
-1-

1 [Article title]
2 Understanding Disturbance Regimes from Patterns in Forest Biomass
3
4 [Authors]
5 Siyuan Wang1, 2, Hui Yang1, Sujan Koirala1, Matthias Forkel2, Markus Reichstein1,3, Nuno
6 Carvalhais1,3,4
7 (swang@bgc-jena.mpg.de, huiyang@bgc-jena.mpg.de, skoirala@bgc-jena.mpg.de, matthias.forkel@tu-dresden.de,
8 mreichstein@bgc-jena.mpg.de, ncarvalhais@bgc-jena.mpg.de)
9 1Max-Planck Institute for Biogeochemistry, Jena, Germany
10 2Technische Universität Dresden, Institute of Photogrammetry and Remote Sensing, Dresden, Germany
11 3 ELLIS Unit Jena at Michael-Stifel-Center Jena for Data-driven and Simulation Science, Jena, Germany
12 4 Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de
13 Lisboa, Caparica, Portugal
14
15 [Correspondence]
16 Nuno Carvalhais, Department Biogeochemical Integration, Max Planck Institute for
17 Biogeochemistry; Hans-Knöll-Straße 10, 07745, Jena, Germany.
18 Email: nuno.carvalhais@bgc-jena.mpg.de
19 Telephone: +49 3641 57-6225
20
21 [Open Research Statement]
22 Data and code are archived in Zenodo: https://zenodo.org/record/8121119
23
24 [Keywords]
25 Biomass; Carbon Cycle Dynamics; Disturbance Regimes; Forest Mortality; Gap Dynamics.

mailto:matthias.forkel@tu-dresden.de
mailto:skoirala@bgc-jena.mpg.de
mailto:huiyang@bgc-jena.mpg.de
mailto:swang@bgc-jena.mpg.de
mailto:ncarvalhais@bgc-jena.mpg.de
mailto:mreichstein@bgc-jena.mpg.de
mailto:nuno.carvalhais@bgc-jena.mpg.de
https://zenodo.org/record/8121119


-1-

26 Abstract

27 Natural and anthropogenic disturbances are important drivers of tree mortality, shaping the

28 structure, composition, and biomass distribution of forest ecosystems. Differences in disturbance

29 regimes, characterized by the frequency, extent, and intensity of disturbance events, result in

30 structurally different landscapes. Characterizing different disturbance regimes through

31 landscape-scale forest structure provides a unique perspective for diagnosing the impacts and

32 potential carbon-climate feedbacks from terrestrial ecosystems. In this study, we design a model-

33 based experiment to investigate the links between disturbance regimes and spatial biomass

34 patterns. First, the effects of disturbance events on biomass patterns are simulated using a simple

35 dynamic carbon cycle model based on different frequency, extent, and intensity of forest

36 disturbance. We characterize the disturbance regimes via three parameters: μ, α, and β; that

37 represent the probability scale, clustering degree and intensity of different disturbance events,

38 respectively. We generate over 850 thousand biomass patterns, from 2,142 combinations of μ, α,

39 and β under different primary productivity and background mortality scenarios. We characterize

40 the emergent biomass patterns via synthesis statistics, including central tendency statistics;

41 different moments of the distribution; information-based and texture features. We further follow

42 a multi-output regression approach that takes the biomass synthesis statistics and gross primary

43 production (GPP) as independent variables to retrieve the three disturbance regimes parameters.

44 Results show confident inversion of all three “true” disturbance parameters, with Nash-Sutcliffe

45 efficiency of 94.8% for μ, 94.9% for α, and 97.1% for β. And biomass distribution statistics

46 primarily dominate the prediction of μ and β, while texture features have a stronger influence on

47 α. Overall, these results demonstrate the association between biomass patterns and disturbance

48 statistics that emerge from different underlying disturbance regimes. By doing so, it overcomes
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49 the known issue of equifinality between mortality rates and total biomass. Given the increasing

50 availability of Earth observation of biomass, our findings open a new avenue to better understand

51 and parameterize disturbance regimes and their links with vegetation dynamics under climate

52 change. Ultimately, at a large scale, this approach would improve our current understanding of

53 controls and feedback at the biosphere-atmosphere interface in the current Earth system models.
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68 1. Introduction

69 Mortality is one of the key processes of vegetation dynamics (Franklin et al. 1987; Runkle

70 2000) that dominates aboveground carbon turnover (Carvalhais et al. 2014; Thurner et al. 2016)

71 and contributes to model uncertainties in the carbon cycle (Friend et al. 2014). The diverse range

72 of natural (e.g. fires, droughts, wind-throws, pathogens and insects outbreaks) and anthropogenic

73 disturbances (e.g. agricultural expansion, urbanization, and clearcutting) act as strong drivers of

74 vegetation mortality, leading to the total or partial loss of biomass (McDowell et al. 2022;

75 Hammond et al. 2022; Grime 1977). A better understanding of mortality and disturbance and

76 their impacts on carbon dynamics is thus crucial for constraining future carbon cycling

77 prognostics (Friend et al. 2014).

78 The mortality caused by disturbances, as well as primary productivity and allocation, play an

79 important role in controlling the local distribution and the large scale spatial gradients of above-

80 ground biomass (AGB, Delbart et al. 2010; Johnson et al. 2016). But diagnosing disturbances

81 from primary productivity or biomass patterns it is still poorly understood due to equifinality

82 issues (Ryan et al. 2011; Williams et al. 2013) and its highly stochastic nature (Chambers et al.

83 2004; Allen et al. 2010; Hammond et al. 2022). Characteristics of disturbances at the landscape

84 level, i.e., disturbance regimes, are commonly inferred using metrics like size, frequency,

85 intensity, and aggregation (Turner 2010), which describe the cumulative effects of all

86 disturbance events in a given area and time period (Senf and Seidl 2021b). The disturbance

87 regime ultimately leads to a shifting steady-state mosaic, represented by patches of distinct

88 successional stages or carbon stocks over long time periods (Brokaw and Scheiner 1989).

89 Most research on quantifying disturbance regime parameters has been carried out either

90 through observation-driven methods or by using model-data-integration. For example, remote

https://www.zotero.org/google-docs/?yYGrSu
https://www.zotero.org/google-docs/?yYGrSu
https://www.zotero.org/google-docs/?p5DDLx
https://www.zotero.org/google-docs/?yYGrSu
https://www.zotero.org/google-docs/?rhKrZ2
https://www.zotero.org/google-docs/?rhKrZ2
https://www.zotero.org/google-docs/?iALlw7
https://www.zotero.org/google-docs/?iALlw7
https://www.zotero.org/google-docs/?iALlw7
https://www.zotero.org/google-docs/?iALlw7
https://www.zotero.org/google-docs/?v9Qjqo
https://www.zotero.org/google-docs/?F9i19T
https://www.zotero.org/google-docs/?kAstHo
https://www.zotero.org/google-docs/?kAstHo
https://www.zotero.org/google-docs/?kAstHo
https://www.zotero.org/google-docs/?kAstHo
https://www.zotero.org/google-docs/?X40MsI
https://www.zotero.org/google-docs/?p2ndam
https://www.zotero.org/google-docs/?RGR5EH
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91 sensing based on spectral bands, indices and segment outlines have been used to identify changes

92 in vegetation that are associated with disturbance magnitude, duration, and rate of change

93 (Chambers et al. 2013; Senf et al. 2021b). Two common disturbance parameters, determining the

94 average probability and intensity of biomass loss, were retrieved using satellite biomass

95 observation, though with a high level of equifinality (Williams et al. 2013). Alternatively, using

96 successive biomass maps, some studies have been able to detect differences in patterns of

97 intensity, ranging from deforestation to widespread low-intensity disturbance (Hill et al. 2015).

98 Moreover, the clustering pattern of disturbance events has been recognized as a distinguishing

99 attribute of different disturbance regimes and failure to resolve these patterns can lead to

100 misestimation of average mortality and growth patterns (Fisher et al. 2008). These studies have

101 been motivating the exploration, and highlighting the significant potential, of using biomass

102 observations to understand and quantify disturbance regimes. In parallel, the emergence of up-to-

103 date biomass observations (Saatchi et al. 2011; Santoro et al. 2021) opens novel pathways for

104 comprehending and investigating the clustering patterns of disturbances, alongside other facets

105 of the disturbance regimes, at a more intricate scale. Ultimately, disturbance parameters based on

106 observations could be incorporated in process-based models (e.g., Friend et al., 2013) or

107 individual-based models (Bugmann 2001; Bossel et al. 1994; Yan et al. 2005; Köhler et al. 1998)

108 as stochastic model components that allow the quantification of the impacts of disturbances on

109 the forest carbon cycle from local and global scales.

