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Abstract 22 

The calibration of global hydrological models has been attempted for over two decades, but an 23 

effective and generic calibration method has not been proposed. In this study, we investigated the 24 

application of Approximate Bayesian Computation (ABC) to calibrate the H08 global hydrological 25 

model by running global simulations with 5000 randomly generated sets of four sensitive 26 

parameters. This yielded satisfactory results for 777 gauged watersheds, indicating that ABC can 27 

be used to optimize H08 parameters to calibrate individual watersheds. We tested the identifiability 28 

of the parameters to yield satisfactory representations of hydrological functions based on Köppen’s 29 

climate classification (“climate-based” calibrations hereafter) We aggregated 5000 simulation 30 

results per catchment based on the 11 Köppen climate classes, then selected the parameters that 31 

exceeded the Nash–Sutcliffe efficiency (NSE) scores predefined by the acceptance ratio for each 32 

climate class. Our results indicate that the number of stations showing satisfactory (NSE > 0.0) 33 

and good (NSE>0.5) performances were 480 and 234 (61.7% and 30.1% of total stations, 34 

respectively), demonstrating the effectiveness of climate-based calibration. We also showed that 35 

the climate-based parameters outperformed the default and global parameters in terms of 36 

representativeness (global-scale differences of hydrological properties among climate classes) and 37 

robustness (consistency in yielding satisfactory results for watersheds in the same climate class). 38 

The identified parameters for 11 Köppen climate classes showed consistency with the physical 39 

interpretation of soil formation and efficiencies in vapor transfer with a wide variety of vegetation 40 

types, corroborating the strong influence of climate on hydrological properties. 41 

 42 

Plain Language Summary 43 

This is optional but will help expand the reach of your paper. Information on writing a good plain 44 

language summary is available here. 45 

 46 

1 Introduction 47 

Global hydrological models are essential tools to analyze Earth’s hydrological cycle and 48 

water resources (Bierkens, 2015; Pokhrel et al., 2016). Over the past two decades, there have been 49 

numerous efforts to develop and use such models (Döll et al., 2003; Döll et al., 2014; Gerten et al., 50 

2004; Hanasaki et al., 2008a, 2018; Rost et al., 2008; Sutanudjaja et al., 2018; Wada et al., 2014). 51 

Their applications include assessing the impact of climate change on water resources (Haddeland 52 

et al., 2014; Schewe et al., 2014), environmental footprint analyses (Dalin et al., 2012; Gleeson et 53 

al., 2012), and historical drought analyses (Schewe et al., 2019). 54 

Further work is needed to improve the overall skill scores of estimations of basic 55 

hydrological variables, particularly streamflow (Oki et al., 1999). Comparative studies of models 56 

have shown that streamflow simulations sometimes deviate considerably from observation records 57 

(Gudmundsson et al., 2012; Haddeland et al., 2011; Zaherpour et al., 2018). Most global 58 

hydrological models adopt empirical a priori model parameters, limiting the effectiveness of 59 

simulations. There are two main obstacles to calibrate global model parameters accurately: 1. The 60 

difficult and computationally expensive calibration of parameters at numerous worldwide stations; 61 

2. Inference of parameter values for watersheds having no observation records (hereafter, 62 

ungauged watersheds). The spatio-temporal distribution of streamflow observations is uneven, 63 

http://sharingscience.agu.org/creating-plain-language-summary/
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with data unavailable for ~50% of the global land surface over substantial periods (Döll et al., 64 

2003; Fekete & Vörösmarty, 2007).  65 

Various studies have tackled these challenges. Nijssen et al. (2001a, b) developed the 66 

global Variable Infiltration Capacity (VIC) hydrological model by manually calibrating six 67 

hydrological parameters for nine river watersheds, each in different climatic zones. These 68 

parameters were then used in simulations for 17 other watersheds, ensuring that climate zones of 69 

the original calibration and subsequent simulation were the same. They found no reduction in bias 70 

and root-mean-square error for individual watersheds, although the transfer of climate-specific 71 

calibrated parameters between watersheds improved overall simulation performance. Döll et al. 72 

