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plant-specific physiological parameters. 14 

 Neglect of leaf-air temperature bias and shaded canopy resulted in a 23% decrease and a 15 
102% increase in estimation, respectively. 16 

 Simulated isoprene flux was generally within a factor of 2 of canopy-scale flux 17 
measurements, indicating the good performance of this method. 18 
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Abstract 20 

Biogenic emission models are developed on the foundation of leaf physiological processes and 21 
driven by a set of physical and biological factors. To estimate emissions online, many studies 22 
used weather forecasting models coupled with simple biogenic emission algorithms, in which the 23 
canopy physiological parameters were neglected or oversimplified. In this study, the land surface 24 
scheme CLM4 (Community Land Model version 4) coupled in the advanced Weather Research 25 
and Forecasting model (WRF) was used to determine canopy physiological parameters. The 26 
MEGAN (Model of Emissions of Gases and Aerosols from Nature) algorithms embedded in 27 
CLM4 scheme used these parameters to estimate biogenic emissions. The emission estimated by 28 
using leaf temperature in our study were about 23% higher than that based on air temperature as 29 
in the previous methods. Compared with studies neglecting shaded canopy, the separate 30 
treatments of sunlit and shaded leaves in this study lowered the estimations by a factor of 2 31 
through decreasing diffuse radiaton absorbed by sunlit canopy. Dynamic weather history was 32 
used in our study to replace the fixed values in the original MEGAN-CLM4 code. An emission 33 
inventory of isoprene and monoterpenes in China was established for the year 2018. The 34 
estimates were evaluated against field measurements. Generally, the coupled model produced a 35 
reasonable simulation in both emission budgets and spatiotemporal distribution of biogenic 36 
emissions. 37 

Plain Language Summary 38 

The gas emission rate of vegetation depends on physiological conditions such as leaf 39 
temperature, stomatal opening, and absorbed radiation. We estimated regional vegetation 40 
emissions based on plant physiological parameters, which were neglected or oversimplified in 41 
previous studies. Emission estimations based on leaf temperature in our study were 23% higher 42 
than estimations based on air temperature in previous studies. Neglecting the shaded canopy 43 
overestimated emissions by a factor of 2 compared with estimations in our study, which treated 44 
sunlit and shaded leaves separately. The effects of weather history on emission rates were 45 
considered in our study. Comparisons between simulated and measured emissions showed that 46 
this method was able to estimate vegetation emissions reasonably. 47 

1 Introduction 48 

Globally speaking, biogenic volatile organic compounds (BVOCs) emitted by terrestrial 49 
vegetation are estimated to be 500~1100 Tg C yr

−1
, corresponding to about 90% of the emission 50 

total (Guenther et al., 1995; Henrot et al., 2017). Many BVOC species are actively involved in 51 
the atmospheric chemistry and have a substantial impact on tropospheric oxidation, aerosol 52 
concentration, and the global carbon cycle (Fehsenfeld et al., 1992). BVOCs are therefore a 53 
crucial component of the earth system and quantitative estimates of their emissions are required 54 
for further exploring their impacts on regional and global atmospheric chemistry. 55 

Many biogenic emission models are developed with a strong foundation in the physiological 56 
processes of a leaf (Guenther et al., 1991; Niinemets et al., 1999). The Model of Emissions of 57 
Gases and Aerosols from Nature (MEGAN), a model estimates BVOC emission fluxes as basal 58 
emission rates modulated by emission activity factors, has been intensively used for regional and 59 
global BVOC emission estimations (Guenther et al., 2006; Guenther et al., 2012). Process-based 60 
models link BVOC production rate explicitly to leaf photosynthetic electron transport rate and 61 
election requirement for BVOC synthesis (Niinemets et al., 2002; Niinemets et al., 1999). 62 
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The MEGAN algorithms are incorporated into the terrestrial component of the earth climate 63 
system model, Community Land Model (CLM) for online estimation. In the coupling of 64 
MEGAN and CLM, physical and biological variables required by BVOC estimation are 65 
determined by comprehensive ecological and physiological processes in CLM at each time step 66 
(Lawrence et al., 2011; Levis et al., 2003). Process-based models are typically coupled within 67 
dynamic vegetation models that have a mechanistic model for leaf photosynthesis at their core 68 
(Arneth et al., 2007). These models require more computational time and resources, so it would 69 
be too time-consuming for regional emission estimation. 70 

Instead, many studies use weather forecasting models coupled with a simplified version of 71 
MEGAN, the parameterized canopy emission activity (PCEEA) algorithm (Guenther et al., 2006; 72 
Sakulyanontvittaya et al., 2008). Due to lack of a detailed canopy model which calculates leaf 73 
temperature and leaf-level photosynthetic photon flux density (PPFD), the PCEEA algorithm 74 
uses air temperature and canopy above solar radiation instead. The leaf temperature is affected 75 
by air temperature, as well as other environmental and biological factors. Subin et al. (2011) 76 
indicates that the strong advection and boundary layer mixing during the day decouples the air 77 
temperature from the vegetation temperature to a great extent, making daytime surface energy 78 
budget the primary controlling factors of vegetation temperature changes. Furthermore, due to 79 
the different morphological and physiological properties, relationships between air temperature 80 
and leaf temperature, and between canopy above PPFD and leaf-level PPFD, vary significantly 81 
among tree species. Since the PCEEA algorithm was based on standard MEGAN canopy model 82 
simulation for warm broadleaf forests, using the same equations for representations of other plant 83 
types leads to unpredictable uncertainties. Therefore, reasonable plant-specific physiological 84 
variables are needed to improve the BVOC estimation in weather models. 85 

