Abstract
We develop a hierarchy of simplified ocean models for coupled ocean,
atmosphere, and sea ice climate simulations using the Community Earth
System Model version 1 (CESM1). The hierarchy has four members: a slab
ocean model, a mixed-layer model with entrainment and detrainment, an
Ekman mixed-layer model, and an ocean general circulation model (OGCM).
Flux corrections of heat and salt are applied to the simplified models
ensuring that all hierarchy members have the same climatology. We
diagnose the needed flux corrections from auxiliary simulations in which
we restore the temperature and salinity to the daily climatology
obtained from a target CESM1 simulation. The resulting 3-dimensional
corrections contain the interannual variability fluxes that maintain the
correct vertical gradients of temperature and salinity in the tropics.
We find that the inclusion of mixed-layer entrainment and Ekman flow
produces sea surface temperature and surface air temperature fields
whose means and variances are progressively more similar to those
produced by the target CESM1 simulation. We illustrate the application
of the hierarchy to the problem of understanding the response of the
climate system to the loss of Arctic sea ice. We find that the shifts in
the positions of the mid-latitude westerly jet and of the Inter-tropical
Convergence Zone (ITCZ) in response to sea-ice loss depend critically on
upper ocean processes. Specifically, heat uptake associated with the
mixed-layer entrainment influences the shift in the westerly jet and
ITCZ. Moreover, the shift of ITCZ is sensitive to the form of Ekman flow
parameterization.