(2003) developed the Water-Global Assessment and Prognosis (WaterGAP) global hydrological 73 

model, and manually calibrated one hydrological parameter for 724 gauged watersheds. For 74 

ungauged watersheds, it was estimated by multiple linear regression using air temperature, area of 75 

open freshwater, and the length of non-perennial river stretches within each watershed as 76 

explanatory variables. Validation of streamflow simulations for nine watersheds in comparison to 77 

gauge data showed reasonable accuracy at all stations. Widén-Nilsson et al. (2007) developed a 78 

simple global water balance model (Water And Snow Modeling System; WASMOD-M) and 79 

generated 1680 parameter combinations. They identified the “best” parameter combination that 80 

maximized the skill score of streamflow simulation for gauged watersheds. For ungauged 81 

watersheds, they transferred the best combination of parameters from the nearest gauged watershed 82 

within 19.5° (latitude)/8.5° (longitude). The simulation employing transferred best parameters 83 

outperformed those with spatially uniform parameters. Beck et al. (2016) applied the Hydrologiska 84 

Byråns Vattenbalansavdelning (HBV) hydrologic model globally. They calibrated 14 parameters 85 

for 1787 catchments using an evolutionary algorithm and selected 674 of these whose simulation 86 

performance exceeded a particular threshold (donor catchments). For each ungauged watershed, 87 

they ran simulations using parameters from 10 donor catchments most similar to the watershed 88 

(devised by Beck et al., 2015). The ensemble means of these 10 simulations outperformed those 89 

with spatially uniform parameters for 79% of the watersheds. The influences of climate properties 90 

on hydrological parameters were tested using the Budyko framework (Greve et al., 2020). They 91 

calibrated the additional parameter to account for the residuals from the Budyko equation based 92 

on the empirical relationship obtained in the contiguous US and showed that the long-term water 93 

and energy balance could be improved without any additional data. 94 

These studies imply that parameter calibrations for gauged watersheds are effective if the 95 

models are reasonably simple with a limited number of parameters. This implication is a constraint 96 

for state-of-the-art models because their formulations and structures are becoming increasingly 97 

complex. The integrity of the parameter transfer technique to simulate ungauged watersheds is not 98 

yet established. Several improvements are reported using parameter transfer in ungauged 99 

watersheds (e.g., Nijssen et al., 2001b; Widén-Nilsson et al., 2007) with a limited number of 100 

validation stations (e.g., Döll et al., 2003), or using the necessity of ensemble technique (e.g., Beck 101 

et al., 2016). 102 

Approximate Bayesian Computation (ABC) is a promising new technique in the field of 103 

biology for inferring complex models (Beaumont et al., 2002; Sisson et al., 2018). Avoiding 104 

explicit evaluation of the likelihood function, it uses a set of summary statistics to extract 105 

information from observations to approximate target distributions. Hydrological modeling dealing 106 

with complex water flow processes through watersheds can benefit from the strengths of ABC 107 

(Sadegh & Vrugt, 2014; Sadegh et al., 2015). In ABC, a candidate parameter set (proposal) is first 108 
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sampled from some prior distribution, which is then used to simulate the output of the model. 109 

Instead of a likelihood evaluation in Bayesian approaches, a distance function is used to determine 110 

the acceptance of the proposal. Accepted samples are then used to summarize target posterior 111 

distributions. Applying ABC directly to an individual watershed would yield an optimized 112 

parameter set for that watershed (Sadegh & Vrugt, 2014; Vrugt & Sadegh, 2013). However, those 113 

parameters are not guaranteed to behave like other watersheds because of the overfitting of model 114 

parameters to epistemic errors associated with a model’s structural and climate forcing errors 115 

(Beven and Freer, 2001). 116 

In this study, we applied ABC to calibrate hydrological parameters of the H08 global 117 

hydrological model (Hanasaki et al., 2018) and to identify representative parameter sets based on 118 

climate properties. Our study aims to identify parameter sets that effectively reproduce a 119 

satisfactory performance for groups composed of watersheds, rather than “optimal” parameters for 120 

a single watershed. Hydrological similarities are divided into similarities in climate and watershed 121 

properties (Wagener et al., 2012; Troch et al., 2017). Based on previous studies, we hypothesize 122 

that on a global scale, similarity in climate properties is a dominant control on hydrological 123 

properties (Beck et al., 2016; Nijissen et al., 2001ab). We address two key research questions in 124 

