the average load under dry conditions 

𝜎 = population standard deviation of the average load under dry conditions 

 

By eq. 1, the sd load z-score would be calculated as: 

 

𝑧𝑠𝑑(𝑠𝑒𝑑)𝑑𝑟𝑦 =
x(sed)𝑑𝑟𝑦 − 𝑥̅(𝑠𝑒𝑑)𝑑𝑟𝑦

𝜎(𝑠𝑒𝑑)𝑑𝑟𝑦
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Where:  

𝑧𝑠𝑑(𝑠𝑒𝑑)𝑑𝑟𝑦= sd load z-score under dry conditions 

𝑥 = observed value of the sd load under dry conditions 

𝑥̅ = population mean of the sd load under dry conditions 

𝜎 = population standard deviation of the sd load under dry conditions 

 

2.5 Identifying Intervention Priorities with a Water Quality Risk Index 

Ideally, intervention strategies such as nature-based solutions, would be implemented at 

locations where they improve water quality under a range of conditions, representing no regrets 

investments of time, effort, and expense. Conservation of remaining high quality forests, 

floodplains, and wetlands is important for avoiding further loss of natural capacity to purify 

water and buffer communities downstream from droughts and floods. Restoration, either through 

landcover change or floodplain reconnection, can also add or enhance natural capacity.  

To identify priority locations for interventions to enhance water quality and resilience under 

ongoing climate change, we developed a Water Quality Risk Index (WQRI) considering the 

relative amount, or ‘intensity’ and variability of sediment, total nitrogen, and total phosphorus 

loads under dry, normal, and wet conditions for all subbasins (Fig. 2). We considered the 

intensity (derived from the average load) and the variability (derived from the sd load) to be 

distinct aspects useful for characterizing the relative level of disturbance from contaminants 

across the watershed. Firstly, for each subbasin and each parameter we generated an intensity 

score by summing the average load z-scores across conditions (eq. 2). We generated a variability 

score for each subbasin and each parameter similarly using the sd load z-scores (eq. 3). Next, we 

generated a composite intensity score for each subbasin by summing the intensity z-scores across 

parameters (eq. 4), and a composite variability score in the same fashion based on variability z-
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scores (eq. 5). Finally, for each subbasin we calculated an overall WQRI as the simple average of 

the composite intensity z-score and the composite variability z-score (eq. 6). At each step where 

a z-score was calculated, the value was capped at 3.5 sd in order to limit undue influence from 

outliers. 
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Figure 2. A water quality risk index (WQRI) was calculated for each subbasin in the Cape 

Fear River Basin using a series of z-score calculations and aggregations to account for distinct 

aspects of water quality risk for different parameters under different weather conditions (eq. 1-

6). For each parameter, first a z-score (mean = 0, sd = 1, capped at 3.5 sd) was calculated for 

the load mean and standard deviation (sd) for each condition for each parameter. Intensity and 

variability for each parameter were calculated by summing z-scores across conditions. 

Composite intensity and variability scores were calculated by summing intensity and 

variability z-scores, respectively, across parameters. Finally, a WQRI was generated for each 

subbasin by taking a simple average of the composite intensity z-score and the variability z-

score. ‘Dry’ conditions were defined as the lower 25% of runoff, while ‘normal’ constituted 

the middle 50%, and ‘wet’ conditions were represented by the upper 25% based on weather 

1982-2019. Abbreviations: total nitrogen (TN), total phosphorus (TP). 
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𝐼(𝑝) =  ∑ 𝑧𝑎𝑣𝑔

3

𝑐=1

(𝑝)𝑐 

(2) 

Where:  

I = intensity score 

𝑐 = condition (1 = dry, 2 = normal, 3 = wet) 

𝑧𝑎𝑣𝑔= average load z-score 

𝑝 = parameter 

 

By eq. 2, the intensity score for sediment would be calculated as: 

𝐼(𝑆𝑒𝑑) =  ∑ 𝑧𝑎𝑣𝑔(𝑆𝑒𝑑)𝑐

3

𝑐=1

 