CLM version 4 (CLM4) was coupled and released with the Weather Research and Forecasting 86 
model (WRF), a mesoscale numerical model designed to simulate regional weather and climate, 87 
as one of the land surface scheme options (Jin et al., 2010). Because MEGAN has been 88 
embedded within CLM as mentioned above, the coupling of WRF-CLM4-MEGAN allowed 89 
weather forecasting models to estimate regional BVOC emissions within an ecological 90 
framework. Besides improvements result from real-time plant physiological variables derived 91 
from CLM4, sub-grid vegetation compositions represented in CLM4 are also expected to provide 92 
a more reasonable estimation because of the significant variability in basal emission ability 93 
among tree species. However, few studies employed the coupled model to estimate regional 94 
BVOC emissions (Zhao et al., 2016). 95 

Satellite data revealed a significant greening pattern in China from the year 2000 to 2017. 96 
Approximately 42% of the greening in China was associated with forest explanation to mitigate 97 
land degradation, air pollution, and climate change (Chen et al., 2019) (Chen et al., 2019). 98 
Accurate estimations are needed to investigate the trend in BVOC emissions with changes in 99 
land cover. In recent decades, many studies estimated national or regional BVOC emissions and 100 
reported a wide emission range of 4.1~23.4 Tg C yr

−1
 for isoprene and 1.8~5.6 Tg C yr

−1
 for 101 

monoterpenes on the national level (Fu and Liao, 2012; Klinger et al., 2002; Li et al., 2013; Liu 102 
et al., 2018; Tie et al., 2006; Wu et al., 2020). However, these estimates are either calculated 103 
offline or not fully based on plant physiological variables. In this study, we used the WRF-104 
CLM4-MEGAN coupled model to improve BVOC emission estimations in China. Two primary 105 
classes of BVOCs, isoprene (C5H8) and monoterpenes (C10H16) (including α-pinene, β-pinene, 3-106 
carene, t-β-ocimene, limonene, sabinene, and myrcene), were considered in this study. 107 
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2 Methods and Data 108 

2.1 CLM4 land surface scheme and coupling with MEGAN 109 

The CLM4 was coupled and released with WRF since version 3.5 as one of the land surface 110 
scheme options. CLM4 consists of components related to land biogeophysics, hydrological 111 
cycle, biogeochemistry, human dimensions, and ecosystem dynamics. CLM4 includes 5 layers 112 
for snow, 10 layers for soil, and 1 layer for vegetation and is accurate in describing soil and 113 
vegetation processes (Jin and Wen, 2012; Lawrence et al., 2011; Subin et al., 2011). 114 

The MEGAN model uses mechanistic algorithms to account for the major known process 115 
controlling biogenic emissions. MEGAN estimates emissions (Fi, μg C m

−2
 ground area h

−1
) of 116 

BVOC species i according to: 117 

,  i i i j jF γ ε χ           (1) 118 

where εi,j (μg C m
−2

 h
−1

) is the emission factor (EF) at standard conditions for PFT j with fraction 119 
coverage χj. PFT-specific EFs of isoprene were determined based on observations conducted in 120 
China and EF used in previous studies (as shown in Table S1). Due to lack of detailed 121 
monoterpene EFs reports, the EFs of main monoterpene species were determined by scaling 122 
default MEGAN EFs with the ratio of local isoprene EF to default value presented in Guenther et 123 
al. (2012)). The emission factors of each vegetation type used in this study were shown in Table 124 
S2. 125 

The emission activity factor for each compound (γi) accounts for emission responses to solar 126 
radiation, leaf temperature, LAI, leaf age, and soil moisture. The effects of variations in CO2 127 
concentration were neglected in this study. Details of the algorithms could be found in Guenther 128 
et al. (2006) and Guenther et al. (2012). 129 

The coupling of CLM4-MEGAN improves the BVOC estimations through reasonable driving 130 
factors and detailed sub-grid representation, as briefly described below. We refer the reader to 131 
the description of Oleson et al. (2010) for the details of computations. 132 

1. Leaf temperature 133 

Variations in leaf temperature are influenced by net radiation absorbed/emitted by the vegetation 134 
and sensible and latent heat fluxes from vegetation. The two-stream approximation is applied to 135 
vegetation when calculating solar radiation reflected and absorbed by the canopy. Leaf 136 
temperatures are determined by the canopy energy balance equations. Due to the dependence of 137 
heat fluxes on vegetation temperature, the Newton-Raphson iteration is used to solve for folia 138 
temperature and the vegetation fluxes simultaneously. 139 

2. Sunlit and shaded fractions of the canopy 140 

The canopy in CLM4 is treated as sunlit and shaded leaves. Leaf fractions of different plant 141 
types are determined according to the leaf and stem area index and the solar zenith angle at each 142 
time step. CLM4 assumed that sunlit leaves receive the absorbed direct beam radiation and the 143 
absorbed diffuse radiation apportioned by fsun (the sunlit fraction of the canopy), and that shaded 144 
leaves receive the absorbed diffuse radiation apportioned by fsha (the shaded fraction).  145 