this study: 1. Do climate properties exert dominant controls on hydrological properties on a global 125 

scale? 2. How can we identify representative parameters for watersheds under specific climate 126 

systems using the ABC technique? 127 

 128 

2 Materials and Methods 129 

2.1 H08 global hydrological model  130 

This model comprises six sub-models: land-surface hydrology, river routing, crop growth, 131 

reservoir operation, water abstraction, and environmental flow. Here, we used the land-surface 132 

hydrology and river routing sub-models. Hanasaki et al. (2008a, 2008b, 2010, 2018) provides 133 

descriptions of the sub-models.  134 

Land surface hydrology is based on a single-layer bucket model (Manabe, 1969; Robock 135 

et al., 1995). It resolves the surface-energy and water-budget (including snow) at daily intervals 136 

and has a single soil moisture layer. Storage capacity (Smax) is expressed as  137 

𝑆max = 𝑆𝐷 × (𝑓FC − 𝑓WP),        (1) 138 

where SD is soil depth (m), fFC is soil moisture fraction at field capacity (unitless parameter), and 139 

fWP is soil moisture fraction at wilting point. The default (global) settings (Hanasaki et al., 2018) 140 

are 1 m for SD, 0.30 for fFC, and 0.15 for fWP (Robock et al., 1995). Water balance of the soil 141 

moisture layer is expressed as  142 

𝑑𝑆

𝑑𝑡
= 𝑅 + 𝑄sm − 𝐸 − 𝑄s − 𝑄sb,       (2) 143 

where S is soil moisture (kg m–2), R is rainfall (kg m–2 s–1), Qsm is snowmelt (kg m–2 s–1), E is 144 

evapotranspiration (kg m–2 s–1), Qs is surface runoff (kg m–2 s–1), and Qsb is subsurface runoff (kg 145 

m–2 s–1). Evapotranspiration (E) is expressed as 146 

𝐸 = 𝛽𝜌𝐶𝐷𝑈(𝑞SAT(𝑇s) − 𝑞),        (3) 147 
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where β is the evaporation coefficient (unitless), ρ is the density of air (kg m–3), CD is the bulk 148 

transfer coefficient (unitless), U is wind speed (m s–1), qSAT(Ts) is saturation specific humidity at 149 

surface temperature Ts (kg kg–1), and q is specific humidity of air (kg kg–1). Surface runoff (Qs) 150 

occurs when soil moisture exceeds storage capacity (Smax). Subsurface runoff (Qsb) occurs under 151 

the condition 152 

𝑄sb =
Smax

𝜏∗86400
× (

𝑆

𝑆max
)
𝛾
,        (4) 153 

where τ is a time constant (days) and γ is a shape parameter (unitless). Surface and subsurface 154 

runoff are divided into two components: direct runoff to rivers and groundwater recharge. The 155 

proportions of these two flows are determined by a function of indexes representing topographic 156 

relief, soil texture, geology, permafrost, and glacier (Döll & Fiedler, 2008). Recharged water is 157 

stored in the groundwater reservoir and is formulated using Eq (4). 158 

The river routing model routes runoff through the global digital river network, with a 159 

spatial resolution of 0.5° (lat) × 0.5° (long) (Döll & Lehner, 2002), at a constant flow velocity of 160 

0.5 m s–1.  161 

Default values of τ and γ were determined empirically for four distinct climate zones: 162 

tropical, monsoon and dry, temperate, and polar (Hanasaki et al. 2008a). Previous studies which 163 

applied the H08 model to specific basins suggested that the calibration of four sensitive parameters 164 

SD, CD, γ, and τ, improved the representation of the observed long-term variations of streamflow 165 

(Hanasaki et al., 2014; Masood et al., 2015; Mateo et al., 2014; Yoo, 2016).  166 

 167 

2.2 Global meteorological data 168 

We used WATCH Forcing Data (WFD; Weedon et al., (2011), which provides global land 169 

coverage (excluding Antarctica) at a spatial resolution of 0.5° (lat) × 0.5° (long) at daily intervals 170 

for the period 1901–2001. WFD is derived from a global-grid of monthly ground observations 171 