Where:  

I (Sed) = sediment intensity score 

𝑐 = condition  (1 = dry, 2 = normal, 3 = wet) 

𝑧𝑎𝑣𝑔(𝑆𝑒𝑑)𝑐= average sediment load z-score for a given condition 

 

 

𝑉(𝑝) =  ∑ 𝑧𝑠𝑑

3

𝑐=1

(𝑝)𝑐 

(3) 

Where:  

V = variability score 

𝑐 = condition  (1 = dry, 2 = normal, 3 = wet) 

𝑧𝑠𝑑= sd load z-score 

𝑝 = parameter 

 

By eq. 3, the variability score for sediment would be calculated as follows: 
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𝑉(𝑆𝑒𝑑) =  ∑ 𝑧𝑠𝑑(𝑆𝑒𝑑)𝑐

3

𝑐=1

 

Where:  

V (Sed) = sediment variability score 

𝑐 = condition (1 = dry, 2 = normal, 3 = wet) 

𝑧𝑠𝑑(𝑆𝑒𝑑)𝑐= sd sediment load z-score for a given condition 

 

 𝐶𝐼 = 𝑧𝐼(𝑆𝑒𝑑) + 𝑧𝐼(𝑇𝑁) + 𝑧𝐼(𝑇𝑃) (4) 

Where:  

CI = composite intensity score 

zI(Sed) = z-score of sediment intensity 

zI(TN) = z-score of total nitrogen intensity 

zI(TP) = z-score of total phosphorus intensity 

 

 𝐶𝑉 = 𝑧𝑉(𝑆𝑒𝑑) + 𝑧𝑉(𝑇𝑁) + 𝑧𝑉(𝑇𝑃) (5) 

Where:  

CV = composite variability score 

zV(Sed)= z-score of sediment variability 

zV(TN)= z-score of total nitrogen variability 

zI(TP)= z-score of total phosphorus variability 

 

 
𝑊𝑄𝑅𝐼 =

𝑧𝐶𝐼 + 𝑧𝐶𝑉

2
 

(6) 

Where:  

WQRI = water quality risk index 

zCI = z-score of composite intensity 

zCV = z-score of composite variability 
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The approach we employed to generate the WQRI is similar to other assessments aimed at 

highlighting outliers and spatial priorities considering multiple factors. For example, The Nature 

Conservancy identified locations expected to be resilient to climate change that will support high 

biodiversity into the future based on a variety of biophysical and condition metrics using a z-

score based approach (Anderson et al., 2014; Rebecca Benner et al., 2014). The Center for 

Disease Control’s social vulnerability index (SVI) is another example aimed at measuring 

communities’ ability to respond and recover after a natural disaster (Flanagan et al., 2018; 

Flanagan et al., 2011). The SVI uses percentile ranking to put 15 socioeconomic metrics on the 

same scale, and gives equal weighting to each when aggregating them into four themes, finally 

integrating the theme scores into an overall composite index (Flanagan et al., 2018; Flanagan et 

al., 2011).  

 

3. Results 

3.1 Model calibration and validation results 

The final calibrated model demonstrated very good daily performance for hydrology and very 

good to excellent monthly performance for water quality parameters over the calibration period 

(Table 1; D. N. Moriasi et al., 2007). Weaker performance during the validation period is not 

surprising given that we set up the model with contemporary land use and management, and 

many changes have occurred in the watershed over 20 years. Within the U.S., the southeast has 

experienced the most rapid recent land use change, particularly forest loss to suburban sprawl 

(Gaines et al., 2022; Homer et al., 2020; Georgina M. Sanchez et al., 2020; Sleeter et al., 2018). 

NC, and particularly the Cape Fear Basin, has some of the highest urban and suburban growth 
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rates in the country (U.S. Census Bureau, 2020) and is undergoing agricultural intensification, 

notably via expansion of swine CAFOs from the 1980s through the early 1990s and ongoing 

growth of poultry CAFOs (Environmental Working Group & Waterkeeper Alliance, 2016; 

Miralha et al., 2021; Montefiore et al., 2022).  

