Alireza Moallemi

and 11 more

In this study we investigate the occurrence of primary biological aerosol particles (PBAP) over all sectors of the Southern Ocean (SO) based on a 90-day dataset collected during the Antarctic Circumnavigation Expedition (ACE) in austral summer 2016-2017. Super-micrometer PBAP (1 to 16 µm diameter) were measured by a wide band integrated bioaerosol sensor (WIBS-4). Low (3σ) and high (9σ) fluorescence thresholds are used to obtain statistics on fluorescent and hyper-fluorescent PBAP, respectively. Our focus is on data obtained over the pristine ocean, i.e. more than 200 km away from land. The results indicate that (hyper-)fluorescent PBAP are correlated to atmospheric variables associated with sea spray aerosol (SSA) particles (wind speed, total super-micrometer aerosol number concentration, chloride and sodium concentrations). This suggests that a main source of PBAP over the SO is SSA. The median fraction of fluorescent and hyper-fluorescent PBAP to super-micrometer SSA is 1.6% and 0.13%, respectively. We demonstrate that the fraction of (hyper-)fluorescent PBAP to total super-micrometer particles positively correlates with concentrations of bacteria and several taxa of phytoplankton measured in seawater, indicating that marine biota concentrations modulate the PBAP source flux. We investigate the fluorescent properties of (hyper-)fluorescent PBAP for several events that occurred near land masses. We find that the fluorescence signal characteristics of particles near land is much more variable than over the pristine ocean. We conclude that the source and concentration of fluorescent PBAP over the open ocean is similar across all sectors of the SO.
The amount of ice versus supercooled water in clouds defines their radiative properties and role in climate feedbacks. Hence, knowledge of the concentration of ice-nucleating particles (INPs) is needed. Generally, the concentrations of INP is found to be very low in remote marine locations allowing clouds to persist in a supercooled state. However, little is known about the INP population in clouds at and around the summertime North Pole. We had expected that concentrations of INPs at the North Pole would have been very low given the distance from open ocean and terrestrial sources coupled with effective wet scavenging processes. Here we show that during summer 2018 (August and September) high concentrations of biological INPs (active at >-20°C) were present at the North Pole. In fact, INP concentrations were sometimes as high as those recorded in mid-latitude locations strongly impacted by highly active biological INPs, in strong contrast to the Southern Ocean. Furthermore, using a balloon borne sampler we demonstrated that INP concentrations were often different at the surface versus higher in the boundary layer where clouds form. Back trajectory analysis suggests that there were strong sources of INPs near the Russian coast, possibly associated with wind-driven sea spray production, whereas the pack ice, open leads, and the marginal ice zone were not sources of highly active INPs. These findings suggest that primary ice production, and therefore Arctic climate, is sensitive to transport from locations such as the Russian coast that are already experiencing marked climate change.

Andrea Baccarini

and 7 more

During summer, the Southern Ocean is largely unaffected by anthropogenic emissions, which makes this region an ideal place to investigate marine natural aerosol sources and processes. A better understanding of natural aerosol is key to constrain the preindustrial aerosol state and reduce the aerosol radiative forcing uncertainty in global climate models. We report the concentrations of gaseous sulfuric acid, iodic acid, and methanesulfonic acid (MSA) together with a characterization of new particle formation (NPF) events over a large stretch of the Southern Ocean. Measurements were conducted on board the Russian icebreaker Akademik Tryoshnikov from January to March 2017. Iodic acid is characterized by a particular diurnal cycle with reduced concentration around noon, suggesting a lower formation yield when solar irradiance is higher. Gaseous MSA does not have a diurnal cycle and measured concentrations in gas and condensed phase are compatible with this species being primarily produced via heterogeneous oxidation of dimethyl sulfide and subsequent partitioning into the gas phase. We also found that NPF in the boundary layer is mainly driven by sulfuric acid but it occurred very rarely over the vast geographical area probed and did not contribute to the CCN budget in a directly observable manner. Despite the near absence of NPF events in the boundary layer, Aitken mode particles were frequently measured, supporting the hypothesis of a free tropospheric source. Iodic acid and MSA were not found to participate in nucleation, however, MSA may contribute to aerosol growth via heterogeneous formation in the aqueous phase.