110 The goal of our study is to comprehensively characterize disturbance regimes and investigate

111 their connection with resulting biomass patterns through a model-based experiment. Specifically,

112 we focus on the methodology used to simulate the impact of three distinct disturbance regime

113 attributes - extent, frequency, and intensity of disturbance events - on biomass dynamics. The

https://www.zotero.org/google-docs/?c4HuZ9
https://www.zotero.org/google-docs/?c4HuZ9
https://www.zotero.org/google-docs/?x32a8K
https://www.zotero.org/google-docs/?mmCine
https://www.zotero.org/google-docs/?mmCine
https://www.zotero.org/google-docs/?RA1pFs
https://www.zotero.org/google-docs/?V5qKgm
https://www.zotero.org/google-docs/?XGzpYy
https://www.zotero.org/google-docs/?XGzpYy
https://www.zotero.org/google-docs/?XGzpYy
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114 simulations were conducted under varying scenarios of photosynthetic and background mortality

115 rates. The emerging patterns in biomass are then summarized into distribution statistics,

116 information theory and textural features across the simulations in order to retrieve the prescribed

117 disturbance regimes via a multi-output regression approach.

118 Below, in section 2, we introduce in detail the carbon model, the parameters that control the

119 simulated disturbance regimes, describe the approach to generate disturbance cubes, and the

120 methodology for retrieving disturbance parameters. In Section 3, we present the results of these

121 experiments, namely on the varying patterns of biomass emerging from different disturbance

122 regimes, and the performance of the regression approach to invert the underlying disturbance

123 parameters. This is followed by a discussion on the robustness of the framework and an outlook

124 in Section 4. We present the conclusions of our research in Section 5.

125 2. Methods

126 2.1 Dynamic carbon cycle model

127 We simulate the carbon cycle at the patch level. Each patch is specified as a homogeneous

128 forest stand, representing the smallest computing unit during the simulation (Fisher et al. 2008).

129 The changes in aboveground vegetation carbon (C, in 𝑘𝑔𝐶 ⋅ 𝑚−2 ⋅ 𝑦𝑟−1) are determined by the

130 difference between aboveground carbon gains (via photosynthesis, 𝑁𝑃𝑃𝐴𝐺𝐵) and losses (𝐿, Eq.

131 1) at the annual scale as,

132 𝑑𝐴𝐺𝐵
𝑑𝑡 =  𝑁𝑃𝑃𝐴𝐺𝐵 − 𝐿 Eq.1

133 The aboveground carbon gain, 𝑁𝑃𝑃𝐴𝐺𝐵, is calculated from gross primary production (GPP),

134 the losses of C to growth respiration (1 − 𝑌𝐺, Amthor 2000), and the fraction of biomass that is

135 aboveground (𝑓𝐴𝐺𝐵) as,

https://www.zotero.org/google-docs/?1e84Jl
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136 𝑁𝑃𝑃𝐴𝐺𝐵 =  𝐺𝑃𝑃 × 1 − 𝑌𝐺 × 𝑓𝐴𝐺𝐵 Eq.2

137 To simplify the experiments, the transfer ratio from 𝐺𝑃𝑃 to 𝑁𝑃𝑃𝐴𝐺𝐵 ( 1 − 𝑌𝐺 × 𝑓𝐴𝐺𝐵) is

138 fixed to a value of 0.5, representing 2/3 of C allocation to AGB and a growth respiration ratio of

139 0.25 (Amthor 2000).

140 The GPP dynamics are represented as a simple saturating exponential function of biomass.

141 We acknowledge that the variations in the relationship between GPP and AGB for which we

142 introduce a varying parameter G. Changes in G lead to different recovery trajectories and to a

143 variability in the maximum photosynthetic capacity, representing the impact of species and local

144 edaphoclimatic conditions in primary productivity dynamics between different landscapes.

145 𝐺𝑃𝑃 =  100

𝐺+ 𝑒
−𝐴𝐺𝐵

1200

Eq.3

146 The total carbon loss includes the carbon losses during disturbance events (𝐿𝑑) and by the

147 background mortality (𝐿𝑏, Eq. 4) as,

148  𝐿 =  𝐿𝑏 +  𝐿𝑑 Eq.4

149 The 𝐿𝑏 is assumed to be a constant proportion of AGB, implicitly including the average

150 effects of litterfall, root exudates, and herbivory (Thurner et al. 2016) as,

151 𝐿𝑏 = 𝐴𝐺𝐵 × 𝐾𝑏 Eq.5

152 𝐾𝑏 =  1
𝜏 Eq.6

153 where 𝐾𝑏 refers to the background mortality rate, a reciprocal of turnover time (𝜏). To account

154 for the fact that Kb is also spatially variable (e.g. Thurner et al., 2016), we define a range of Kb

155 between 0.025 and 0.2, with an interval of 0.025, representing background turnover times from 5

156 to 40 years (Table 1). The other part of the carbon loss is caused by disturbance, Ld, determined

157 by the intensity of disturbance event covering the patch as,

https://www.codecogs.com/eqnedit.php?latex=AGB_%7bgain%7d%20%3D%20GPP%20times%20CUE%20times%20f_%7bAGB%7d#0
https://www.codecogs.com/eqnedit.php?latex=GPP%20%3D%20frac%7b100%7d%7bG%2Be%5e-frac%7bAGB%7d%7b1200%7d%7d#0
https://www.zotero.org/google-docs/?uKmmhX
https://www.codecogs.com/eqnedit.php?latex=L_b%20%3D%20AGB%20times%20K_b#0
https://www.codecogs.com/eqnedit.php?latex=%20K_b%20%3D%20frac%20%7b1%7d%7btau%7d#0
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158 𝐿𝑑 = 𝐴𝐺𝐵 × 𝑓𝐿 Eq.7

159 where, parameter 𝑓𝐿 represents fraction of carbon loss during the disturbance, and it depends on

160 the size of the event and the intensity slope (β, see Section 2.2).

161 2.2 Modeling different disturbance regimes

162 We applied three parameters to describe different disturbance regimes: the probability of

163 disturbances, μ; the clustering patterns of events, α; and the intensity slope, β. These parameters

164 represent the fraction of the domain affected by disturbances, the number and size of disturbed

165 clusters of patches, and the fraction of carbon loss during each event, respectively. For the

166 purpose of distributing a sufficiently large and spatially random number of disturbance events,

167 our experiment is set on a domain of 1,000 by 1,000 pixels to simulate the corresponding

168 landscape-scale domains. As in Fisher et al. (2008), we assume that each pixel (patch) represents

169 one single canopy tree square with a 10m-by-10m size, and the total domain size is of 100 km2.

170 2.2.1 Parameterization of disturbance regimes

171 Parameter μ refers to the total disturbed fraction of the domain, where D refers to the total

172 domain size and Da is the area of the domain affected by disturbances as,

173 𝐷𝑎 = 𝐷 × 𝜇 Eq.8

174 For parameter α, we followed Fisher’s method by applying the scaling exponent 𝛼 to

175 determine the clustering degree of events (Fisher et al. 2008) as,

176 𝑛𝑧𝑖 = 𝐴𝑧𝑖−𝛼 Eq.9

177 where 𝛼 is the scaling exponent for the disturbance event clustering degree with a dimensionless

178 unit, and 𝑧𝑖 is specific event size. A is the proportionality factor, manipulated by the size of the

179 total disturbed area and the setting of events size series as,

https://www.codecogs.com/eqnedit.php?latex=L_d%20%3D%20AGB%20times%20I#0
https://www.zotero.org/google-docs/?NejhVC
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=n_z%20%3D%20Az%5e%7b-alpha%7d#0
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180 𝐴 =  𝐷𝑎
∑(𝑧𝑖 ∙ 𝑧𝑖−𝛼)

Eq.10

181 where 𝑧𝑖 is the corresponding disturbance event size. We applied an event size ranging between a

182 patch to half the size of the domain during the simulations (see Appendix S1).