We reported calibration statistics for the period January 2010 through December 2018 (Table 1, 

Figures S17-S20). After Hurricane Florence in September 2018, wet weather persisted through 

the spring of 2019 with extended high flow from Lillington down to the locks and dams. The 

locks and dams on the lower Cape Fear River may back water up behind them for extended 

periods of time—Lock and Dam #3 in particular is considered to be a dampening structure that 

causes backwater effects that may not be captured by SWAT (DeMeester et al., 2019). It is also 

possible that operations at the reservoir associated with the Shearon Harris nuclear facility 

affected flows. Additional calibration and validation details, including calibrated parameters and 

plots used in graphical model evaluation, are provided in the Supporting Information. 

Table 1. Evaluation of the Cape Fear River Basin Water Quantity and Quality Model for the 

calibration period (2010-2018) and the validation period (2000-2009) against measurements 

collected at in-stream gages. Flow records were sourced from USGS gage 02105769 Cape 

Rear R at Lock #1 near Kelly, NC. Sediment records were gathered from the NC Division of 

Water Resources’ monitoring station #B8349000, while total nitrogen and total phosphorus 

were collected from the NC Department of Water Quality’s monitoring station #B8350000 

Cape Fear River at Lock 1 Near Kelly. Loads for water quality parameters were estimated 

using LOADEST. Flow was evaluated at a daily timestep, while water quality parameters 

were evaluated at a monthly timestep.  
  

Calibration (Jan 2010 – Nov 2018) 
 

Validation (Jan 2000 – Dec 2009) 
  

Flow 
 

Sediment TN TP 
 

Flow 
 

Sediment TN TP 

R2 
 

0.78 
 

0.86 0.74 0.71 
 

0.57 
 

0.48 0.59 0.42 

NSE 
 

0.76 
 

0.79 0.74 0.69 
 

0.53 
 

-0.49 0.59 0.31 

PBIAS 
 

1.72 
 

0.86 0.28 4.17 
 

-0.17 
 

69.41 3.5 15.21 
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3.2 Relative importance of point source discharge and landscape sources 

Analysis of the sources of in-stream flow and contaminant loads at Lock and Dam #1 revealed 

that the landscape represented the major source of flow and contaminant contributions from 

2010-2019 (Table 2). Over the long-term we did not observe notable seasonal variation in the 

contributions of landscape sources and permitted discharge into rivers, yet their relative 

importance did change under extreme wet or dry conditions. Effluent from permitted wastewater 

treatment plants and industrial dischargers accounted for an average of 9.7 % of the cumulative 

monthly flow at Lock and Dam #1; they accounted for as little as 0.7 % of flow during an 

extremely wet year and as much as 54.57 % in an extremely dry year. Non-point sources 

generally accounted for the vast majority of the cumulative monthly sediment and nutrient loads 

at Lock and Dam #1. During an extremely wet year, landscape sources contributed as much as 

99.30 % of the monthly flow, 98.89 % of sediment, 97.69 % of total nitrogen, and 81.21 % of 

total phosphorus. During an extremely dry year in 2011, point sources contributed as much as 

80.05 % of the monthly sediment, 84.50 % of total nitrogen, and 75.70 % of total phosphorus 

(Table 2).  

Table 2. Average percentage of cumulative monthly flow, sediment, total nitrogen (TN) and total 

phosphorus (TP) contributions from permitted effluent and landscape sources measured at Lock 

and Dam #1 across conditions 2010-2019. Standard deviations are indicated by +/-.  
Point source discharges 

 
Landscape sources 

 
Flow Sediment TN TP 

 
Flow Sediment TN TP 

All data 9.66 9.94 16.77 47.57 
 

90.34 90.06 83.23 52.43 

+/-2.55 +/-4.58 +/-6.14 +/-6.17 
 

+/-2.55 +/-4.58 +/-6.14 +/-6.17 

Dry year 

(2011) 
38.05 61.85 51.09 67.67 

 
61.95 38.15 48.91 32.33 

+/-11.23 +/-16.32 +/-20.32 +/-5.38 
 

+/-11.23 +/-16.32 +/-20.32 +/-5.38 

Wet year 

(2016) 