(CRU TS2.1; New et al., 2000) and six-hourly global reanalysis data (ERA-40; Uppala et al., 2005) 172 

including seven variables: air temperature, specific humidity, wind speed, surface air pressure, 173 

downward shortwave radiation, downward longwave radiation, and precipitation. Using mean 174 

monthly temperature and precipitation from WFD, we constructed a global map using 11 Köppen 175 

climate zones (Table 2; Figure S1; Köppen, 2011).  176 

 177 

2.3 Hydrological data and simulation 178 

Using monthly (3045 stations) streamflow data collected by the Global Runoff Data Center 179 

(GRDC; https://www.bafg.de/GRDC), we identified records suitable for calibration and validation 180 

by applying two thresholds with: 1) Catchment areas >10,000 km2; and 2) Continuous records for 181 

the period 1961–1970. We set the first limit because the H08 model was configured at a spatial 182 

resolution of 0.5° (lat) × 0.5° (long) (~55 km × 55 km at the equator, equivalent to ~3000 km2). 183 

The second limit was selected the period 1961–1970 provided the most extensive global coverage 184 

of streamflow data. In total, 777 stations in 500 basins met these criteria.  185 

All stations were geo-referenced to the global digital river-network of the H08 model so 186 

that the errors of the modeled catchment areas with respect to the observed catchment areas were 187 
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<20%. The most common climate classification within the catchment was assigned as the 188 

representative climate zone for each catchment (Table 2). 189 

H08 simulations were conducted at daily intervals and the land surface and river sub-190 

models were set up following the boundary conditions and model parameters described by 191 

Hanasaki et al. (2018). 192 

 193 

2.4 Calibration of H08 parameters by ABC 194 

2.4.1 Implementation of ABC in H08 framework 195 

We selected four hydrological parameters (θ) in the H08 hydrological model (i.e., SD, CD, 196 

γ, and τ) as inference parameters in ABC, all of which have physical meaning. However, 197 

identifying their “true” value for each grid cell is challenging due to the heterogeneity within the 198 

grid cells and the simplification of physical processes inherent to the model. 199 

We applied a simple rejection algorithm in ABC to infer the parameters. The priors “q (θ)” 200 

of θ are summarized in Table 1. The protocols of ABC were: 201 

 202 

1. Generate N samples of θ′, according to q (θ). 203 

2. Simulate runoff y′ using sampled θ′ by H08 model and extract the monthly streamflow 204 

simulation time-series y at 777 stations for the period 1961–1970. 205 

3. Calculate the Nash–Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970) using y and y′ for 206 

each simulation and obtain N number of NSEs in each watershed. 207 

4. For the calibration of a group of watersheds, aggregate NSE scores from target M watersheds 208 

and compile N*M number of NSEs in each group.  209 

5. In each group or watershed, evaluate the Xth percentile of NSE as tolerance i.  210 

6. Then, if NSE > , store θ′i as a posterior. We conducted this procedure for each group or 211 

watershed.    212 

 213 

We set the number of simulations “N” to 5000 with “i” indicating the watershed identifier. 214 

This number was determined because of the restrictions of computational resources. Instead of the 215 

fixed tolerance, 𝜖 , which is commonly used in ABC procedures, we selected parameter sets 216 

yielding NSE scores exceeding a specific quantile value (Xth percentile) of the NSE distribution 217 

for each watershed. This was done because the NSE scores generated by the 5000 simulation runs 218 

showed completely different ranges for each watershed, presumably reflecting the inaccuracy of 219 

the climate forcing and oversimplification of the hydrological systems in the model. Thus, the 220 

fixed tolerance would lead to different acceptance ratios (ratio of accepted samples to the total 221 

simulation runs) for all the climate classes, making it difficult to interpret the results if the 222 

posteriors were too few and their distributions were discrete.  223 
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2.4.2 Representative parameters for the watershed groups 224 

When one considers the representative parameters for the groups of watersheds, which is 225 

the scope of this study, there is presumably a trade-off between the acceptance ratio used and the 226 

representativeness of the parameter sets. If a low acceptance ratio is used, the number of 227 

watersheds included in the posterior may be too few to capture the hydrological behavior for the 228 

entire group. Conversely, the higher the acceptance ratio, the lower the range of NSE values; thus, 229 

the parameters may converge to the mean of the priors and may not reflect the hydrological 230 

properties of each watershed. The statistical measure used (e.g., mode, median, or mean) for 231 

parameter identification may also affect the representative parameters’ veracity. It seems 232 

reasonable to use frequently occurring values of parameters (the mode) in the posterior 233 

distribution, but the mode may reflect local optima not representative of the entire climate class.  234 