183 For parameter 𝛽, we assumed that the intensity of disturbance (𝑓𝐿, fraction of carbon loss per

184 event) is proportional to the logarithm of event size (𝑙𝑜𝑔10 𝑍𝑖 , Chambers et al. 2013). This

185 relationship between intensity and event size is controlled by parameter 𝛽 (intensity slope, Figure

186 3), and b is a constant value:

187 𝑓𝐿 =  𝛽∙𝑙𝑜𝑔10 𝑧𝑖 + 𝑏 Eq.11

188 More details on the parameterization setup related to α and β (Eq.9 - 11) can be found in

189 Appendix S1.

190 2.2.2 Disturbance Parameter Ranges

191 The inclusion of the parameters μ, α, and β allows a flexible description of disturbance

192 regimes in different landscapes, containing a wide range of all possible disturbance regimes

193 without specifying disturbance type. For providing realistic simulation scenarios we consulted

194 existing literature to set different ranges and intervals for the primary productivity parameter G,

195 background mortality rate Kb, and the three disturbance parameters independently (Table 1).

196 In particular, the parameter G is specified as a range from 0.03 to 0.1, imposing a range in

197 GPP of 1 and 4 𝑘𝑔𝐶 ⋅ 𝑚−2 ⋅ 𝑦𝑟−1 and an average steady state biomass from 10 to 40 𝑘𝑔𝐶 ⋅ 𝑚−2,

198 without disturbances. The parameter μ is set in a range of 0.01 to 0.05 with an interval of 0.005;

199 this range substantially spans the average value of 0.02 documented in forests by Moorcroft et al.

200 (2001) and Malhi et al. (2004). The settings for the clustering parameter α comes from observed

201 gap-size distributions from previous studies in the tropical and sub-humid forest ecosystem,

https://www.zotero.org/google-docs/?AE8Flk
https://www.zotero.org/google-docs/?AE8Flk
https://www.zotero.org/google-docs/?AE8Flk
https://www.zotero.org/google-docs/?AE8Flk
https://www.zotero.org/google-docs/?AE8Flk
https://www.zotero.org/google-docs/?AE8Flk
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20I%20%3D%20beta%20cdot%20log_%7b10%7d(Z_i)%2Bb#0
https://www.zotero.org/google-docs/?cmWFtq
https://www.zotero.org/google-docs/?cmWFtq
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202 which indicated a range between 1.1-1.6 (Araujo et al. 2021; Lawton et al. 1988; Jans et al. 1993;

203 Nelson et al. 1994; Yavitt et al. 1995; Fisher et al. 2008). In the experiment, we have increased

204 the documented range slightly from 1.0 to 1.8, with an interval of 0.05. For parameter β, we have

205 considered the findings from Chambers et al.’s (2013) to establish a range between 0.03 and 0.5.

206 The intervals within that range differ, with a value of 0.01 for the range [0.03, 0.09], 0.05 for

207 [0.1, 0.25], and 0.1 for [0.3, 0.5] (see Figure 3).

208 2.3 Generation of Disturbance Events

209 The prescription of the different disturbance regime parameters required the design of a

210 stochastic disturbance event generator that distributes all of the events within the domain. We

211 followed Fisher et al. (2008)’s strategy that distribute all of the different size disturbance events

212 in rectangular shapes and descending order. The disturbance event generator assigns center

213 coordinates randomly for each event in each class size; it checks for any overlaps with

214 surrounding placed events; if an overlap is detected it reassigns the event’s location. The location

215 of an event is also reassigned when an event’s location is partly placed outside of the domain. In

216 this way the algorithm ensures an accurate prescription of each disturbance regime.

217 A full factorial combination of the different parameter’s ranges and intervals sums up to a

218 total of 2,142 combinations of disturbance regimes. For every disturbance regime, we generate a

219 reference disturbance dataset for a 1000 × 1000 domain, consisting of 200 annual time steps, in

220 the form of a three-dimensional array (a data cube). As such, every snapshot of the reference

221 cube is a 1000 × 1000 stochastic disturbance reference map, providing the spatial reference for

222 simulating the effect of disturbances in carbon cycling dynamics. To further impose variability in

223 the resulting biomass distributions, for the same disturbance regime, the disturbance dataset was

224 shuffled ten times in the time domain, generating a total of more than 2 × 104 simulation

https://www.zotero.org/google-docs/?Wi2fB9
https://www.zotero.org/google-docs/?Wi2fB9
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225 scenarios. The emerging AGB distributions from the different scenarios result from the

226 variations in disturbance regimes, in productivity (G), and in background mortality (Kb) levels

227 (Appendix S2), upon which three types of statistic metrics were used to characterize the biomass

228 patterns at steady state on the domain scale.

229 2.4 Characterizing the Biomass Patterns

230 The first type of statistics utilized in our study is based on the histogram distribution,

231 including mean, median, variance, skewness, kurtosis, percentiles, as well as standard deviation

232 and coefficient of variation. Previous literature suggests that some of these metrics, such as

233 skewness and mean, are associated with the probability and intensity of disturbances (Williams

234 et al. 2013). We have additionally introduced information theory based metrics: the Shannon

235 entropy index (Shannon 1948), also called Shannon-Wiener index, which is a widely used

236 indicator for describing the diversity level in ecosystems (Spellerberg et al. 2003). Furthermore,

237 we included statistical properties based on the texture of biomass distribution. Texture provides

238 information about the spatial arrangement of intensities in an image (e.g. continuity, contrast,

239 smoothness), in our case, the emergent biomass map. We utilized Gray-Level Co-Occurrence

240 Matrices (GLCMs), one of the most common texture feature extraction methods based on image

241 statistics, to study the spatial correlation properties by using gray-scaled images (Haralick et al.

242 1973). To characterize texture on the biomass maps we applied four statistics from the GLCMs

243 method, namely: contrast; correlation; energy; and homogeneity (Table 2). For doing so, all

244 biomass maps were re-scaled to a range of 0 to 255, and AGB outliers were substituted with the

245 nearest neighboring pixel prior to rescaling to avoid contamination in texture features. These

246 outliers are individual isolated pixels with substantially higher AGB values resulting from

247 incidentally undisturbed locations during the 200 years of simulations.

https://www.zotero.org/google-docs/?pVJaUg
https://www.zotero.org/google-docs/?pVJaUg
https://www.zotero.org/google-docs/?79Ahwd
https://www.zotero.org/google-docs/?r7U0CF
https://www.zotero.org/google-docs/?r7U0CF
https://www.zotero.org/google-docs/?rwdLM6
https://www.zotero.org/google-docs/?rwdLM6
https://www.zotero.org/google-docs/?rwdLM6
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248 The simulation of biomass dynamics using the carbon cycling model involved a

249 comprehensive examination of 85,680 parameter combinations. This comprised of 2,142

250 disturbance regimes in combination with 5 primary productivity scenarios and 8 background

251 mortality rate scenarios. Each parameter combination was executed ten times, with the reference

252 disturbance cube being shuffled in a different sequence for each run. Ultimately, 17 statistics

253 were extracted for each run, including mean GPP at the end of simulation, as well as 16 other

254 statistics related to the steady-state biomass distribution.

255 2.5 Prediction and validation

256 We used a multi-output random forest regression method in Scikit-learn (Pedregosa et al.

257 2011) to investigate the relationship between the simulated biomass statistics and the prescribed

258 disturbance regimes. To avoid overfitting, we implemented three cross-validation strategies

259 (Appendix S3): Completely Random 10-fold method (CR), the Leave-One-Sequence-Out

260 method (LOSO), and the Leave-One-Parameter-Out method (LOPO).