 146 

 147 
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3. The medium-term weather history 148 

Current MEGAN algorithms use average leaf temperature, solar radiation, and leaf fractions over 149 
the past time to account for the influence of medium-term (days to weeks) weather history. 150 
CLM4 contains an accumulation module used to calculate the average of user-specified variables 151 
over user-defined time intervals. However, the accumulation of past time leaf temperature and 152 
PPFD was commented out in the default CLM4 code. Instead, fixed values are assigned to those 153 
coefficients based on conditions during previous days. After activating this module, a decrease in 154 
average temperature and PPFD with increasing simulation time was found. That was because 155 
these two variables were not being accumulated but still being averaged over the total running 156 
time. We corrected the accumulation code so that the average leaf temperature, PPFD, and leaf 157 
fraction are calculated at each time step. 158 

4. Sub-grid heterogeneity 159 

In CLM4, the surface heterogeneity is represented using a sub-grid tile approach in which grid 160 
cells are composed of multiple land units (glacier, wetland, lake, urban and vegetated area), 161 
snow/soil columns and plant functional types (PFTs). Vegetated surfaces are comprised of up to 162 
4 plant functional types (PFTs). An explicit canopy layer represents the PFTs with specific leaf 163 
and stem optical properties, root distribution parameters, aerodynamic parameters, and 164 
photosynthetic parameters. The detailed representations of sub-grid improve the accuracy of land 165 
surface parameterizations and reduce the uncertainty from plant distribution in BVOC estimation 166 
(Schultz et al., 2016; Zhao et al., 2016). 167 

2.2 Land surface datasets 168 

In this study, MODIS datasets of land cover (MCD12Q1) for the year 2016 and water mask 169 
(MOD44W) for the year 2015, both with a resolution of 500 m, were used to replace the 170 
outdated United States Geological Survey (USGS) data used in default WRF initial static field. 171 
The 17 MODIS land-use categories defined by the International Geosphere Biosphere Program 172 
(IGBP) were mapped onto the 24 USGS categories. Default CLM4 prescribes the sub-grid PFT 173 
composition for each land category in USGS, leading to geographical-invariant plant 174 
distribution. We represented the sub-grid surface heterogeneity in this study as the composition 175 
of 500 m-resolved land categories contained in a 12 km-resolved model grid. A total of 12 176 
vegetation categories in IGBP were converted to 7 PFTs used in the CLM4 scheme. The 177 
conversion of IGBP land cover into USGS and PFTs was illustrated in Table S3. The spatial 178 
distribution of 7 PFTs was shown in Fig.S1 (the small islands in the South China Sea are not 179 
included). 180 

LAI data used in the default CLM4 scheme are updated daily by linearly interpolating between 181 
prescribed monthly values. In this study, the MODIS LAI data derived from MCD15A2H 182 
version 6 with a spatial resolution of 500 m and temporal resolution of 8 days was introduced to 183 
CLM4. The seasonal and regional patterns of LAI were shown in Figure S2 (the small islands in 184 
the South China Sea are not included). The sub-grid PFT-specific LAI was averaged over the 185 
fraction of the land area covered by each PFT within the grid cell. The same LAI data was used 186 
as current LAI (LAIc) for 8 days and the past 8-day image was considered as LAI of the previous 187 
time step (LAIp). The changes between LAIc and LAIp was used to determine leaf age 188 
(Guenther et al., 2006). 189 
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2.3 Numerical experiments 190 

The simulations with the WRF version 4 were performed on a domain at 12 km horizontal 191 
resolution covering China and its surrounding areas with 420 × 380 cells in the horizontal 192 
direction and 35 layers in the vertical direction, extending from the surface to 50 hPa. The initial 193 
meteorological fields and boundary conditions were from the 6 h NCEP (National Centers for 194 
Environmental Prediction) global final analysis with a 1° × 1° spatial resolution. The 195 
meteorological fields were initialized at the start of each model run, which covered one month to 196 
account for the effects of canopy climate history. We designed four scenarios to evaluate the 197 
influence of parameter applications as follows: (1) BASE: standard configuration; (2) C1_T2: 198 
replacing leaf temperature with the air temperature at 2 m height; (3) C2_FSUN: neglecting 199 
shaded leaves; (4) C3_FIX: using fixed values for variables related to weather history. The 200 
simulation time of the BASE case covered the entire year of 2018, while other cases were only 201 
performed for July. 202 

3 Results and Discussions 203 

3.1 Evaluation of WRF output 204 

Since the temperature and solar radiation exert primary control on BVOC emissions, we 205 
evaluated the WRF model performance in simulating the air temperature at 2 m height (T2) and 206 
the downward shortwave radiation (SWDOWN). The meteorology observations from 362 sites 207 
and daily solar radiation observations from100 sites in China were used for comparison. The in-208 
situ meteorology observations are provided by the National Climatic Data Center (NCDC, 209 
https://www.ncdc.noaa.gov/) and radiation observations are derived from the National 210 
Meteorological Information Center (https://data.cma.cn/). The statistical analyses for four 211 
seasons are displayed in Table 1. The mean error (ME), mean bias (MB), correlation coefficient 212 
(r), and root-mean-square error (RMSE) of hourly T2 series are 1.70, −0.52, 0.98, 2.51℃, 213 
respectively. The r value in summer (0.90) is relatively lower than those in spring (0.95), autumn 214 
(0.96), winter (0.97), and the simulation shows slight cooling bias in spring, autumn, and winter. 215 
The ME, MB, r, RMSE values of the SWDOWN are 71.01, 69.82, 0.86, and 71.11 W m