Thus, it is essential to use a suitable acceptance ratio for sampling the posterior distribution, 235 

and a suitable statistical measure (mode, median, and mean) to derive representative parameters 236 

from the posterior distribution. We considered acceptance ratios of 0.1, 1, 5, 10, and 20% and an 237 

appropriate statistical measure to provide the best determination of representative parameters for 238 

an entire group of watersheds. In total, we tested 15 options to select representative parameter sets; 239 

a combination of multiple acceptance ratio of the samples in procedure 5 (5 options) and statistical 240 

measures, which were mode, median, and mean (3 options). 241 

We implemented ABC to calibrate H08 model parameters for individual watersheds 242 

(hereafter, “individual” calibration). Then, we tested two categorizations of groups of watersheds. 243 

First, we implemented ABC to calibrate H08 model parameters based on the Köppen climate 244 

classes (hereafter referred to as “climate-based” calibration). This categorization assumes that 245 

climate properties dominate global-scale differences in hydrological behaviors (Nijssen et al., 246 

2001a, b; Beck et al., 2016). We aggregated 5000 simulation runs (samples) of all watersheds in 247 

each climate class as prior distributions and applied the ABC technique to derive posterior 248 

distribution. We attempted 15 combinations of the acceptance ratio and statistical measures to 249 

determine the representative parameter sets satisfying the two criteria mentioned in the next 250 

section. We also tested the transferability of the representative parameter sets for each of the 251 

climate classes to the watersheds in the same climate class. Second, to compare the effectiveness 252 

of the climate-based calibration, we determined the parameter sets at a global scale by applying 253 

the same procedures as the climate-based calibration to the aggregated samples of all the gauged 254 

777 watersheds (hereafter, “global” calibration).  255 

2.4.3 Evaluation of procedures 256 

The inferred parameters required the fulfillment of two criteria: 1) Consistent yield of 257 

satisfactory results for ungauged watersheds (robustness); and 2) Reflect differences of climate 258 

and catchment properties at a global scale (representativeness). To examine the robustness and 259 

representativeness, we divided the samples of each climate class into calibration and validation 260 

datasets by randomly selecting half of the watersheds. We then checked whether the representative 261 

parameters derived from the calibration dataset were consistently representative of the validation 262 

dataset (Repeated two-fold cross-vlidation). We repeated this process 100 times to check the 263 

robustness and representativeness of the calibration and transfer processes by comparing the range 264 

of NSE scores. We conducted the repeated two-fold cross-vlidation for each of the Köppen climate 265 

classes in which the number of watersheds exceeded 50 (i.e., classes Aw: tropical monsoon, Ca: 266 



manuscript submitted to Water Resources Research 

 

hot summer temperate, Cb: warm summer temperate, Db: warm summer continental, and Dc: 267 

subarctic, Table 2), which included 91% of the observed stations.  268 

We evaluated the effectiveness of the process from the following points of view: 1) The 269 

improvement of the NSE values obtained compared to those of the default parameters, and 2) The 270 

number of stations for which satisfactory and good NSE values were obtained. NSE thresholds 271 

used were initially based on the recommendations of Moriasi et al. (2007, 2015) but also that of 272 

Krysanova et al. (2018) thereafter. Here, we adjusted the thresholds (made them less strict) for the 273 

global models, e.g., NSE thresholds used by Moriasi et al. (2015) for a satisfactory and good 274 

performance of monthly runoff simulations were 0.55 < NSE < 0.70 and 0.70 ≤ NSE ≤ 0.85, 275 

respectively. Here, we used 0.0 < NSE < 0.50 for a satisfactory and NSE ≥ 0.50 for a good 276 

performance, respectively. 277 

 278 

3 Results  279 

3.1 Calibration of individual watershed 280 

Figure 1 showed the cross plots of the posterior distributions at one of the watersheds (ID: 281 

4362600, at Boca Del Cerro station in Rio Usumacinta River). The acceptance ratio was 30% for 282 