261 We use the Nash-Sutcliffe efficiency (NSE) to evaluate the performance of our prediction

262 model (Nash et al. 1970). The NSE measures the accuracy of the predicted disturbance regime

263 parameters compared to the prescribed values in this study. A higher NSE indicates better

264 accuracy. The formula for calculating NSE (D. N. Moriasi et al. 2007) is shown in Eq.12,

265 𝑁𝑆𝐸 = 1 −  
∑𝑛

𝑖=1 𝑌𝑜𝑏𝑠
𝑖 − 𝑌𝑝𝑟𝑒

𝑖
2

∑𝑛
𝑖=1 𝑌𝑜𝑏𝑠

𝑖 −  𝑌𝑜𝑏𝑠
2

Eq.12

266 where the 𝑌𝑜𝑏𝑠
𝑖 is the ith prescribed disturbance regime parameter, 𝑌𝑝𝑟𝑒

𝑖 is the ith predicted value

267 for the corresponding parameter, 𝑌𝑜𝑏𝑠 is the mean of the prescribed parameter, and n is the total

268 number of observations.

https://www.zotero.org/google-docs/?7RgiRv
https://www.zotero.org/google-docs/?7RgiRv
https://www.zotero.org/google-docs/?HOAl54
https://www.zotero.org/google-docs/?HOAl54
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20I%20%3D%20beta%20cdot%20log_%7b10%7d(Z_i)%2Bb#0
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269 3. Results

270 3.1 Parameterization and dynamic carbon model

271 3.1.1 Parameterization of disturbance regimes

272 The clustering parameter α defines the relationship between the size and frequency of

273 disturbance events across the domain establishing that the number of events decreases

274 exponentially with the event size (Appendix S4: Figure S1). This relationship is diagnosed from

275 the simulated cubes. The average size of events in the domain exponentially decays as the

276 parameter α increases, conversely, the number of events tends to a logistic increase, which

277 confirms that larger α corresponds to more and smaller discrete events rather than few and larger

278 ones. With discrete but progressive α values, the disturbance data cubes provide a gradient in the

279 relationship between the amounts and sizes of events across the domain (Figure 2).

280 We have introduced a range in the event intensity parameter, β, that results in an intensity

281 gradient for events of the same size between the disturbance data cubes. The relationship

282 between β and event size, as defined in Eq.9, results in a logarithmic increase in disturbance

283 intensity as the event size increases. Figure 3 shows this relationship for all the assigned β values

284 in our experiment. The results demonstrate the distinct gradient across all curves, each

285 translating a steeper increase between intensity and event sizes and β increases. When β was

286 greater than 0.2, the disturbance intensity was 100% for events larger than ~2 x 103. Notably, β

287 values of 0.5 impose a full intensity disturbance (full loss) for events of any size (Figure 3).

288 3.1.2 Temporal carbon dynamics

289 By employing the parsimonious carbon model, we can analyze the dynamics of AGB given

290 trends in GPP alongside the carbon losses due to the background mortality and to the disturbance

291 regime (Figure 4). The range of values for parameter G, designed to represent variations in the
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292 relationship between photosynthesis and biomass, produce a gradient in maximum GPP at steady

293 states, with and without taking disturbances into account. Such gradient directly compares to the

294 gradients in maximum AGB, both across the GPP gradients driven by G, with noteworthy

295 variations in average biomass across domains (from ~10 𝑘𝑔𝐶 ⋅ 𝑚−2 to 40 𝑘𝑔𝐶 ⋅ 𝑚−2) under a no

296 disturbance scenario. When considering a disturbance regime with parameters μ=0.03, α=1.0,

297 and β=0.2, the steady-state average levels of GPP and AGB clearly exhibit a decrease. Yet, and

298 particularly for this disturbance regime, the reduction in AGB (~58%) was more than twice the

299 reductions in GPP (~23%). Additionally, with the introduction of disturbance events, the original

300 smooth growth curves are replaced by higher frequency fluctuations that become increasingly

301 pronounced with higher values of G. The comparison of GPP and AGB evolution over time in

302 different disturbance regimes is provided in Appendix S5: Figure S1.

303 3.1.3 Steady-state biomass distribution

304 Under the same photosynthetic capacity (fixed G) and background mortality rate (fixed Kb),

305 the steady-state biomass (year 200) exhibits diverse spatial patterns under different disturbance

306 regimes, as shown in Figure 5. Increasing parameter μ while keeping the other two disturbance

307 regime parameters fixed (first row in Figure 5) imposes an increasing fraction of the domain

308 affected by disturbance that leads to more areas with lower biomass. As the clustering parameter

309 α increases (second row in Figure 5), the same fraction of disturbance (same μ) is imposed

310 through a larger number of small events. As such, the spatial distribution of the biomass becomes

311 more homogeneous as α increases, shifting from distinguishable disturbance effects to a

312 uniformly distributed noisy mosaic (from left to right, second row in Figure 5). The impact of

313 higher β values is also evident, with more intense events resulting in greater biomass removal

314 and lower plant regrowth levels, resulting in more contrasting disturbance footprints. The
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315 combination of the three disturbance regime parameters resulted in a large diversity of spatial

316 patterns and biomass distributions, ideal to explore the retrieval of disturbance regimes from

317 potential AGB observations via dynamic vegetation modeling.

318 3.2 Retrieving Disturbance Regimes from Biomass Patterns

319 3.2.1 Cross-Validation

320 Figure 6 shows that all the strategies of cross-validation have a good performance for

321 retrieving the three disturbance regime parameters under various primary productivity and

322 background mortality conditions. Relying on the 16 statistics (Table 2) calculated from the

323 biomass and the average GPP of the last year of the simulation, all the NSEs of μ, α, and β

324 exceeded 0.94 in the CR and LOSO validation. In addition, the LOPO validation exhibits a high

325 degree of precision for estimating μ and β, with an NSE approximately 0.82 and 0.85, and a

326 moderately accurate prediction for α with NSE of 0.69. This suggests that the model has the

327 ability in predicting target disturbance regime parameters when they are not present in the

328 training set, although the level of precision may vary.

329 The scatter plots of different CV strategies confirmed the high accuracy and apparent gradient

330 for the predictions across the cross-validation strategies (from left to right, Figure 6). The results

331 from the random cross-validation (CR validation, Figure 6a) as well as for the LOSO cross-

332 validation approach (Figure 6b) show robust and high NSE values, and the regression lines close

333 to the 1:1 line, indicating the great accuracy and high correlation with the prescribed values. The

334 LOSO validation (Figure 6b) maintains a similar prediction accuracy with CR validation, but the

335 LOPO results show lower NSE values, larger scatters, and a regression line up to 20% away

336 from the 1:1 line. The performance reduction is especially for parameter α. One possible reason

337 is that, when training, if certain boundary values of the parameters are absent, the results show an
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338 evident bias. To investigate this further, we conduct a test by replacing the LOPO CV predictions

339 by the LOSO CV predictions specially for the μ, α, and β that fall at the boundaries of the

340 prescribed intervals. As a result, we found a significant increase in precision, with the NSE for μ

341 and β exceeding 0.91 and the NSE for α increasing to 0.76 (Figure 6d). These results confirm the

342 extrapolation challenge faced by our multi-output random forest model when predicting

343 parameter combinations outside the prescribed bounds.

344 3.2.2 Feature Importance

345 According to the feature importance analysis in the multi-output random forest method, it is

346 observed all types of statistics played significant roles in predicting the disturbance regimes

347 (Figure 7). Additionally, information on mean GPP contributed around 13% for the predictions,

348 ranking it in the third position among the statistical metrics on AGB (Figure 7a). GPP, along

349 with the texture feature correlation, and the coefficient of variation, are the main contributors to

350 the predictions of disturbance regimes (close to 60% of total feature importance). In fact, these

351 three features alone can explain more than 80% of the variation in the different disturbance

352 parameters (Figure 7b).

353 To elucidate the association between the individual disturbance regime parameters and

354 statistics, we retrained a random forest model specifically for predicting each single parameter.

355 Upon considering features whose contribution exceeds 5%, we see that μ is primarily governed

356 by features characterizing the statistical distribution of AGB (feature importance ~55% of the

357 total contribution, Figure 8a). However, texture feature, correlation, is the second most

358 important, accounting for 23% of the contribution, while GPP contributes only 6% for predicting

359 μ. The importance of GPP is more apparent in predicting α (14%) and β (13%). Texture features

360 have a higher significance in predicting parameter α than μ and β, contributing approximately
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361 37%. The feature that made the highest contribution was correlation, which accounted for 30%

362 of the prediction (Figure 8b). For parameter β, the coefficient of variation has a dominant

363 contribution for prediction (~60%, Figure 8c). The analysis shows that for achieving and

364 accuracy over 75% for predicting each of the parameters μ, α, and β individually, would require

365 the top 4, 3, and 2 features, respectively (Figure 8).

366 4. Discussion

367 Disturbance regimes are usually defined by their frequency, severity, and spatial coverage

368 (Liu et al. 2011), and can vary significantly across the landscape (Nelson et al. 1994). Previous

369 approaches have explored the ability to infer different properties of disturbance regimes in

370 several ways using modelling and observations, for example: Fisher et al. ( 2008) have focused

371 on the number, size, and distribution of disturbance events; Williams et al. (2013) derived

372 disturbance probability and intensity; while Chambers et al. (2013), following Fisher et al.