6.70 10.59 24.91 46.10 
 

93.30 89.41 75.09 53.90 

+/-4.82 +/-7.28 +/-15.83 +/-16.88   +/-4.82 +/-7.28 +/-15.83 +/-16.88 
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3.3 Landscape water quality hotspot dynamics 

Landscape hotspots differed spatially by pollutant when examining long-term average loads 

generated under weather conditions from 1982-2019 (Fig. 3). Sediment was most often generated 

in urban areas, particularly in the Piedmont (upper basin), while nutrients were most often 

sourced from working lands, particularly in the Coastal Plain (mid-lower basin). Phosphorus 

loads were generally high both in cultivated crop areas and urban areas (Fig. 3).  
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Figure 3. Long-term average daily runoff, sediment, total nitrogen (TN) and total phosphorus 

(TP) loads varied spatially across the Cape Fear River Basin based on contemporary land use 

and historical weather conditions from 1982-2019. 

 

Examination of relative contributions under extremely dry, normal, and extremely wet conditions 

(Fig. 4, 5) revealed distinct patterns across pollutants compared to long-term average loads (Fig. 

3). For example, important sediment source areas in terms of the relative average load were quite 

widespread under normal conditions, and more spatially concentrated around urban centers, and 
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in the Northeast Cape Fear under extreme dry and wet conditions (Fig. 4). The patterns of 

importance in terms of relative sediment load variability were similar (Fig. 5). While the 

Piedmont generated relatively low nutrient loads overall (Fig. 3), relative contributions of 

nitrogen from the Piedmont were more important under extreme dry conditions (Fig. 4), though 

less variable than the contributions from the Coastal Plain (Fig. 5). Under normal conditions, the 

subbasins contributing relatively large amounts of phosphorus were broadly distributed 

throughout the basin, while a smaller number of localized hotspots emerged under extremes 

within urban areas, the lower Cape Fear River mainstem, and the Northeast Cape Fear (Fig. 4). 

Subbasins with high intensity based on average load typically also demonstrated greater 

variability based on load sd (Fig. 4, 5).  
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Figure 4. The relative intensity of contaminant loads across the Cape Fear River Basin varied 

by parameter across weather conditions 1982-2019, determined by calculating standardized z-

scores of the average load for each, capped at 3.5 sd. Abbreviations: total nitrogen (TN), total 

phosphorus (TP).  
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Figure 5. The relative variability of contaminant loads across the Cape Fear River Basin 

varied by parameter across weather conditions 1982-2019, determined by calculating 

standardized z-scores of the load standard deviation for each, capped at 3.5 sd. Abbreviations: 

total nitrogen (TN), total phosphorus (TP). 

 

WQRI scores across the basin identified locations that merit attention based on their relatively 

high intensity and variability of sediment, nitrogen, and phosphorus contributions across 

conditions (Fig. 6). Subbasins with a low WQRI likely represent high priorities for land 
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protection to maintain functioning floodplains, water purification, and habitat that supports 

biodiversity as well as high quality water community water supplies (e.g., Fig. 6a). Conversely, 

subbasins with a high WQRI represent high priorities for interventions, such as restoration, 

agricultural field measures, or urban green and grey infrastructure strategies to improve water 

quality, depending on local land use and management conditions (e.g., Fig. 6b). Many such 

strategies could also yield benefits for flood-risk reduction and water provisioning during 

droughts (Chausson et al., 2020; DeLong et al., 2021; Griscom et al., 2017; Kousky et al., 2013). 

