References
  1. Behar, F., Kressmann, S., Rudkiewicz, J.L., Vandenbroucke, M., 1992. Experimental simulation in a confined system and kinetics modelling of kerogen and oil cracking. Org. Geochem. 19(1-3), 173-189.
  2. Behar, F., Lorant, F., Lewan, M., 2008. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite. Org. Geochem. 39, 1-22.
  3. Braun, R.L., Bumham, A.K., 1990. Mathematical model of oil generation, degradation and expulsion. Energy Fuel 121, 4(1), 132-146.
  4. Castelli, A., Chiaramonte, M.A., Beltrame, P.L., Carniti, P., Del Bianco, A., Stroppa, F., 1990. Thermal degradation of kerogen by hydrous pyrolysis. Org. Geochem. 16(1-3), 75-82.
  5. Chen, Y.Z., Xu, Z.X., Xu, G.S., Xu, F.H., Liu, J.S., 2017. Coupling relationship between abnormal overpressure and hydrocarbon accumulation in a central overturned structural belt, Xihu Sag, East China Sea Basin (In Chinese with English abstract). Oil Gas Geol. 38 (3), 570–581.
  6. Cheng, X , Hou, D., Zhao, Z., Jiang, Y., Zhou, X., Diao, H., 2020. Higher landplant -derived biomarkers in light oils and condensates from the coal‐bearing eocene pinghu formation, xihu sag, east china sea shelf basin. J. Petrol. Geol. 43(4), 437-452.
  7. Cheng, X., Hou, D., Zhao, Z., Chen, X., Diao, H., 2019.Sources of Natural Gases in the Xihu Sag, East China Sea Basin: Insights from Stable Carbon Isotopes and Confined System Pyrolysis. Energy Fuel 33, 2166-2175.
  8. Connan, J., 1974. Time-temperature relation in oil genesis. AAPG Bull. 58(12), 2516-2521.
  9. Cramer, B., Krooss, B.M., Littke, R., 1998. Modelling isotope fractionation during primary cracking of natural gas: a reaction kinetic approach. Chem. Geol. 149, 235-250.
  10. Dai, J., Zou, C., Li, J., Ni, Y., Hu, G., Zhang, X., Liu, Q., Ynag, C., Hu, A., 2009. Carbon isotopes of Middle-Lower Jurassic coal-derived alkane gases from the major basins of northwestern China. Int. J. Coal Geol. 80, 124-134.
  11. Fu, D., Xu, G., Ma, L. Yang, F., Ma, Y., 2020. Gas generation from coal: taking Jurassic coal in the Minhe Basin as an example. Int J Coal Sci Technol 7, 611-622.
  12. Golding, S.D., Boreham, C.J., Esterle, J.S., 2013. Stable isotope geochemistry of coal bed and shale gas and related production waters: a review. Int. J. Coal Geol. 120, 24-40.
  13. Hao, L. , Wang, Q. , Tao, H. , Li, X. , Ma, D. , Ji, H., 2018. Geochemistry of oligocene huagang formation clastic rocks, xihu sag, the east china sea shelf basin: provenance, source weathering, and tectonic setting. Geol. J. 53, 397-411.
  14. Hill, R.J., Jarvie, D.M., Zumberge, J., Henry, M., Pollastro, R.M., 2007. Oil and gas geochemistry and petroleum systems of the Fort Worth Basin. AAPG Bull. 91(4), 445-473.
  15. Hill, R.J., Tang, Y.C., Kaplan, I.R., 2003. Insights into oil cracking based on laboratory experiments. Org. Geochem. 34, 1651-1672.
  16. Jarvie, D.M., Hill, R.J., Ruble, T.E., Pollastro, R.M., 2007. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG bull. 91(4), 475-499.
  17. Jiang, S., Li, S., Chen, X., Zhang, H., Wang, G., 2016. Simulation of oil-gas migration and accumulation in the East China Sea continental Shelf basin: a case study from the Xihu depression. Geol. J. 51, 229-243.
  18. Ju, C.X., Dong, C.M., Zhang, X.G., Dong, Y.X., 2016. Study on the pore structure of low permeability reservoir of the Huagang Formation in Xihu Depression area (In Chinese with English abstract). Mar. Geol. Front. 32 (9), 32-40.