−2
. The 216 

simulated SWDOWN was ~45% higher than measured data. Overestimated solar radiation is a 217 
common issue of WRF model which could be attributed to neglect of radiation effect of aerosols 218 
(Lu and Kueppers, 2012). The simulations of WRF-CLM4 successfully reproduced the temporal 219 
and spatial patterns of T2 and SWDOWN (Figure S2). Generally, comparisons with observed 220 
data indicate that WRF-CLM4 provide a good simulation on meteorological conditions that are 221 
desirable for driving the MEGAN algorithm.  222 
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Table 1 Verification Statistics of Air Temperature at 2 m Height (T2) and Downward Shortwave 223 
Radiation (SWDOWN). 224 

Variable Season 
Mean 

ME b MB b r b RMSE b 
Obs. a Sim. a 

T2 (°C) 

Spring 13.99 13.95 1.54 −0.04 0.95 2.26 

Summer 23.60 23.65 1.64 0.05 0.90 2.54 

Autumn 12.70 12.10 1.47 −0.60 0.96 2.16 

Winter −1.34 −2.84 2.17 −1.50 0.97 3.00 

Year 12.23 11.70 1.70 −0.52 0.98 2.51 

SWDOWN 

(W m−2) 

Spring 176.39 261.75 85.98 85.37 0.64 90.40 

Summer 192.25 278.29 86.50 86.05 0.59 92.00 

Autumn 129.03 184.58 57.86 55.55 0.59 61.89 

Winter 92.04 144.36 53.69 52.32 0.71 57.60 

Year 147.43 217.25 71.01 69.82 0.86 77.11 
a
 Obs.: Mean observed value, Sim.: Mean simulated value; 225 

b 
ME: Mean Error, MB: Mean Bias, r: correlation coefficient, RMSE: Root Mean Square Error. 226 

3.2 Impacts of physiological variables application on estimations 227 

The primary advantage of the coupling of WRF-CLM4-MEGAN is that MEGAN is driven by 228 
real-time physiological variables derived from vegetation physics. Here we discussed how the 229 
physiological parameter application affects estimations. 230 

3.2.1. Effects of considering the leaf-air temperature bias 231 

The difference between vegetation and air temperature is PFT-dependent due to different 232 
physiological conditions. Figure 1 displays the daily profiles of average leaf-air temperature bias. 233 
Due to the weak BVOC emission capacities of grass and crop, as well as the limited biomass in 234 
most time of the year, the temperature of grass and crop was not discussed here. The daily 235 
variety indicated that plants were cooler than the ambient environment in the night and warmer 236 
in the daytime, with positive bias peaked at 12:00~13:00 LT (Local Time). However, the 237 
maximum bias varied significantly among PFTs and seasons. The maximum leaf-temperature 238 
bias of evergreen trees remains relatively low and stable over seasons, ranging from 0.5 K to 1.5 239 
K for evergreen broadleaf trees and 2 K to 4 K for evergreen needleleaf trees. The temperature 240 
bias of deciduous trees and shrubs was similar to that of evergreen trees in summer, but the 241 
maximum bias in winter was higher than that in summer by 3~8 K. The greatest difference 242 
between winter and summer maximum bias was found in simulations of deciduous broadleaf 243 
trees.  244 

Varieties in the maximum temperature bias and its seasonal pattern indicated a strong relation 245 
between leaf-air temperature bias and leaf biomass. In summer, strong transpiration of leaves 246 
cool the vegetation effectively and prevent the leaf temperature from rising rapidly under 247 
sunlight. The leaf biomass of evergreen trees did not change significantly over the year, so the 248 
temperature bias remains stable among seasons. The cooling effect of transpiration was 249 
extremely low in winter for deciduous plants. Therefore, the vegetation was significantly 250 
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warmed by solar radiation absorbed by stems, resulting in a large positive bias between 251 
vegetation and air temperature.  252 

Wei et al. (2012) measured the canopy temperature and micrometeorological data of Quercus 253 
variabilis, a typical broadleaf deciduous tree, during the growing season (May to August). They 254 
reported that the mean canopy temperature was 3.55 K higher than air temperature during the 255 
daytime. The simulated result of our study was 2.2 K. Song et al. (2017) found a positive bias 256 
within 2 K between canopy and air temperature for broadleaf evergreen trees in Xishuangbanna, 257 
southwestern China. The simulated leaf-air temperature bias of broadleaf evergreen trees in our 258 
study was ~1.5 K. These comparisons indicated the good model performance on simulating the 259 
leaf temperature of major BVOC sources. 260 

 261 

Figure 1 Daily Profile of Differences in Average Leaf Temperature (Tv) and Air Temperature at 262 
2 m Height (T2), (a) evergreen needleleaf trees, (b) deciduous needleleaf trees, (c) evergreen 263 

broadleaf trees, (d) deciduous broadleaf trees, (e) shrub. 264 

Many studies assumed that the leaf temperature was equal to air temperature in BVOC 265 
estimations. A model experiment used air temperature at 2 m height (C1_T2) for BVOC 266 
estimation was performed for July to investigate the impacts of considering leaf-air temperature 267 
bias on emissions. Emissions of isoprene and monoterpene from each PFT estimated in BASE 268 
and C1_T2 scenarios are listed in Table 2. Using T2 underestimated the total isoprene emission 269 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