We found that the highest risk regions (WQRI >1) comprised 16.4% of the watershed. 
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Figure 6. A water quality risk index (WQRI) summarizing landscape pollution hotspot 

dynamics across conditions highlighted locations in the Cape Fear River Basin that warrant 

further investigation. Subbasins with a low WQRI tend to have relatively in-tact natural land 

uses and represent priority conservation areas (a). Subbasins with a high WQRI tend to have a 

high degree of urban or agricultural land use, and represent candidates for interventions (b). 
Abbreviations: water (WATR), non-forested wetland (WETN), forested wetland (WETF),  deciduous 

forest (FRSD ), mixed forest (FRST), evergreen forest (FRSE), range arid (SWRN), range grassland 

(RNGE), range shrubland (RNGB), hay (HAY), row crops (AGRR), urban (URBN).  
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4. Discussion 

4.1 Utility of water quality risk index relying on watershed modeling 

We developed the first SWAT water quantity and quality model for the entirety of the CFRB, 

with very good to excellent performance for flow and water quality parameters. We examined 

risks to water quality from landscape sources, taking into account the intensity and variability of 

pollution loads for multiple contaminants across extremely dry, normal, and extremely wet 

conditions 1979-2019, presenting a new application of SWAT model results. The WQRI 

revealed water quality risks that were not captured by long-term average estimated loads 

predicted by SWAT– notably in swaths of the upper and middle basin outside of urban centers 

(Fig. 3; Fig. 6). The overall WQRI and the underlying load intensity and variability scores for 

specific contaminants under dry, normal, and wet conditions shed light on the drivers of water 

quality issues, help avoid degradation of more resilient subbasins, and help select appropriate 

interventions to reduce water quality issues.  

Our finding that the vast majority of contaminants in CFRB come from the landscape is 

consistent with previous SWAT-based assessments in the basin. A previous study of the lower 

CFRB found that while the upper basin contributed 50% of the total nutrient load at Lock and 

Dam #1, land applications of fertilizers and manures below Jordan Lake and the Deep River 

accounted for 70% of locally generated nutrients and 35% of the total load, while just 15% of the 

total load was derived from point sources (RESPEC, 2015). Similarly a previous analysis found 

that 70% of the total load of phosphorus load in the Northeast Cape Fear River was due to 

erosion (Narayan et al., 2017). A sub-daily model of the Jordan Lake Watershed in the upper 
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basin found that overall nutrient loads decreased from 1997-2010 due to reductions in loads from 

point sources and rural land uses, yet urban landscape  loads increased over the same period 

(Tetra Tech, 2014). 

The spatial patterns of important landscape source areas we identified in CFRB also agree with 

other existing data. For example USGS SPARROW model identified sediment loads that were 

generally greater in the Piedmont, particularly urban areas and disturbed land, while nutrient 

loads were generally greater in the lower basin (Gurley, Garcia, Hopkins, et al., 2019; Gurley, 

Garcia, Terziotti, et al., 2019). The high risk hotspots that we identified with the WQRI overlap 

spatially with known surface water impairments, including surface waters near urban centers 

throughout the basin, the Jordan Lake Watershed, and a number of tributaries to the Northeast 

Cape Fear including Limstone Creek, Stocking Head Creek, Long Creek and Burgaw Creek (NC 

Department of Environmental Quality, Division of Water Resources, 2020). High risk hotspots 

also track with regions where groundwater nitrate likely exceeds the standard of 10 mg/L based 

on well monitoring data and modeling (Messier et al., 2014).  

The CFRB SWAT model and our baseline model results provide vital information for ungaged, 

and poorly monitored areas of CFRB, with important insights for public health and ecosystem 

health. Given strong alignment between nitrate exceedances and high-risk landscape hotspots we 

identified, our model can provide information for communities that lack groundwater monitoring 

data. Groundwater nitrate levels as low as 2.5 mg/L may cause significant health impacts (De 

Roos et al., 2003; M. H. Ward et al., 1996; Mary H. Ward et al., 2005; Weyer et al., 2001). Our 

results also can provide new information regarding many reaches which currently have 

‘insufficient information to make a determination’ about impairment status (NC Department of 

Environmental Quality, Division of Water Resources, 2020). In the upper basin, this includes 
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sections of both the Haw and the Deep Rivers, in addition to Little Buffalo Creek and Carrs 

Creek near Sanford. In the mid-basin, the Little River north of Ft. Liberty (formerly known as Ft. 