Figure 1. The color of the plots signified the NSE values, and the crosses represented the values 283 

corresponding to the mode (yellow), mean (light blue), and median (white) of the posterior 284 

distribution. Among the six combinations of parameters, the SD-CD plot (Figure 1 (a)) showed the 285 

most constrained posterior distributions, and parameter sets that yielded higher NSE values were 286 

consistently clustered in a specific region of the search domain (near the upper-right corner). The 287 

other plots did not show such explicit constraints, and the NSE scores did not appear to correlate 288 

with the selected parameter values. This was particularly evident for the cross plot of γ and τ 289 

(Figure 1 (f)), which show widely scattered plots in the search domain and the totally randomized 290 

NSE scores.  291 

The modal values of the posterior distributions (yellow crosses) was plotted centrally in 292 

the accumulated plots with higher NSE scored (blue crosses). In contrast, the mean and median 293 

values (crosses with light blue and white, respectively) deviated from the plots with higher NSE 294 

scores, plotting near the center of the search domain. These posterior distribution patterns were 295 

typically observed for the other watersheds or when the varied acceptance ratios were used. These 296 

results suggested that using the modal values of the posterior distribution was suitable for 297 

identifying the optimal parameters for the individual watersheds. Here, we decided to use an 298 

acceptance ratio of 10% because the posterior distributions obtained with acceptance ratios lower 299 

than 10% were discrete.  300 

The spatial distribution of the parameters identified for individual watersheds were shown 301 

in Figure 2. The NSE threshold range showed higher NSE scores for the temperate and continental 302 

climate classes (Figure S2), and relatively low scores for watersheds in the arid (BW), semi-arid 303 

(BS), and tropical rainforest (Af) climate classes. Two possible explanations exist:  304 

1. The structure of the model is based on a simple bucket model wherein all precipitation reaching 305 

the land surface infiltrates to the subsurface, with subsurface drainage continuing until empty. 306 

This would differ for watersheds in arid and semi-arid climate zones, where excess infiltration 307 

plays a critical role in runoff generation (Goodrich et al., 1994; Nicolau et al. 1996).  308 
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2. The WFD dataset is an integrated compilation of reanalyzed atmospheric conditions and 309 

meteorological data observed at the land surface. Thus, the sparser observation networks in 310 

tropical-rainforests, arid, and semi-arid zones (Schneider et al., 2014) result in less reliable 311 

WFD forcing data than that obtained in temperate and continental climate zones.  312 

 313 

3.2 Climate-based calibration 314 

3.2.1 Optimal method to identify climate-based parameters 315 

Figure 3 showed the two-dimensional posterior distributions for the combinations of 316 

parameters for the climate class, Db, obtained with acceptance ratios of 5%. The crosses indicated 317 

the locations of the mode (yellow), median (white), and mean (light blue), the same notation used 318 

in Figure 1. As suggested by the individual calibration, the SD-CD plot showed the most 319 

constrained distribution compared to the other five distributions. Ideally, the posterior distributions 320 

should exhibit a clear peak and concentrated in a specific region of the search domain to ensure 321 

that the choice of statistical measures does not affect the identified representative parameter values. 322 

However, the posterior distribution for the climate-based calibration suggested that the 323 

representative parameters differed depending on the choice of statistical measures.  324 

We calculated the NSE scores of the validation data sets for the climate classes Db and Dc 325 

based on the parameters selected from the calibration data sets with different acceptance ratios and 326 

statistical measures. Figure 4 showed the distribution of NSE values for the validation groups 327 

obtained from the 100 repetitions of the repeated two-fold cross-vlidation. We then considered the 328 

influence of the choice of statistical measure on the NSE scores. For both climate classes, there 329 

was a larger spread of data when the mode was used to determine the representative parameters 330 

than when the median or mean were used. This was particularly noticeable for the Dc climate class 331 

for which the parameter values obtained from the posterior mode varied substantially (Figure 5(b)). 332 