  19. Kinnon, E.C.P., Golding, S.D., Boreham, C.J., Baublys, K.A., Esterle, J.S., 2010. Stable isotope and water quality analysis of coalbed methane production waters and gases from the Bowen Basin, Australia. Int. J. Coal Geol. 82, 219-231.
  20. Krouse, H.R., Viau, C.A., Eliuk, L.S., Ueda, A., Halas, S., 1988. Chemical and isotopic evidence of thermochemical sulfate reduction by light-hydrocarbon gases in deep carbonate reservoirs. Nat. 333(6172), 415-419.
  21. Leif, R.N., Simoneit, B.R.T., 2000. The role of alkenes produced during hydrous pyrolysis of a shale. Org. Geochem. 31(11), 1189-1208.
  22. Lewan, M.D., 1997. Experiments on the role of water in petroleum formation. Geochim. Cosmochim. Ac. 61(17), 3691-3723.
  23. Lewan, M.D., Winters, J.C., McDonald, J.H., 1979. Generation of oil-like pyrolyzates from organic-rich shales. Sci. 203(4383), 897-899.
  24. Lin, C.Y., Sun, X.L., Ma, C.F., Zhang, X.G., Zhao, Z.X., 2017. Physical property evolution of Huagang formation in central inversion tectonic belt in Xihu depression (In Chinese with English abstract). J. China Inst. Min. Technol. 46 (4), 700-709.
  25. Ma, Z., Zheng, L., Xu, X., Bao, F., Yu, X., 2017. Thermal simulation experiment of organic matter-rich shale and implication for organic pore formation and evolution. Petrol. Res. 2(4), 347-354.
  26. Mahlstedt, N., Horsfield, B., 2012. Metagenetic methane generation in gas shales I.Screening protocols using immature samples. Mar. Petrol. Geol. 31, 27-42.
  27. Matuszewski, B.K., 2006. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis. J. Chromat. B. 830 (2), 293-300.
  28. Papendick, S.L., Downs, K.R., Vo, K.D., Hamilton, S.K., Dawson, G.K.W., Golding, S.D., Gilcrease, P.C., 2011. Biogenic methane potential for Surat basin, Queensland coal seams. Int. J. Coal Geol. 88, 123-134.
  29. Pepper, A.S., Corvi, P.J., 1995. Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Mar. Petrol. Geol., 12(3), 291-319.
  30. Pepper, A.S., Dodd, T.A., 1995. Simple kinetic models of petroleum formation. Part II: oil-gas cracking. Mar. Petrol. Geol. 12(3): 321-340.
  31. Prinzhofer, A.A., Huc, A.Y., 1995. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chem. Geol. 126, 281-290.
  32. Qin, J., Shen, B., Tao, G., Teng, E., Yang, Y., Zheng, L., Fu, X., 2014. Hydrocarbon- forming organisms and dynamic evaluation of hydrocarbon generation capacity in excellent source rocks. Petro. Geol. Exper. 36(4), 465-472.
  33. Schimmelmann, A., Boudou, J.P., Lewan, M.D., Wintsch, R.P., 2001. Experimental controls on D/H and13C/12C ratios of kerogen bitumen and oil during hydrous pyrolysis. Org. Geochem. 32(8), 1009-1018.
  34. Su, A., Chen, H., Lei, M., Li, Q., Wang, C., 2019. Paleo-pressure evolution and its origin in the Pinghu slope belt of the Xihu Depression, East China Sea Basin. Mar. Petrol. Geol. 107, 198-213
  35. Su, A., Chen, H., Zhao, J., Zhang, T., Feng, Y., Wang, C., 2020. Natural gas washing induces condensate formation from coal measures in the Pinghu Slope Belt of the Xihu Depression, East China Sea Basin: Insights from fluid inclusion, geochemistry, and rock gold-tube pyrolysis. Mar. Petrol. Geol. 118, 104450.
  36. Su, A., Chen, H.H., Chen, X., He, C., Liu, H.P., Li, Q., Wang, C.W., 2018. The characteristics of low permeability reservoirs, gas origin, generation and charge in the central and western Xihu depression, East China Sea Basin. J. Nat. Sci. Eng. 53, 94-109.
  37. Sun, L., Fu, D., Chai, S., Yang, W., Zhou, K., Li, W., 2020. Fractal characteristics and significances of the nanopores in oil shales during hydrous pyrolysis. J. Petrol. Explor. Prod. Tech. 10(2), 557-567.