Bragg), and Rockfish Creek have undetermined status. Relevant reaches in the lower basin 

include much of the upper Northeast Cape Fear, as well as tributaries to the Black River such as 

Colly Creek, Greater Coharie and Little Coharie Creeks. Reach specific outputs from the CFRB 

SWAT model may be useful in targeting future surface water monitoring efforts by state and 

federal agencies, as well as volunteer groups. Notably, stream gages and other surface water 

monitoring data tend to be sparse near more socioeconomically disadvantaged communities in 

the CFRB (Centers for Disease Control and Prevention/ Agency for Toxic Substances and 

Disease Registry/ Geospatial Research, Analysis, and Services Program, 2016; National Water 

Quality Monitoring Council, 2021), which are more likely to be impacted by extreme events 

including flooding (Schaffer-Smith et al., 2020).  

4.2 Limitations 

Typically there are substantial uncertainties associated with watershed models and their 

predictions, which can be grouped into model uncertainty, input data uncertainty, and parameter 

uncertainty (Athira et al., 2018; Moges et al., 2020). We relied on the SWAT 2012 source code, 

without modifications, yet it is possible that the SWAT model does not capture all processes 

relevant to water quantity and quality in the CFRB, or that simplifications do not adequately 

represent how these processes function locally. We expect that input data uncertainty is the 

greatest source of uncertainty in our model, particularly for management decisions on private 

lands. We compiled the best available empirical data, literature, and guidance to establish our to 

initial parameter values, yet there is limited knowledge of actual management decisions by 

private landowners, which are influenced by many social and psychological factors in addition to 
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regulations and best management practices (O’Connell & Osmond, 2022). While we did 

separately parameterize the Piedmont and Coastal Plain regions in the model to account for 

major biophysical differences, actual in-field management practices vary not only spatially but 

also year-to-year, given changing constraints and incentives for individual operators. Empirical 

data also may have substantial uncertainty; for example, errors in water quality observation data 

can occur during water sampling in the field, during analysis in the lab, and during 

recordkeeping and data cleaning and processing to produce a complete time series from sparse 

sampling events (McMillan et al., 2012; Rode & Suhr, 2007).  

There are notable limitations relevant to simulating extreme events and climate change in 

watershed models. A recent assessment determined that underlying equations used by most 

hydrological models are pushed to their limits for contemporary extreme precipitation conditions 

(La Follette et al., 2021). Advances in watershed model development, calibration and validation 

methods are ongoing, offering refinements that could improve the use of SWAT for studying 

watershed resilience to climate change. For example, a recent study by Shen et al. (2022) 

provides strong evidence that split sample testing is not the most robust option for hydrologic 

model development, but rather found that using the full period of available data for calibration 

resulted in superior model performance. Wellen et al. (2014) implemented state-specific 

parameters in modeling of two watersheds near Lake Ontario and found that this improved 

predictions under extreme high flows. Dong et al. (2019) used a season-specific multi-site 

calibration to tailor a SWAT model of the Hamilton Harbour Watershed in southern Ontario, 

Canada. This study of the CFRB is part of a growing literature applying SWAT to explore the 

effect of extreme events on water quantity and quality. As interest in this topic grows, so too will 

guidance for appropriate model development and analysis methods.  
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4.3 Transferability 

Our approach using watershed modeling and the WQRI can be applied in other watersheds to 

identify regions that present water quality issues across conditions, which may merit further 

study and interventions. The use of standardized z-scores to compare among distinct water 

quality risks and calculate an overall WQRI is transferrable to any watershed’s local context and 

weather conditions. We used simple cutoffs for the lower and upper percentiles of runoff to 

separate dry and wet extremes from normal conditions, but identification of extreme conditions 

could be customized based on local knowledge and key thresholds relevant to basin-specific 

water management or ecological concerns. We weighted all contaminants and all climate 

conditions equally, but the WQRI could easily be adjusted to incorporate weights if specific 

conditions, or specific contaminants, are of greater concern in a given region. For example, The 

Nature Conservancy’s resilient and connected network assessment assigned higher weights to 

some variables when creating composite scores (Anderson et al., 2014). To date a small number 

of studies have examined water quality under extremes with SWAT, but given the proliferation 

of watershed modeling, our analysis can be replicated for other basins with existing models. 