373 (2008) focused on return frequency, area and tree mortality intensity. A common challenge

374 across the different approaches is the equifinality, the inability to distinguish different

375 disturbance regimes using AGB integrals or only distribution statistics across the landscape or

376 simple regression approaches. Our results show that this challenge can be overcome by exploring

377 higher complexity metrics, using primary productivity for constraining the problem and

378 exploring machine learning approaches for multi-output regression problems, while some aspects

379 require further discussion.

380 4.1 Experimental factorial design

381 Building on antecedent research, here we synthesize disturbance regimes in three overarching

382 parameters μ, α, and β, which control the average area affected by disturbances, their event size-

383 frequency relationship, and the event intensity, respectively. The emergent biomass distribution

https://www.zotero.org/google-docs/?SYyKEs
https://www.zotero.org/google-docs/?pZXEeq
https://www.zotero.org/google-docs/?uCAUHJ
https://www.zotero.org/google-docs/?LOLKVC
https://www.zotero.org/google-docs/?ANS82D
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384 is further determined by primary productivity, controlled by G, and by the background mortality,

385 Kb. We implemented a full factorial design in the variation of these five parameters, imposing a

386 relatively wide range to simulate a sufficiently large sample of disturbance regime scenarios

387 following Fisher et al. (2008) for μ and α, Chambers et al. (2013), for β, Thurner et al. (2016) for

388 Kb, and allowing G to generate a range in GPP according to the current ranges emerging from the

389 FLUXNET eddy covariance network (Pastorello et al. 2020). Although we ensured that the

390 experimental setup spans the parametric ranges found in literature, further findings expanding

391 these intervals should necessarily involve expansion of experimental design. Such aspect is

392 especially relevant given the limitations in predicting boundary values (as shown in Figure 6c).

393 Furthermore, although the event clustering and intensity parameters (α and β) span widely, here

394 we follow a prescribed relationship between even size, frequency, and intensity (as in Fisher et

395 al., 2008 and in Chambers et al., 2013). Alternative formulations on the links between size,

396 frequency and intensity may necessarily lead to different statistical model structures.

397 Temporal independence in disturbance events

398 Different types of events may have different size-frequency-intensity relationships, or be

399 temporally correlated (e.g. drought and insect outbreaks, Anderegg et al. 2015). In this regard,

400 the current prescription of disturbance events is stochastic and, given the lack of quantitative

401 information, temporally independent. The experimental setup is also insensitive to changes in

402 local edaphoclimatic conditions after disturbances. Disturbance events, such as fire, can modify

403 the physical and chemical properties in soils or local microclimatic environments, creating

404 ecological legacies that have cascading implications on carbon dynamics (Liu et al. 2003). The

405 ability to quantify how different disturbances change the posteriori growth conditions and vary

406 the probability of subsequent disturbance events may be very local. However, in a context of

https://www.zotero.org/google-docs/?iBkHtA
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407 climate change and for prognostic purposes, it will support constraining the temporal dynamics

408 of disturbance regimes and potentially provide more realistic projections of carbon cycle

409 responses to climate.

410 Shapes of disturbance events

411 In our experiments, following also previous studies, for simplicity the disturbance events are

412 prescribed as rectangular shapes (Fisher et al. 2008; Williams et al. 2013). Shapes of disturbance

413 events are usually more complex as demonstrated by high-resolution remote sensing

414 observations (Chambers et al. 2013; Senf and Seidl 2021a). For most statistical properties, such

415 as distribution or information theory metrics, this aspect is irrelevant. However, the importance

416 of texture features for the prediction of μ and α, especially correlation, may reflect limitations in

417 the generalization of the approach. We additionally conducted a simple exercise including

418 disturbances with irregular shapes to confirm the performance of the approach and that the

419 variable importance is kept (See Appendix S6). These results suggest that the landscape texture

420 patterns are mainly controlled by the frequency-size relationship rather than by event shape, and

421 hence type, of disturbances.

422 Local biomass outliers

423 Occasionally, local and sporadic very high AGB grid cells emerge from the simulations, even

424 after the 200-year simulation period. The outlier, defined as AGB value greater than three

425 standard deviations from the mean value of the column in which the AGB pixel is located

426 (Appendix S7: Table S1), was filled with the nearest nonoutlier value. Although increasing the

427 simulation years may theoretically mitigate this phenomenon we found it computationally very

428 inefficient and difficult to control. The presence of such outliers changes some of the statistical

429 features, especially distribution statistics, which leads to a reduction in the ability to predict

https://www.zotero.org/google-docs/?3gSmMy
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430 disturbance regimes. This translates mostly that these local outliers can significantly impact

431 AGB extremes metrics and by that breaking down the relationship between AGB distributions

432 and the underlying disturbance regimes.

433 Large scale controls on primary productivity

434 Another assumption is the dominant role of climate in controlling landscape scale GPP (Wang

435 et al. 2014). In our experimental design is the relationship between GPP and biomass,

436 determined by parameter 𝐺. We prescribed a gradient in 𝐺 that corresponds to a gradient in

437 maximum GPP at landscape level between 1000 and 4000 𝑔𝐶 ⋅ 𝑚−2 ⋅ 𝑦𝑟−1. We acknowledge the

438 heterogeneity of photosynthetic capacity within the domain by randomly perturbing ¼ G for each

439 patch. These perturbations represent a variation of 37% on maximum GPP. The approach falls

440 short not consider the high frequency environmental controls on photosynthesis, such as solar

441 radiation, temperature, vapor pressure deficit or soil water availability. As such, the approach

442 stands on the assumption that landscape scale GPP is mostly controlled by climate rather than by

443 meteorology (Wang et al. 2014; Pastorello et al. 2020).

444 4.2 Performance of the multi-output regression approach

445 Overall, the results from the different cross-validation exercises demonstrate the robustness of

446 the approach (Figure 6). The challenges in estimating the disturbance regimes underlying

447 different biomass distributions has been previously highlighted by modelling exercises due to the

448 high spatiotemporal stochasticity that characterizes disturbance events and the equifinality found

449 between disturbance regimes and total biomass distributions (Fisher et al. 2008; Ryan et al. 2012;

450 Williams et al. 2013). We argue that the equifinality issue can be addressed by (1) expanding the

451 feature space to include texture, diversity, and more comprehensive distribution metrics on the

452 emerging biomass patterns; and (2) including additional information about primary productivity.

https://www.zotero.org/google-docs/?Hy0UeF
https://www.zotero.org/google-docs/?Hy0UeF
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453 We find that deriving parameters outside the training bounds is a limitation (Figure 6c) but

454 extending the parameter intervals can reduce this problem.

455 4.3 Landscape properties emerging from disturbances

456 The multi-output regression shows that the most important variables to predict μ, α, and β

457 relate to the spatial distribution of biomass, rather than the mean or any higher quantiles of the

458 biomass distribution (Figure 7). Yet, the feature importance rankings change across the three

459 disturbance metrics. The average domain fraction affected by disturbances, μ, is strongly linked

460 to biomass distribution statistics (AGBcv, AGBskew, AGBvar, AGBstd) and also to the

461 correlation (Figure 8a). Interestingly biomass itself does not emerge as highly important,

462 although it is implicitly present in AGBcv and AGBstd. The event size-frequency clustering

463 parameter, α, displays a notable link to text features, such as correlation, homogeneity, and

464 contrast, which account for ~37% of the overall contributions of all features (Figure 8b). The

465 parameter controlling the relationship between disturbance intensity and event size, β, is mainly

466 dominated by AGBcv (Figure 8c), contributing ~60% to β’s prediction, followed by GPP

467 (~13%). This connection is the most obvious among the three parameters, indicating that the

468 intensity would directly affect the biomass distribution and indirectly the GPP.

469 4.4 Modeling forest carbon dynamics

470 In this study we used a simple carbon dynamics model to simulate primary productivity and

471 growth resulting from carbon gains and losses at patch level. The realistic annual trajectories in

472 primary productivity and AGB dynamics during recovery (Figure 4), along with model

473 tractability, translate a clear benefit in model simplicity. However, this supports the analysis of

474 the direct disturbances’ impact without considering other detailed physiological processes and

475 allocation mechanisms. Realistic biomass dynamics may describe different biomass
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476 compartments such as leaves, branches, stems and roots (e.g. CASA, Potter et al. 1993; JSBACH

477 Reick et al. 2021; DALEC, Williams et al. 2005); differentiate tree density from carbon stocks

478 and include individual and community processes to describe forest dynamics (Bugmann 2022).