9 

and monoterpene emission by 23.9% and 21.9%, respectively. The most significant 270 
underestimation was found in regions covered by shrub (underestimated by 58.6%). As a result 271 
of the small temperature bias in summer, isoprene and monoterpene emissions from broadleaf 272 
deciduous trees were only underestimated by 13.8% and 9.0% in C1_T2, respectively. However, 273 
due to the strong emission capacity, this underestimation contributed to 30% to the total emission 274 
difference. Therefore, due to variations in physiological parameters among tree species, the 275 
impact of unreasonable temperature applications varies greatly among PFTs. To reduce 276 
uncertainty, it is necessary to use PFT-specific leaf temperature for BVOC estimation. 277 

3.2.2 Effects of differentiating between sunlit and shaded canopy 278 

In CLM4 scheme, shaded leaves affect radiation distribution within the canopy by absorbing part 279 
of diffuse radiation. The sunlit/shaded fraction of the canopy was determined by leaf biomass 280 
and orientation, and the angle of the incident light. Variations in the sunlit fraction of each PFT 281 
(daytime in July) due to changes in solar zenith angle are shown in Fig. 2. For all PFTs, the 282 
fraction of sunlit canopy increased with increasing cosine of solar zenith angle, while the 283 
maximum fraction varied greatly. Due to the dense canopy in summer, trees have a smaller sunlit 284 
fraction than other PFTs under the same solar angle. The maximum fraction of trees was 285 
estimated to be 0.35. Because the leaf biomass in July of evergreen and deciduous trees was 286 
similar to each other, these trees showed a same trend in sunlit fraction with changes in solar 287 
angle. The radiation distribution among the sub-grid PFTs was considered in CLM4. When the 288 
light was coming in vertically, few radiations could be received by shrubs due to the absorption 289 
and reflection of higher canopies the same model grid. CLM4 assumes that the sunlit fraction is 290 
equal to 1 when the leaf area index exposed to light is lower than 0.01 m

2
 m

−2
. Therefore, the 291 

sunlit fraction of shrub was set as 1 under vertically incident light in this study. The largest sunlit 292 
fraction of grass and crop was 0.7 and 0.5, respectively. 293 

 294 

Figure 2 Variations in sunlit fraction of each PFT under changing cosine of solar zenith angle 295 
(μ), The meaning of NE_EV, NE_DE, BR_EV and BR_DE refers to Table 2.  296 
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Table 2 Estimations of PFT-specific Isoprene and Monoterpene Emission in Each Scenario (Gg 297 
C). 298 

PFT Scenario Isoprene Monoterpenes 

NE_EVa 

BASE 12.3 19.1 

C1_T2b 9.4 16.4 

C2_FSUNb 32.5 27.0 

C3_FIXb 6.3 17.3 

NE_DEa 

BASE 1.3 26.7 

C1_T2 0.9 20.2 

C2_FSUN 2.7 35.7 

C3_FIX 0.8 21.3 

BR_EVa 

BASE 249.6 56.4 

C1_T2 235.8 55.4 

C2_FSUN 663.2 83.4 

C3_FIX 121.3 48.1 

BR_DEa 

BASE 1404.0 409.6 

C1_T2 1210.0 372.6 

C2_FSUN 3764.0 623.2 

C3_FIX 681.3 341.1 

Shrub 

BASE 506.2 170.6 

C1_T2 209.5 69.1 

C2_FSUN 1166.0 243.2 

C3_FIX 180.3 134.4 

Grass 

BASE 57.2 2.6 

C1_T2 31.9 1.4 

C2_FSUN 95.3 3.4 

C3_FIX 22.5 1.6 

Crop 

BASE 35.6 12.3 

C1_T2 27.1 8.9 

C2_FSUN 79.1 18.6 

C3_FIX 12.6 9.1 

Total 

BASE 2266.1 697.2 

C1_T2 1724.5 544.2 

C2_FSUN 5802.8 1034.4 

C3_FIX 1025.5 572.9 

a
NE_EV: Needleleaf Evergreen Tree; NE_DE: Needleleaf Deciduous Tree; BR_EV: Broadleaf evergreen 299 

Tree; BR_DE: Broadleaf Deciduous Tree; 300 
b
C1_T2: replacing leaf temperature with air temperature at 2 m to parameterize temperature response; 301 

C2_FSUN: ignoring the fractions of sunlit and shaded leaves; C3_FIX: using fixed values for variables that 302 
related to weather history. 303 
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Since the simplified BVOC algorithms were not able to separate the canopy, previous studies 304 
assumed that all the radiation was received by sunlit leaves. Figure 3 displays the difference in 305 
solar radiation absorbed by the sunlit canopy (daytime in July) in differentiating between sunlit 306 
and shaded canopy or not (excluding small islands in the South China Sea). Because the 307 
shadowed canopy absorbed a part of diffuse solar radiation, taking shadowed canopy into 308 
account resulted in a decrease in total radiation absorbed by sunlit leaves. While the radiation 309 
absorbed by shrub and grass showed little difference between the two cases, radiation absorbed 310 
by trees was generally overestimated by over 50% in the scenario which neglected shaded 311 
leaves. 312 