4.4 Solutions to address water quality issues and improve resilience to extremes 

Following on recent years of volatile weather conditions, including 5 distinct 500-year storm 

events within a 5-year period, NC is exploring a variety of options to improve resilience across 

the entire state. Large investments planned for modeling studies and increases in funding for 

conservation and restoration programs aimed at reducing flood-risk represent a golden 

opportunity to select interventions that also improve the health and resilience of watersheds more 

holistically. Nature-based solutions (e.g., wetland and forest restoration, field measures that 

improve soil quality) as demonstrated by Keesstra et al. (2018) could provide substantial benefits 



 

36 
 

including buffering communities from flooding (Acreman & Holden, 2013; Antolini et al., 2020; 

Sutton-Grier et al., 2015), augmenting water supply during droughts (Acreman & Holden, 2013), 

carbon sequestration, providing plant and wildlife habitat (Fargione et al., 2018; Griscom et al., 

2017), recreation opportunities (Chausson et al., 2020), and more.  

The results of this study can inform policies and programs to implement nature-based solutions 

in the CFRB. Protections on riparian buffers are a widely used strategy to protect surface water 

quality (Cole et al., 2020; Lovell & Sullivan, 2006). Some basins in NC have regulations in place 

to protect riparian buffers from 50’ – 200’ around the margins of surface water features, but in 

the CFRB only the Jordan Lake watershed in the Research Triangle area (18.2% of the basin) is 

subject to a buffer rule (NC Conservation Network, 2016). Buffer protections could be an 

important strategy to avoid compromising remaining floodplains at-risk of development, 

particularly given high rates of population growth and land use change (Homer et al., 2020; 

Georgina M. Sanchez et al., 2020; U.S. Census Bureau, 2020). The WQRI that we developed 

could be included as part of the criteria for allocating funding towards conservation, restoration, 

and voluntary strategies available through a variety of state programs (e.g., the NC Land and 

Water Fund) and federal programs (e.g., the U.S. Department of Agriculture Conservation 

Reserve Program for privately owned agricultural lands and National Fish and Wildlife 

Foundation grants which apply to both public and private lands). Water quality issues in urban 

areas may be more successfully addressed with watershed-scale interventions rather than projects 

targeting individual stream segments or neighborhoods (Walsh et al., 2005). Our approach can 

support watershed planning and financing schemes for larger projects with cost-sharing and 

benefits for multiple jurisdictions. There is already precedent in the neighboring Neuse River 

Basin for nutrient trading schemes for permitted dischargers (Phthisic, 2018), creative 
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partnerships between local governments and conservation groups such as the Upper Neuse River 

Basin Association (Upper Neuse River Basin Association, 2021) and the Upper Neuse Clean 

Water Initiative, which relied on a ‘revenuesheds’ approach to raise millions of dollars for upper 

basin conservation through a fee levied in the City of Raleigh (Patterson et al., 2012). 