  38. Sun, L., Tuo, J., Zhang, M., Wu, C., Chai, S., 2019a. Impact of Water Pressure on the Organic Matter Evolution from Hydrous Pyrolysis. Energy Fuel. 33, 6283-6293.
  39. Sun, L., Tuo, J., Zhang, M., Wu, C., Chai, S., 2019b. Pore structures and fractal characteristics of nano-pores in shale of Lucaogou formation from Junggar Basin during water pressure-controlled artificial pyrolysis. J. Anal. Appl. Pyrol. 140, 404-412.
  40. Sun, L., Tuo, J., Zhang, M., Wu, C., Wang, Z., Zheng, Y., 2015. Formation and development of the pore structure in Chang 7 Member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis Fuel 158, 549-557.
  41. Takahashi, K.U., Suzuki, N., Saito, H., 2014. Compositional and isotopic changes in expelled and residual gases during anhydrous closed-system pyrolysis of hydrogen-rich Eocene subbituminous coal. Int. J. Coal Geol. 127, 14-23.
  42. Taylor, R., Duss, M., 2019. A paper about the slope of the equilibrium line. Chem. Eng. Res. Des.148, 429-439.
  43. Tissot, B.P., Durand, B.,Espitalie, J.,Combaz, A., 1974. Influence of mature and diagenesis of organic matter in the formation of petroleum. AAPG Bull. 58(3), 499-506.
  44. Wang, W., Lin, C., Zhang, X., Dong, C., Ren, L., Lin, J., 2021. Provenance, clastic composition and their impact on diagenesis: A case study of the Oligocene sandstone in the Xihu sag, East China Sea Basin. Mar. Petrol. Geol 126, 104890,
  45. Waples, D.W., 2000. The kinetics of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and from thermodynamics. Org. Geochem. 31(6), 553-575.
  46. Wu, Y., Zhang, Z., Sun, L., Li, Y., Zhang, M., Ji, L., 2019. Stable isotope reversal and evolution of gas during the hydrous pyrolysis of continental kerogen in source rocks under supercritical conditions. Int. J. Coal Geol. 205, 105-114.
  47. Xie, G., Shen, Y., Liu, S., Hao, W., 2018. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate. Mar. Petrol. Geol. 92, 20-36.
  48. Xu, H., George, S.C., Hou, D., Cao, B., Chen, X., 2020. Petroleum sources in the Xihu Depression, East China Sea: Evidence from stable carbon isotopic compositions of individual n-alkanes and isoprenoids. J. Petrol. Sci. Eng. 190, 107073.
  49. Zhang, Z.M., Zhou, J., Wu, X.W., 2006. Oil and gas migration periods and accumulation process in central anticlinal zone in the Xihu sag, the East China Sea Basin (In Chinese with English abstract). Petrol. Geol. Exp. 28 (1), 30-37.
  50. Zhao, W., Zhang, S., Wang, F., Cramer, B., Chen, J., Sun, Y., Zhang, B., Zhao, M., 2005. Gas systems in the Kuche Depression of the Tarim Basin: Source rock distributions, generation kinetics and gas accumulation history. Org. Geochem. 36(12), 1583-1601.
  51. Zheng, L., Ma, Z., Wang, Q., Li, Z., 2011. Quantitative evaluation of hydrocarbon yielding potential of source rock: application of pyrolysis in finite space. Petrol. Geol. Exper. 33(5), 452-459.
  52. Zheng, L.J., Qin, J.Z., He, S., Li, G.Y., Li, Z.M., 2009. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion. Pet. Geol.Exp. 31 (3), 296-302. (in Chinese).
  53. Zhu, W., Zhong, K., Fu, X., Chen, C., Zhang, M., Gao,S., 2019. The formation and evolution of the East China Sea Shelf Basin: A new view. Earth Sci. Rev. 190, 89-111.
  54. Zhu, X., Chen, J., Li, W., Pei, L., Liu, K., Chen, X., Zhang, T., 2020. Hydrocarbon generation potential of Paleogene coals and organic rich mudstones in Xihu sag, East China Sea Shelf basin, offshore eastern China, J. Petrol. Sci. Eng. 184, 106450.
  55. Zhu, Y.M., Li, Y., Zhou, J., Gu, S.X., 2012. Geochemical characteristics of tertiary coalbearing source rocks in Xihu depression, East China Sea Basin. Mar. Pet. Geol. 35,154-165.