479 Often these models include the effects of climate and other factors on plant growth recovery,

480 such as the impacts of changes in atmospheric CO2 and in rising temperature (Norby et al. 2001;

481 Pan et al. 2010). The present assumption here is that under given factors promoting primary

482 productivity, disturbances exert the dominant controls on the AGB patterns. Yet we acknowledge

483 the importance of bringing forward more comprehensive mechanistic models with more detailed

484 carbon compartments and plant physiological processes, along with multiple observed

485 constraints for further testing the robustness of these results and for differentiating regional

486 biomass dynamics and corresponding disturbance regimes.

487 Through the use of remote sensing data and ground-based networks, significant advances

488 have been achieved in understanding, representing, scaling, and characterizing disturbances,

489 ultimately leading to the development of the hypotheses in the process-based models, which can

490 generally be categorized into compartment models and demography models (Liu et al. 2011).

491 The compartment models, including the biogeochemical and ecophysiological ones (Parton et al.

492 1987; Running et al. 1991; Raich et al. 1991; McGuire et al. 1992; Chen et al. 2000; Liu et al.

493 2003; Bond-Lamberty et al. 2005), can integrate general stand information and meteorological

494 data to simulate carbon cycling, and applied to simulate the biogeochemical processes of forests

495 associated with disturbance (Brugnach 2005; Tatarinov and Cienciala 2006; Wang et al. 2009).

496 And the demography models, also referred to as gap models, are more focused on the simulation

497 of the impacts of disturbance on the forest composition, structure, and biomass in a relatively

498 long term (Shugart et al. 1992; Hurtt et al. 1998; Bugmann 2001; Norby et al. 2001). To better

https://www.zotero.org/google-docs/?Wh64Np
https://www.zotero.org/google-docs/?aNlsc2
https://www.zotero.org/google-docs/?aNlsc2
https://www.zotero.org/google-docs/?maxDsv
https://www.zotero.org/google-docs/?1uqyQv
https://www.zotero.org/google-docs/?1uqyQv
https://www.zotero.org/google-docs/?1uqyQv
https://www.zotero.org/google-docs/?aqs9WG
https://www.zotero.org/google-docs/?mC9pAO
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499 capture the fine-tuning functionality of plant sub-compartments and the effects of disturbance on

500 demographic dynamics, the complexity of this type of gap models is increasing (Needham et al.

501 2022).

502 4.5 Perspectives on Earth observation

503 Overall, most of these processed-based models at the moment rely on field or satellite

504 observations to quantify and evaluate the impacts of disturbance on modelled carbon stocks or

505 fluxes. But model-data comparisons are far from trivial and often the model-observations

506 mismatch is due to missing information, such as the extent, type, and timing of disturbance

507 events. However, the prescription of individual disturbances based on disturbance regimes

508 metrics derived from observations would minimize this problem and support the analysis of

509 forest dynamics at larger scales. This level of detail in describing disturbances can be also

510 transferred to dynamic global vegetation models (DGVMs), such as LPJ (Haxeltine et al. 1996),

511 HYBRID (Friend et al. 1997), IBIS (Foley et al. 1996), VECODE (Brovkin et al. 1997), and

512 LM3V (Shevliakova et al. 2009). Such could be done, e.g., by prescribing only μ and intensity

513 losses of carbon at landscape level, or even via lumped parameters (e.g. whole landscape

514 turnover rates), to describe the large scale impacts of disturbance on carbon dynamics. The

515 proliferation of high-resolution biomass from Earth observation, as those by Saatchi et al. (2011)

516 and Santoro et al. (2021), offers a valuable prospect for distinguishing different disturbance

517 regimes.

518 We would further argue that metrics on disturbance regimes hold information about the

519 different natural and anthropogenic drivers. For example, clearcutting and forest thinning may

520 result in similar spatial patterns of biomass, but with different biomass loss fractions (Appendix

521 S8: Figure S1 a-b). This could be reflected in the similar μ and α, but different β, which could be

https://www.zotero.org/google-docs/?XK3oD8
https://www.zotero.org/google-docs/?XK3oD8
https://www.zotero.org/google-docs/?BciPxU
https://www.zotero.org/google-docs/?1CHqRT
https://www.zotero.org/google-docs/?WuCCVC
https://www.zotero.org/google-docs/?Xds0f4
https://www.zotero.org/google-docs/?a4fuJD
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522 the same case for wildfire and drought (Appendix S8: Figure S1 c-d). However, tornado and

523 insect outbreak (Appendix S8: Figure S1 e-f) differ in the shape of the affected area, resulting in

524 different biomass clustering patterns, which can be reflected by different α. Therefore, these

525 natural or anthropogenic factors may cause differential biomass patterns, which are reflected in

526 distinct disturbance parameters.

527 Furthermore, by analyzing the spatial patterns of biomass stocks over time we can also detect

528 shifts in disturbance regimes and subsequent successional changes. For example, extended

529 dryness periods could induce extensive drought mortality in some regions, leading to higher

530 values of μ and β which would signal transitions in disturbance regimes. Similarly, more frequent

531 wind-throws would result in changes in event clustering patterns over a larger area, presumably

532 indicated by a higher value of μ but smaller values of α. Another example is the intensification in

533 management activities, such as clearcutting, which would cause significant changes in the

534 disturbance regimes, resulting in larger values of μ, α and β. Information on the transition in

535 disturbance regimes is key for improving our capacity to diagnose relevant changes in forest

536 dynamics and for understanding the relationship between vegetation mortality, the carbon cycle

537 dynamics and climate variability. It can assist us in identifying susceptible regions that are

538 particularly vulnerable to disturbances, thereby facilitating the implementation of effective

539 climate adaptation and mitigation strategies, but also management strategies and conservation

540 efforts to mitigate the impacts of disturbance on both ecosystem functioning and biodiversity.

541 5. Conclusion

542 This study presents a framework for simulating disturbance events using a wide range of

543 disturbance regime attributes. Together with a simple carbon dynamics model, we simulated the

544 effects of disturbance events, from combinations of three landscape-level disturbance regime



-24-

545 parameters: μ (probability scale), α (clustering degree), and β (intensity slope) on biomass

546 patterns. We observe how changes in extent, frequency, and intensity characterizing the different

547 disturbance regimes indeed lead to significantly different biomass patterns even for analogous

548 primary productivity and background mortality inputs.

549 The emerging spatial biomass patterns are summarized in a set of metrics containing the

550 central tendencies, moments, as well as information-based and texture information. Based on a

551 conceptual model-based experiment and machine learning regression we demonstrate that with

552 this set of summary metrics of biomass, along with primary productivity constraints, the set of

553 disturbance regime parameters can be reliably retrieved. The average fraction of the domain

554 affected by disturbances, the event size clustering exponent, and the perturbation intensity could

555 be retrieved with an accuracy of 94.8%, 94.9%, and 97.1%, respectively.

556 As Earth observation efforts evolve to retrieve space-borne estimates of vegetation structure

557 and patterns such as GEDI (Stavros et al. 2017), NISAR (Rosen et al. 2015), and BIOMASS (Le

558 Toan et al. 2011), and as photosynthesis patterns are being estimated at high resolution (Cogliati

559 et al. 2015; Jung et al. 2020), the methods presented in this study will open up avenues to

560 provide observation based long-term diagnostics on the terrestrial carbon cycle and background

561 disturbance patterns, which could be used to constrain Earth system models.
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853 Tables

854 Table 1. Parameter Setting

Parameter Range Interval Count
μ [0.01:0.05] 0.005 9
α [1.0:1.8] 0.05 17
β [0.03:0.5] 0.01/0.05/0.1 14
G [0.03:0.1] 0.01/0.02/0.03 5
‍Kb [0.025:0.2] 0.025 8

855

856
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857 Table 2. Statistics of the steady-state biomass map

