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Text S1. 

An LSTM network is a type of recurrent neural network that includes memory cells that have the 
ability to store information over long periods of time. As shown in Figure S1, the network contains 
cell states and three gating operations (input, forget, output). Here, we summarize the 
mathematical formulation of the LSTM network. 

Given an input sequence 𝑥 = [𝑥[1], 𝑥[2]…… , 𝑥[𝑇]] with 𝑇 time steps, where each element 𝑥[𝑡] is 
a vector containing input features (model inputs) at time step 𝑡	(1 ≤ 𝑡 ≤ 𝑇), Equations (1) to (6) 
specify a single forward pass through the LSTM: 

                                           𝑖[𝑡] = 𝜎(𝑊!𝑥[𝑡] + 𝑈!ℎ[𝑡 − 1] + 𝑏!)																																																														(1)  

                                            𝑓[𝑡] = 𝜎8𝑊"𝑥[𝑡] + 𝑈"ℎ[𝑡 − 1] + 𝑏"9                                            			(2) 

                                            𝑔[𝑡] = 𝑡𝑎𝑛ℎ(𝑊#𝑥[𝑡] + 𝑈#ℎ[𝑡 − 1] + 𝑏#)                                         (3) 

                                            𝑜[𝑡] = 𝜎(𝑊$𝑥[𝑡] + 𝑈$ℎ[𝑡 − 1] + 𝑏$)                                           				(4) 
                                           𝑐[𝑡] = 𝑓[𝑡] ⊙ 𝑐[𝑡 − 1] + 𝑖[𝑡] ⊙ 𝑔[𝑡]                                           					(5) 
                                                  ℎ[𝑡] = 𝑜[𝑡] ⊙ tanh	(𝑐[𝑡])                                                    						(6) 

where 𝑖[𝑡],	𝑓[𝑡], 𝑜[𝑡] are the input, forget and output gates respectively, 𝑔[𝑡] is the cell input, 𝑥[𝑡] 
is the network input at time step 𝑡	(1 ≤ 𝑡 ≤ 𝑇), and ℎ[𝑡 − 1] is the recurrent input. The terms 𝑐[𝑡] 
and 𝑐[𝑡 − 1] indicate the cell states at the current and previous time step. At the first-time step, 
the hidden and cell states are initialized as vectors of zeros. The terms W, U and b are learnable 
parameters for each gate. The subscript refers to at which gate the particular weight matrix, or the 
bias vector is used. The sigmoid activation function 𝜎	(∙) outputs a value between 0 and 1, while 
the hyperbolic tangent activation function  tanh	(∙) outputs a value between -1 and 1. The symbol 
⊙ indicates element-wise multiplication.  

The values of the cell states can be modified by the forget gate 𝑓[𝑡], which can delete states. The 
cell update 𝑔[𝑡] can be interpreted as information that is added, while the input gate 𝑖[𝑡] controls 
into which cells new information is added. The output gate 𝑜[𝑡] controls which of the information 
stored in the cell states is output. Note that the cell states 𝑐[𝑡] characterize the memory of the 
system, and its characteristic of simple linear interactions with the remaining LSTM cells helps to 
prevent the problem of exploding or vanishing gradients during the back-propagation step of 
network training (Hochreiter and Schmidhuber, 1997). 

The output of the final LSTM layer ℎ[𝑡] is connected through a dense layer to a single output 
neuron, which computes the final output 𝑦[𝑡] prediction, as indicated by Equation 7: 

 
                                                𝑦[𝑡] = 𝑊%ℎ[𝑡] + 𝑏%                                                            (7) 

where 𝑊% and 𝑏% are the learnable weight and bias of the output dense layer.  
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Figure S1.  Schematic illustration of the architecture of a standard LSTM cell as defined by 
supplementary materials Eqs. (1)–(6). The symbols × and + denote element-wise multiplication 
and addition.
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Figure S2.  Conceptual schematic of the processes and associated parameters represented by the 
SN17 model. Inputs and outputs are highlighted in bold. Illustration derived from He et al., (2011b)
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Figure S3.  Spatial map indicating skill of the LSTM-A-CONUS-6M model (trained on Pixel Set A) when tested on 
two of the independent testing pixel sets from Pixel Set B (Results for independent test set 1 appear in the main 
text) 
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Figure S4. Aggregate performance of the LSTM-A-CONUS-6M network, evaluated on the training, evaluation 
and testing pixels from Pixel Set B  
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Figure S5.  Comparisons between UA-SWE observations (solid black) and SWE predicted by the LSTM (solid 
blue) and SN17 models (dash lines) at pixels selected from each of the five regions. The pixels are from 
independent test set 1 (pixel set B) and represent locations corresponding to the 95th percentile of KGEss 
performance for the LSTM-A-CONUS-6M model. The corresponding KGEss skill for each of the models is listed 
in Table S1. The results only shown from WY1991 to WY2000. 
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Figure S6.  Comparisons between UA-SWE observations (red) and SWE predicted by the LSTM-A-CONUS-6M 
model (blue) at pixels selected from each of the five regions. The pixels are from independent test set 1 (pixel set 
B) and represent locations corresponding to the 10th, 25th, 50th, 75th, and 90th percentiles of KGEss 
performance for the model. The results only shown from WY1991 to WY2000. 
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Figure S7. Aggregate performance of the Regional trained LSTM networks compared to CONUS-
wide trained LSTM networks using Pixel set B, evaluated over 5,000 testing pixels from Pixel Set B  
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Figure S8. The results of transfer learning when the transferred 6ME regional LSTM 
networks are benchmarked against their corresponding local-regional LSTM networks, 
regional SN17 models and pixel-wise SN17 models. 
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Figure S9. The results of transfer learning when the transferred regional SN17 models are 
benchmarked against their corresponding local regional SN17 models, and pixel-wise 
SN17 models. 
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Table S1. The results of KGEss skill for Figure S5 which Comparing the UA-SWE 
observations and SWE predicted by the LSTM and SNOW17 models at pixels selected from 
each of the five regions. 
 

Models/Regions Ohio Missouri CRB SN Cascades 
LSTM-B-CONUS-6M 0.97 0.98 0.99 0.98 0.98 

SN17-A-CONUS 0.88 0.94 0.62 0.81 0.88 
SN17-B-CONUS 0.68 0.85 0.65 0.97 0.92 
SN17-B-Region 0.90 0.72 0.86 0.90 0.79 

SN17-B-PX 0.81 0.96 0.86 0.95 0.92 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

14 
 

References. 
 
Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural 
computation, 9(8), pp.1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 

He, M., Hogue, T.S., Franz, K.J., Margulis, S.A. and Vrugt, J.A., 2011a. Characterizing 
parameter sensitivity and uncertainty for a snow model across hydroclimatic 
regimes. Advances in Water Resources, 34(1), pp.114-127. 
https://doi.org/10.1016/j.advwatres.2010.10.002 

He, M., Hogue, T.S., Franz, K.J., Margulis, S.A. and Vrugt, J.A., 2011b. Corruption of 
parameter behavior and regionalization by model and forcing data errors: A Bayesian 
example using the SNOW17 model. Water Resources Research, 47(7). 
https://doi.org/10.1029/2010WR009753 
 
 