 313 

Figure 3 Difference in solar radiation absorbed by sunlit canopy during daytime in July between 314 
cases considering or not considering sunlit/shaded leaves separately. (a) separate treatments of 315 

canopy; (b) no separate treatments. 316 

Leaf-level radiation controls estimation of radiation response of BVOC emission rates. To 317 
investigate the effects of differentiating between sunlit and shaded canopy, the fraction of shaded 318 
leaves was neglected in the C2_FSUN scenario. The results of C2_FSUN are listed in Table 2. 319 
C2_FSUN overestimated isoprene and monoterpene emissions in July by a factor of 2.6 and 1.5, 320 
respectively. Emissions from broadleaf and needleleaf trees were overestimated by a factor of 321 
2.7 due to the large fractions of shadowed leaves in summer. The least discrepancy was found in 322 
the estimation of grass emissions, which were within a factor of 2 of the BASE estimations. In 323 
conclusion, ignoring the shaded part of the canopy could significantly overestimate BVOC 324 
emissions. 325 

3.2.3 Effects of improved parameterization of medium-term weather history 326 

MEGAN algorithms require average leaf temperature and solar radiation over past days to 327 
simulate the emission response to medium-term environmental changes. In the original WRF-328 
CLM4 scheme, the accumulated module used to calculate running mean leaf temperature and 329 
leaf fraction was inactive. Variables based on weather history were assigned with fixed values. In 330 
this study, we modified this module to provide dynamic past-day’s physiological parameters for 331 
the MEGAN algorithm. We conducted C3_FIX scenario to investigate the impacts (Table 2). 332 
Emission of isoprene and monoterpene in C3_FIX was lower than that estimated in BASE by 333 
54.7% and 17.8%, respectively. The relatively slight influence on monoterpene emissions could 334 
be attributed to the partial dependence of monoterpene emissions on solar radiation. Isoprene 335 
emission is highly sensitive to solar radiation so that variations in past-time’s leaf fraction and 336 
PAR greatly affected isoprene emission estimation. Emissions from needleleaf trees were 337 
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underestimated by about 40% and those from other PFTs were underestimated by about 60%. 338 
We further calculated emissions in January using fixed values (not shown). The isoprene and 339 
monoterpene emissions were estimated as 64.7 (61.3 in BASE) and 36.4 Gg C (34.0 in BASE), 340 
respectively. The discrepancy between using fixed and dynamic values was within 10%. 341 
Although the fixed values could make estimations similar to dynamic variables in low 342 
temperature and radiation conditions, using fixed values for all seasons leads to significant 343 
uncertainty. 344 

3.3 BVOC emission budgets and spatiotemporal distribution 345 

Hourly emissions of 8 chemical species were calculated by the WRF-CLM4-MEGAN model on 346 
a 12 km×12 km grid for the year 2018. In the following section, all the results are measured as 347 
carbon weights of the constituent compounds, unless stated otherwise. 348 

The annual amount emitted for all listed BVOCs reaches 14.7 Tg C with isoprene accounting for 349 
78.3% (11.5 Tg) and the sum of monoterpenes for 21.7% (3.2 Tg). Emissions from each PFT are 350 
shown in Table 3. Province-level emissions are listed in Table S4. For both isoprene and 351 
monoterpene, the predominant source was broadleaf deciduous forests with a contribution of 352 
64.5% and 60.6% to isoprene and monoterpene, respectively. Shrubs ranked second of the 353 
emission contribution, accounting for 19.9% of total BVOC emissions, followed by broadleaf 354 
evergreen trees (12.1%). Grass and Crop were responsible for only 1.3% of total isoprene 355 
emission and 1.1% of monoterpene emission. 356 

Table 3 BVOC Emission Budgets of Each Plant Functional Type (PFT) (Gg C). 357 

PFTs ISO
 b

 
MT 

a
 

T_ALL 
c
 

API
 b

 BPI
 b

 3-CAR
b
 OCI

 b
 LIM 

b
 SAB 

b
 MYR

 b
 T_MT 

c
 

NE_EV
 a
 59.3  35.6  38.6  20.6  3.4  12.9  5.0  5.0  121.0  180.3  

NE_DE
 a
 4.2  33.7  20.0  8.0  3.0  13.0  2.6  4.0  84.4  88.6  

BR_EV
 a
 1421.0  169.0  61.6  20.5  28.8  41.0  22.5  22.5  365.8  1786.8  

BR_DE
 a
 7442.0  806.6  426.0  97.8  179.7  262.4  100.8  60.2  1934.0  9376.0  

Shrub 2295.0  183.3  132.7  89.0  70.9  89.0  42.9  30.6  638.3  2933.3  

Grass 188.1  2.2  2.2  0.3  1.8  1.0  0.7  0.2  8.4  196.5  

Crop 119.4  9.2  9.9  2.0  7.4  4.6  3.2  1.4  37.8  157.2  

Nation 11528  1240  691  242  295  424  178  124  3193  14721  
a
Refer to Table 2; 358 

b
ISO: isoprene, API: α-pinene, BPI: β-pinene, 3-CAR: 3-carene, OCI: ocimene, LIM: limonene, SAB: 359 