Feature
types Statistic Variable

Names Formula

Histogram
features

mean AGBmean ∑ 𝑁
𝑖=1 𝐴 𝑖
𝑁

N: Total patch amount
𝐴𝑖: Biomass value for

patch 𝑖

median AGBmed 𝑀𝑒𝑑(𝐴) A: Biomass map

range AGBrange 𝑃90 − 𝑃10
P90: Percentile 90%
P10: Percentile 10%

variance AGBvar 1
𝑁−1∑𝑁

𝑖=1 𝐴 𝑖 − 𝜇 2

μ: Mean biomass
standard
deviation AGBstd 1

𝑁−1 ∑𝑁
𝑖=1 𝐴 𝑖 − 𝜇 2

coefficient of
variation AGBcv 100 × 𝜎

𝜇

σ: Standard deviationskewness AGBskew ∑ 𝑁
𝑖=1 (𝐴 𝑖−𝜇)3

(𝑁−1)𝜎3

kurtosis AGBkurt ∑ 𝑁
𝑖=1 (𝐴 𝑖−𝜇)4

(𝑁−1)𝜎4

percentile
25% AGBp25 𝑃25 P25: Percentile 25%

percentile
75% AGBp75 𝑃75 P75: Percentile 75%

Trimean AGBtrim (𝑃25 + 2 × 𝑀𝐸𝐷 + 𝑃75)/4 MED: Median value

Informative
feature

Shannon
entropy Shannon −∑ 𝑝∙𝑙𝑜𝑔2(𝑝)

𝑝: Normalized histogram
counts

Texture
features

contrast contrast ∑
𝑖,𝑗

𝑖 − 𝑗 2 𝑔𝑙𝑐(𝑖,𝑗)
𝑖: Reference pixel value
𝑗: Neighbor pixel value
𝑔𝑙𝑐 𝑖,𝑗 : An entry in

GLCM
𝜇𝑖, 𝜇𝑗: Means of GLCM

w.r.t. 𝑖 and 𝑗
𝜎𝑖, 𝜎𝑗: Standard

deviations of GLCM w.r.t.
𝑖 and 𝑗

correlation correlation ∑
𝑖,𝑗

(𝑖−𝜇 𝑖)(𝑗−𝜇 𝑗)𝑔𝑙𝑐(𝑖,𝑗)
𝜎 𝑖𝜎 𝑗

energy energy ∑
𝑖,𝑗

𝑔𝑙𝑐(𝑖,𝑗)2
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homogeneity homogeneity ∑
𝑖,𝑗

𝑔𝑙𝑐(𝑖,𝑗)
1+ 𝑖−𝑗

858

859 Figure Captions

860 Figure 1. Conceptual diagram of disturbance reference cubes, (a) displays a two-dimensional

861 disturbance reference map, which represents a snapshot composed of a 1,000 x 1,000 array from

862 a disturbance cube array, (b) showcases a three-dimensional disturbance reference cube

863 consisting of 200 snapshots. Each snapshot simulates a unique stochastic spatial distribution of

864 disturbance events, and the cube features a distinct combination of μ and α. It is essential to note

865 that the disturbance events within the cube should not (c) interface with edges or (d) overlap

866 with one another. (e) and (f) depict two examples of disturbance reference cubes featuring

867 different disturbance regimes.

868 Figure 2. The parameter α exerts control over the total number and average sizes of events in all

869 disturbance cubes generated with the same total disturbed area (i.e., same μ), exhibiting an

870 exponential relationship. Specifically, an increase in α results in a higher proportion of relatively

871 small events, whereas a decrease in α tends to produce fewer, yet larger events.

872 Figure 3. Logistic correlation between the intensity of disturbance event and its size. The Y-axis

873 displays the intensity value, which refers to the proportion of biomass loss attributed to the event,

874 while the X-axis represents the gradient event size. The range of sizes is divided into two parts

875 for ease of visualization: a linear scale for events under 32 pixels and a logarithmic scale for

876 larger events. Notably, the curve of β-0.5 is indistinct since it saturates at an intensity of 1 from

877 the outset of the event size.
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878 Figure 4. The evolution of AGB and GPP is examined under varying values of Parameter G.

879 Figures (a) and (b) represent the scenario without any disturbance events, while figures (c) and

880 (d) demonstrate the impact of a disturbance regime with μ-0.03, α-1.0, and β-0.2.

881 Figure 5. The map of steady-state biomass is compared across different disturbance regimes.

882 The first row illustrates the impact of increasing μ, which results in more areas with low biomass

883 values. In the second row, the effect of increasing α is represented, and the low biomass areas

884 tend to be more scattered rather clustered in big events. In the third row, the consequences of

885 increasing β are demonstrated, with more pronounced “prints” left by disturbances.

886 Figure 6. Different cross validation accuracy for predicting three disturbance regime parameters.

887 The X-axis denotes the predicted values, and the Y-axis denotes the prescribed values. (a)

888 illustrates the prediction results of the disturbance regime parameters in the Completely Random

889 cross-validation strategy (CR), (b) refers to the Leave One Sequence Out strategy (LOSO), and

890 (c) refers to the Leave One Parameter Out strategy(LOPO), (d) the LOPO predictions of μ, α, and

891 β at the boundaries were substituted with the LOSO predictions to validate the extrapolation

892 challenge. Specifically, the trained model in LOSO predicted the values of parameter α at 1.0

893 and 1.8, as well as the values of 0.01 and 0.05 for μ, and 0.03 and 0.5 for β.

894 Figure 7. (a) shows the feature importance of multi-output disturbance regime prediction, where

895 the assigned value denotes the degree of contribution made by each feature (see the defination in

896 Table 2). (b) shows the prediction accuracy change for each disturbance regime parameter,

897 ordered by ascending feature importance. The X-axis represents the feature(s) used (right) and

898 excluded (left) during the prediction process. For instance, when X-axis is labeled as GPP, it

899 means that the prediction process only involved three features, which are GPP, AGBcv, and

900 correlation, and all the other features in the left are excluded. The accuracy was measured using
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901 the NSE metric, based on the prescribed parameters and the results of multi-output random forest

902 model’s prediction.

903 Figure 8. Breakdown of the feature importance for three individual disturbance regime

904 parameters, μ(a), α(b), and β(c). The corresponding feature importance is depicted through bars,

905 while the colored lines represent the results of the cumulatively exclusive feature test. This test is

906 similar to the one shown in Figure 7(b) but employs a single-output random forest model for

907 three parameters individually.

908

909
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Appendix S1. Parameterization of disturbance regimes 

In the equation 9, the number of disturbance events (𝑛𝑧) at a specific event size 𝑧 is 

following a power law mechanism, the lower α represents that the disturbance events 

would be more clustered, exhibiting the characteristics of large disturbing events but 

with rare occurrences in the domain; in contrast, the higher α will distribute the total 

disturbed areas more evenly and simultaneously increase the occurrences of small-

sized events in the domain.  

In the equation 10, the event sizes are prescribed as a numerically discrete series 

from 20 cells to half the size of the domain, capped at 219 cells. Stepwise values follow 

the mechanism of powers of 2, leading to twenty classes of event sizes. Due to the 

discrete nature of the event sizes and the pseudo-random amount of the corresponding 

events, a limited uncertain gap remains between the total disturbed area after the 

generation process and the prescribed value. In an attempt to limit this gap, we 

performed an error threshold to regulate this randomness: the difference between 

generated total area and prescribed value as a percentage of total domain area should 

be lower than 0.001% (10 pixels to a 1000-width domain). When the gap has 

exceeded the threshold, the new event amount sequence will be recalculated until the 

condition is met. In very rare cases, it is difficult to compute an amount sequence 

satisfying the threshold of 0.001%, so in which circumstances, the acceptable gap is 

relaxed to 0.002% (20 pixels to a 1000-width domain).  



In the equation 11, the parameter 𝛽 controls the slopes of the logarithmic function 

for describing the relationship between the disturbance's intensity and its size. We 

descend from Chambers’ description of the quantitative relationship between the 

average mortality rate and disturbance size (Chambers et al. 2013), inheriting a 

constant intercept parameter b = 0.22684 but varying interval of slope parameter β, 

from 0.03 to 0.5. For the same size of disturbance events, a larger β indicates a greater 

intensity, causing more carbon loss during the dynamic carbon cycling simulation. In 

practice, it is possible for the value of intensity to exceed 1, which usually happens for 

the big beta and large events. In those cases, all intensity exceeding 1 should be 

limited back to 1 as per the reality of the situation. 

The disturbance generator produced 153 disturbance reference cubes (9 μ and 17 α) 

in total to generate spatial references for disturbance. Each cube represented a distinct 

combination of μ and α and comprised 200 snapshots that simulated diverse scenarios 

of different disturbance event spatial distribution. Notably, these snapshots are all 

binary (occurs or not)  lacking information on intensity, which means that they only 

provide the spatial reference information under specific μ and α combinations. 