Additional landscape-based strategies can also be considered to improve water quality in the 

CFRB. Land applications of manure are subject to nutrient management plans, yet evidence 

suggests that these are not always followed in practice due to a variety of constraints (Cabot & 

Nowak, 2005; Osmond et al., 2015; Tao et al., 2014), and application above plant nutrient 

requirements can occur even while following nutrient management plan protocols (Long et al., 

2018). Typically, agronomic rate limits are based on nitrogen, but some states have implemented 

nutrient limits based on phosphorus (Bradford et al., 2008; Sharpley et al., 2012). Phosphorus-

based limits could be an appropriate intervention, given high existing legacy phosphorus 

concentrations (Wegmann et al., 2013); of statewide soil samples from 2016-2018, over 50 % 

had ‘very high’ phosphorus (Mehlich-3 soil test extractant) and additional phosphorus 

applications would not increase yields for 84% of the fields tested (Gatiboni et al., 2020). In the 

Neuse Basin, the implementation of a nutrient credit and trade system successfully reduced water 

quality issues and led to headwater protection that also provides flood storage, and other benefits 

(Phthisic et al., 2018; Walls & Kuwayama, 2019). Incentive programs can complement 

regulations to help reduce losses of sediment and nutrients. Reverse auctions are a popular 

approach that can more rapidly scale payment for services programs (Valcu-Lisman et al., 2017).  

Our focus in this study was on landscape sources of contaminants, yet point sources are also an 

important source of phosphorus, and under very dry conditions they can be the dominant 

contaminant source at Lock and Dam #1, which provides drinking water to the City of 
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Wilmington. Nutrient management in NC is primarily managed through basin-wide water quality 

plans, in addition to a water quality standard specifying no more than 40 ug/L of chlorophyll-a 

for all surface waters (Fresh Surface Water Quality Standards for Class C Waters, 1976). Limits 

on point sources are recommended for specific waterbodies, including the Deep River from 

Randleman Reservoir to Carbonton Dam (NC Department of Environment & Natural Resources, 

2005), the Cape Fear River between Jordan Dam and Buckhorn Dam  as well as between  

Buckhorn Dam and Lock and Dam #3 (NC Department of Environment & Natural Resources, 

2000), and for Jordan Lake within the Haw River Arm and the Upper and Lower New Hope 

River Arms of the reservoir (The Jordan Lake Nutrient Management Strategy, 2009). Updates to 

nutrient criteria and implementation of nutrient limits on point sources, especially during low 

flow periods, could help to improve water quality in the basin under anticipated population 

growth (U.S. Census Bureau, 2020).  

4.5 Future work 

To evaluate the effectiveness of possible strategies to improve water quality, and to determine 

how much intervention may be needed, additional scenario modeling can be performed with the 

CFRB SWAT water quantity and quality model. Scenarios simulating implementation of 

interventions will demonstrate how each type of strategy could alter flow and nutrient loads for 

each subbasin under a range of weather conditions. We expect this will highlight trade-offs 

among strategies and help to identify the places where the greatest potential exists to improve 

water quality, also offering quantitative estimates for moderation of floods and droughts. 

Furthermore, there is a need to consider the impacts of future changes in both climate and land-

use. Urbanization will likely impact water availability in addition to altering contaminant loads 

in the CFRB (Sanchez et al., 2018). For the Neuse Basin, climate and land use change may result 
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in a 30% increase in nitrogen loads by 2070 (Gabriel et al., 2018). The implications of future 

changes in the CFRB can be evaluated through additional land use change and climate change 

SWAT model scenarios.  

 

5. Conclusion 

Taking extreme climate conditions into account in watershed modeling can help highlight 

priority places to improve the resilience of watersheds in terms of both water quantity and 

quality. Conservation and restoration are key strategies that may help to ensure resilient, high 

quality water supplies into the future to support both human and natural communities. In the 

CFRB, the landscape consistently contributes a large amount of contaminants, but ~16% of 

subbasins are the most important contributors across extremely dry, normal and extremely wet 

conditions. These regions merit further attention for actions to improve water quality, and 

hopefully, other aspects of watershed condition. Regions with low WQRI scores that currently 

lack formal protection should be strongly considered for future conservation investment. Our 

straightforward WQRI approach to identify watershed-scale intervention priorities is directly 

translatable to any watershed seeking to increase the resilience of community water resources 

and aquatic ecosystems. The WQRI can easily be adapted based on locally specific concerns, 

including customized definitions of extreme climate conditions, and consideration of relevant 

contaminants of interest.  
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