sabinene, MYR: myrcene; 360 
c
T_MT: Total monoterpenes emissions of each PFT, T_ALL: Total BVOC (includes isoprene and 361 

monoterpenes) emissions of each PFT. 362 

The spatial distributions of annual emissions of isoprene and monoterpenes are displayed in 363 
Fig.4 (excluding small islands in the South China Sea). The south and northeast of China, as well 364 
as the Qinling Mountains in central China, were estimated with high emission budgets, 365 
accounting for 91.3% of the national isoprene emission and 91.8% of the monoterpene emission. 366 
According to Fig.S1 and the survey results from the Plant Research Institute, these areas are 367 
covered by vegetation species with a high emission capacity of isoprene (broadleaf forests, 368 
shrub) or monoterpenes (coniferous forest). Northeast China is primarily covered by deciduous 369 
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coniferous forests (mainly Larix gmelini) and deciduous broadleaf forests (mainly Quercus 370 
mongolica, Tilia Mongolia, and Betula platyphylla). Large areas of evergreen coniferous forests 371 
(mainly Pinus massoniana and Cunninghamia lanceolata) and shrubs are found in Southeast 372 
China, and the main plant genera in Southwest China are evergreen tree species, including 373 
evergreen broadleaf forests (e.g. Quercus aquifolioides), evergreen coniferous forests (Picea 374 
likiangensis var.balfouriana and Pinus yunnanensis) and shrubs. The Qinling Mountains are 375 
covered by large areas of deciduous broadleaf forests (mainly Quercus variabilis and Quercus 376 
liaotungensis). Regions covered by a large area of crop or grassland, such as the North China 377 
Plain and Inner Mongolia, played a very small role in BVOC budgets due to the low emitting 378 
capacities. 379 

 380 

Figure 4 Spatial distribution of isoprene and monoterpenes emissions in the year 2018. 381 

BVOC emissions showed strong seasonal variation. The temporal profile of national monthly 382 
emissions of individual species is presented in Fig.5. Because of the highest light intensities, 383 
temperatures, and plant biomass density, the emissions peaked in summer (from June to August) 384 
and around 55.1% (8.1 Tg C) of the total annual budgets were released during this period. 385 
Previous studies estimated the highest emissions in July; however, our results showed a higher 386 
emission in August. This could be attributed to the consideration of the effects of canopy climate 387 
history on estimation. This results were consistent with a whole-year measurement reported by 388 
Chen et al. (2020). 389 
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 390 

Figure 5 Monthly variations in BVOC emission budget (Tg C). 391 

The diurnal variations of temperature, solar radiation, and emission of isoprene and 392 
monoterpenes in summer are shown in Fig.6. Simulated emissions increased rapidly in the 393 
morning and peaked in the afternoon. Time for peak emissions was closed to time for the highest 394 
leaf temperature and solar radiation, while T2 reached the highest value about an hour later. 395 
Emissions of monoterpenes are not highly dependent on the light while isoprene emissions are 396 
strong light-dependent. As a result, monoterpene emissions maintain a relatively high level 397 
during the night while isoprene emissions cease at nighttime. 398 

 399 

Figure 6 Diurnal variations in summer of air temperature at 2 m height (T2), leaf temperature 400 
(Tv), downward solar radiation (SWDOWN) and emissions of isoprene and monoterpenes (Gg 401 

C). 402 

3.4 Comparisons with previous studies 403 

We evaluated the inventory against canopy-scale measurements conducted at different sites in 404 
China. Given that years of interest in the present study and observations are different, the 405 
average data or monthly total emissions were used for comparison. 406 
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Using the eddy covariance technique, Baker et al. (2005) measured isoprene fluxes in 407 
Xishuangbanna, Yunnan Province (21.92°N, 101.27°E). Daytime isoprene fluxes during the wet 408 
season (July 2002) was approximately 1 mg C m

−2
 h

−1
. Our model predicted the daytime average 409 

isoprene flux over July as 1.5 mg C m
−2

 h
−1

, similar to the observed data. Based on Relaxed 410 
Eddy Accumulation (REA) technique, emissions of isoprene and monoterpenes of a temperate 411 
forest in Changbai Mountain (42.4°N, 128.1°E) were measured during the summer seasons in 412 
2010 and 2011 (Bai et al., 2015). Average isoprene fluxes were measured as 1.3 and 1.5 mg m

−2
 413 

h
−1

, and the simulated fluxes were 2.1 and 2.0 mg m
−2

 h
−1

, respectively, about 50% higher than 414 
observations. The average PAR and temperature during experimental periods were 837.5 μmol 415 
m

−2
 s

−1
 and 22.6 ℃, respectively. The simulation resulted in an average PAR of 1160.1 μmol 416 

m
−2

 s
−1

 and a temperature of 22.23 ℃. The average leaf temperature was 23.37 ℃. The slight 417 
overestimation could be attributed to higher PAR in the model. 418 

Using REA method, Bai et al. (2016) measured emissions from a bamboo (Phyllostachys 419 
violascenes) plantation in Zhejiang Province (30.3°N, 119.57°E) and the average isoprene 420 
emission fluxes were 2.81, 1.07, 0.186, 0.068 mg m

−2
 h

−1
 for the experimental periods in July, 421 

August, September, and October. The predicted monthly average fluxes were 2.04, 1.95, 0.39, 422 
0.14 mg m