The disturbance events, represented by independent patches with flag of True, are 

meant to be randomly distributed across the whole domain without overlapping or 

overstepping boundaries (Figure 1c-d), and intensity is then assigned according to the 

corresponding β values. 

 

Reference 

Chambers, Jeffrey Q., Robinson I. Negron-Juarez, Daniel Magnabosco Marra, 

Alan Di Vittorio, Joerg Tews, Dar Roberts, Gabriel H. P. M. Ribeiro, Susan E. 

Trumbore, and Niro Higuchi. 2013. “The Steady-State Mosaic of Disturbance and 

https://www.zotero.org/google-docs/?NAXhdE
https://www.zotero.org/google-docs/?LUnRos
https://www.zotero.org/google-docs/?LUnRos
https://www.zotero.org/google-docs/?LUnRos


Succession across an Old-Growth Central Amazon Forest Landscape.” Proceedings 

of the National Academy of Sciences 110 (10): 3949–54. 

https://doi.org/10.1073/pnas.1202894110. 

 

 

 

https://www.zotero.org/google-docs/?LUnRos
https://www.zotero.org/google-docs/?LUnRos
https://www.zotero.org/google-docs/?LUnRos
https://www.zotero.org/google-docs/?LUnRos
https://www.zotero.org/google-docs/?LUnRos


[Authors] 

Siyuan Wang, Hui Yang, Sujan Koirala, Matthias Forkel, Markus Reichstein, Nuno 

Carvalhais 

[Manuscript title] 

Understanding Disturbance Regimes from Patterns in Forest Biomass 

[Journal Name] 

Ecological Applications 

 

Appendix S2. Biomass dynamic simulation with disturbance cubes 

With the support of the disturbance reference cube, we applied the strategy of 

unordered sampling with replacement to generate time series disturbance references. 

Ultimately, 200 maps of disturbance events were randomly extracted from cubes as a 

sequence of reference for simulating the occurrence of disturbances over 200 years in 

the domain. For each disturbance regime, we incorporated the disturbance sequence 

from the corresponding cube, together with the prescribed varied productivity (G), and 

background mortality (Kb) levels, to run the dynamic carbon model to an equilibrium 

state of biomass. Motivated by the consideration of randomness in the occurrence of 

temporal disturbances, we shuffle the sequence of 200-year disturbance reference maps 

up to 10 times for each run of the model.  

Despite some subtle sawtooth fluctuations that can instantaneously deviate from the 

expectation due to the impacts of stochastic disturbances, the average biomass for the 

whole domain saturates and reaches a dynamic steady state over the 200-year 

simulation run. We averaged the biomass maps for the last decade to obtain steady-state 

equilibrium biomass distributions, by which three kinds of statistical features were used 

to characterize steady-state biomass distribution properties. In addition, we also 

calculated the mean value of Gross Primary Productivity from last year of simulation 

as an additional constraint feature to predict the varied disturbance regimes. 
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Appendix S3. Cross validation strategies 

For Completely Random 10-fold method (CR), we disrupted all entries in random 

order and equally divided them into ten parts for 10-fold cross-validation. Nine-tenths 

of the data is used to fit the model and the rest is for validation, and the ultimate 

prediction accuracy is the mean of ten cross-validation results.  

For Leave-One-Sequence-Out method (LOSO), the fit and validate process was 

conducted according to the shuffle index, instead of randomly dividing all the data into 

ten sets. For instance, entries with shuffle index 1 were used for validation and the rest 

for training and circulated the validation shuffle index until all the data are validated 

and trained.  

Leave-One-Parameter-Out method (LOPO) is performed to against the robustness 

of disturbance regime: for each of μ, α, and β, we keep each value in turn for validation 

and train all the remaining data to test the model’s predictive capacity for the untrained 

parameters. 

 

Siyuan Wang




[Authors] 

Siyuan Wang, Hui Yang, Sujan Koirala, Matthias Forkel, Markus Reichstein, Nuno 

Carvalhais 

[Manuscript title] 

Understanding Disturbance Regimes from Patterns in Forest Biomass 

[Journal Name] 

Ecological Applications 

 

Appendix S4. Relationship between event number and event size controlled by 

different α 

 

 

Figure S1. Relationship between the size of disturbance event and corresponding amount 

under different α in a domain with μ =0.03 
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Appendix S5. AGB and GPP evolution in different disturbance regimes 

 GPP AGB 

μ 0.03 
α 1.0 
β 0.2 

  

μ 0.05 
α 1.0 
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β 0.2 
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μ 0.03 
α 1.0 
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Figure S1. AGB (gC ⋅ m−2) and GPP (gC ⋅ m−2 ⋅ yr−1) evolution trajectories 

against age (in year) under different disturbance regimes 
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Appendix S6. Impact of disturbance shape setting 

 

Figure S1. Disturbance reference map in irregular shapes. Compared to the original 

reference map, the new reference map has more complicated disturbance shape, filled 

with irregular convex polygons, and the number of sides for these polygons increase 

with the sizes of event. All properties remain the same as the previous rectangular 

reference map except the shape. 
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Figure S2. Cross validation result for three disturbance regime parameters by 

replacing the rectangular disturbance shape with irregular shapes (Figure S1). The X-

axis denotes the predicted values, and the Y-axis denotes the prescribed values. (a) 

illustrates the prediction results of the disturbance regime parameters in the Completely 

Random cross-validation strategy (CR), (b) refers to the Leave One Sequence Out 

strategy (LOSO), and (c) refers to the Leave One Parameter Out strategy(LOPO), (d) 

the LOPO predictions of μ, α, and β at the boundaries were substituted with the LOSO 

predictions to validate the extrapolation challenge. Specifically, the trained model in 

LOSO predicted the values of parameter α at 1.0 and 1.8, as well as the values of 0.01 

and 0.05 for μ, and 0.03 and 0.5 for β. 



 

Figure S3..(a) shows the feature importance of multi-output disturbance regime 

prediction by the irregular disturbance shape setting, where the assigned value denotes 

the degree of contribution made by each feature (see the definition in Table 2). (b) 

shows the prediction accuracy change for each disturbance regime parameter by the 

irregular disturbance shape setting, ordered by ascending feature importance. The X-

axis represents the feature(s) used (right) and excluded (left) during the prediction 

process. The accuracy was measured using the NSE metric, based on the prescribed 

parameters and the results of multi-output random forest model’s prediction. 



 

Figure S4. Breakdown of the feature importance for three individual disturbance 

regime parameters, μ(a), α(b), and β(c) by the irregular disturbance shape setting. The 

corresponding feature importance is depicted through bars, while the colored lines 

represent the results of the cumulatively exclusive feature test.  
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Appendix S7. Outliers in three detection methods 

 

Table S1. the number of outliers in three methods for a domain with 1 million pixels 

Detection method By column  By domain Overlap Ratio 

Median 21,471 11,054 95% 

Mean 11,168 9,698 86% 

Quartiles 19,898 16,122 94% 

 

Median outliers are defined as elements more than three scaled MAD from the 

median; mean outliers are defined as elements more than three standard deviations 

from the mean; quartiles outliers are defined as elements more than 1.5 interquartile 

ranges above the upper quartile (75 percent) or below the lower quartile (25 percent).  

Two strategies were employed to determine the median, mean and quartile values. In 

the first approach, the detection was performed on each column of the domain matrix 

individually, as indicated by the first column in Table S1. The second approach 

involved transforming the domain matrix into a vector and then applying statistical 

calculations and detection, as indicated by the second column in Table S1. The 

overlap ratio, as shown in the third column in Table S1, represents the number of 

pixels labeled as outliers by the domain method that are also labeled as outliers by the 

column approach. The result indicated that there is a significant overlap between these 

two approaches.  
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Appendix S8. Typical disturbance regimes driven by different drivers 

 

Figure S1. Conceptual diagram of various disturbance regimes driven by natural or 

anthropogenic drivers. Clearcutting (a) and thinning (b) may have comparable biomass 

spatial patterns (indicated by a moderate level of μ and α), but differ in the amount of 

biomass loss, with clearcutting having a higher value of  β. Similarly, wild fire (c) and 

drought (d) can lead to the similar spatial biomass patterns (presumably characterized 

by a high value of μ and a low α), but differ in intensities, with wild fire having a higher 

β value. Tornado outbreak (e) would exhibit a unique combination of  μ and α due to 

their distinct shapes of affected areas. And insect outbreaks (f) are more likely to result 

in  numerous small-scale events across the landscape, exhibiting a high α value. 

Siyuan Wang