−2
 h

−1
, respectively. Estimations were within a factor of 2 of observed values. 423 

As illustrated in Table 4, the annual emission budgets estimated by this study fall in the range of 424 
past studies. Both the improvement in driving variables and the representation of sub-grid plant 425 
composition contribute to the difference in estimates. Formaldehyde (HCHO), as a major 426 
intermediate product in the degradation of isoprene in the atmosphere, has been widely used as a 427 
proxy for estimates isoprene emissions. Fu et al. (2007) used a continuous 6-year record (1996–428 
2001) of Global Ozone Monitoring Experiment (GOME) HCHO columns to estimate isoprene 429 
emission as 12.7 Tg yr

−1
 in China, which is comparable to our model outputs. Stavrakou et al. 430 

(2014) found that isoprene emissions in China decrease from 8.6 Tg in the year 2007 to 6.5 Tg in 431 
the year 2012 based on GOME-2 HCHO columns, lower than emissions in this study by 432 
33.7%~76.9%. The isoprene emission from China in 2010 was estimated to be 6.5 Tg based on 433 
OMI (Ozone Monitoring Instrument) HCHO observations (Stavrakou et al., 2015). Aside from 434 
the influence of different meteorological conditions and land cover changes during the past 435 
years, the reliability of satellite-based constraints also needs to be improved (Fu et al., 2019).  436 
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Table 4 Comparison of BVOC Budgets (Tg C yr
−1

) estimated in This Study and in Previous 437 
Studies. 438 

Base year 
Emission Budget 

Reference 
ISO a MT a Total 

2018 11.5 3.2 14.7 This study 

- 15.0 4.3 19.3 Guenther et al. (1995) a 

- 4.1 3.5 7.6 Klinger et al. (2002) a 

2004 6.8 2.8 9.6 Tie et al. (2006) b 

2000 10.0 2.5 12.5 Guenther et al. (2006) c 

Averaged over 

2001-2006 
9.6 2.8 12.4 Fu and Liao (2012) c 

- 12.7   Fu et al. (2007) d 

2010 5.9   Stavrakou et al. (2014) d 

2010 6.5   Stavrakou et al. (2015) e 
a
Based on G95 algorithms (Guenther et al., 1995); 439 

b
Based on G20 algorithms (Guenther et al., 2000); 440 

c
Based on MEGAN2.0 algorithms (Guenther et al., 2006); 441 

d
Top-down annual emission estimates which were inferred by inversion of GOME-2 formaldehyde columns. 442 

e
Top-down annual emission estimates which were inferred by inversion of OMI formaldehyde columns 443 

4 Uncertainty 444 

The basal emission factors are identified as the most important uncertainty source in BVOC 445 
emission estimations (Guenther et al., 2006). Local emission factors for isoprene reported by 446 
previous observations conducted in China were used in this study. Since measurements of the 447 
monoterpene emission factors are scarce, we calculated local emission factors based on the ratio 448 
of local isoprene emission factor to default emission factor in MEGAN literature. There are large 449 
uncertainties associated with the conversion approach. More in-situ observations on emission 450 
rates of different PFTs in China are required. 451 

CLM4 parameterizes one layer of the canopy, however, solar radiation is attenuated by foliage 452 
and leaf temperature varies among layers. A relatively simple representation of canopy is also a 453 
source of uncertainty. Guenther et al. (1995) found a less than 5% difference in global annual 454 
isoprene emission estimated with one or five lays and no change in the estimations of other 455 
BVOC emissions, suggesting that BVOC emissions are relatively insensitive to the number 456 
layers. However, many studies indicated that the treatment of microclimatic factors such as light 457 
and leaf temperature within the canopy resulted in a substantial difference in estimated emissions 458 
(Keenan et al., 2011). 459 

5 Conclusions 460 

This study estimated the emission budgets and spatial-temporal patterns of BVOC in China in 461 
the year 2018 using the WRF-CLM4-MEGAN modeling system. This framework improved 462 
biogenic emission estimations by using PFT-specific physiological parameters derived from soil 463 
and vegetation physics in the CLM4 scheme. The simulated vegetation temperature was typically 464 
higher than air temperature by 1~12 K in the daytime and lower than ambient value by 465 
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approximately 2 K during the night. Using air temperature instead of leaf temperature 466 
underestimated isoprene and monoterpene emissions in July by 23.9% and 21.9%, respectively. 467 
Because the shaded fraction of broadleaf trees could be higher than 60 % in July, ignoring the 468 
influence of shaded canopy on radiation distribution overestimated emissions by a factor of 2.6. 469 
Assigning fixed values to variables that related to weather history made a similar estimation to 470 
that based on dynamic variables in January, while underestimated emissions in July by 471 
approximately 50%. Due to the significant discrepancy caused by these physiological variables, 472 
more reasonable parameter applications are important for accurately estimating biogenic 473 
emissions. Using the CLM4-MEGAN framework, the annual emissions of BVOC in China was 474 
estimated to be 14.7 Tg C, with isoprene and monoterpenes accounting for 78.3% and 21.7% of 475 
the totals, respectively. The coupled model successfully reproduced the spatial and temporal 476 
patterns of BVOC emissions. The predicted values were within a factor of 2 of most observed 477 
values. Comparisons indicated that this coupled model are able to estimate BVOC emissions 478 
reasonably in China. 479 
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