However, despite unimodal parameter distributions obtained for Db, this climate class yielded 333 

lower first quartiles for the mode than for the median and mean (Figure 5(a)). Compared to the 334 

mode, the mean and median values were stable and yielded narrower ranges of NSE scores, 335 

implying the robustness of the method. These results indicate the effectiveness of the posterior-336 

mean or -median for identifying robust parameters for climate-based calibration. Note that 337 

different statistical measures were used for determining the representative parameters in the 338 

individual and climate-based calibrations: the mode for the individual calibration and the median 339 

or mean for the climate-based calibration.  340 

The variations in the tolerance, ϵ, which depend on the acceptance ratios, are summarized 341 

for each climate class (Table 3). The samples were selected as posterior distributions if the NSE 342 

scores exceeded the tolerance, ϵ. For acceptance ratios not exceeding 10%, tolerance exceeded 0.0 343 

for all the climate classes, suggesting that the selected samples can be used to provide donors for 344 

at least satisfying the criteria of ‘good’ performance. The only exception was the climate class BW 345 

(ϵ =-0.873 for 5% of the acceptance ratio), and care should be taken when interpreting the 346 

identified parameters for BW. We also found that a narrow acceptance ratio (e.g., 0.1%) did not 347 

necessarily provide an improvement, probably owing to the overfitting of only a few watersheds, 348 

which are not representative of an entire climate class.  349 

Based on our analyses, we provisionally postulate that the posterior-median from climate 350 

classes with acceptance ratios of 5% is the optimal method to identify climate-based parameters 351 
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based on the number of stations yielding good or satisfactory simulations (Table 4). The only 352 

exception to this is the inferred parameter sets in the climate class Dc, which performed 353 

inadequately compared with the other climate classes (see the row ‘Dc unif.’ in Table 4). This can 354 

probably be attributed to the many watersheds (261) in this climate class, which resulted in lower 355 

NSE scores and a significant deterioration of the overall scores.  356 

3.2.2 Rigorous investigation of inadequate performance in the Dc climate class  357 

Figure 5 displayed the cross plots of the parameters identified from the individual 358 

calibration of the Dc climate class. We found that there were multiple clusters of identified 359 

parameters compared to Figure 3, which presented the posterior distributions of the climate-based 360 

calibration for Db. We also observed regional patterns for each parameter (Figure 6), indicating 361 

that geographic regions can determine the parameters. Encouraged by the spatial smoothness of 362 

the individually calibrated parameters, we divided the Dc climate class into six subareas depending 363 

on the longitude (Table 5). We then conducted ABC for each subarea and inferred the 364 

representative parameter sets. The combinations of the acceptance ratios and statistical measures 365 

were also tested, as for the climate-based calibration. 366 

Figure 7 summarized how the divisions of the Dc climate class on the changes in the NSE 367 

values of each watershed. The initial climate-based calibration in Dc resulted in NSE values lower 368 

than 0.25 for most of the stations (shown as red in Figure 7(a)), except for the stations in the 369 

subarea IV. The higher NSE scores in the subarea IV indicated that the initial sampling of the 370 

posterior was selective and that the posterior predominantly consisted of the stations in the area. 371 

Next, we conducted a simulation with the representative parameters that were determined for each 372 

subarea from the median (Figure 7 (b)) and mode (Figure 7 (c)) of the posterior distributions. Our 373 

simulations revealed that modal values of the posterior distributions yielded better NSE scores 374 

compared to those of the median, especially in subareas I and V. This indicates that the posterior 375 

distributions for each area were well constrained in the search domain. We also indicated in Figure 376 

7 the differences in NSE from the initial climate-based calibration (i.e., uniform sampling 377 

throughout Dc; Figure 7(a)) to the calibration for the divided subareas with the posterior-mode 378 

(Figure 7(c)). This shows improvement with the division method for 87% of the stations in the Dc 379 

climate class (Figure 7 (d)). 380 

 381 

3.3 Effectiveness of calibrated parameters 382 

The NSE values obtained from the four parameter sets were compared (Figure 8). The four 383 

parameter sets are the H08 model default parameters, the optimized parameters for an individual 384 

watershed, the representative parameters obtained for each climate class, and the parameters 385 

optimized for the entire global data set. As expected, the boxplots for the individual calibrations 386 

outperformed for all the climate classes, exhibiting the best median values and the narrowest 387 

ranges between the first and third quartiles. Using the default parameters as a reference, we 388 

compared the gained improvement of the other two calibrated parameters. The NSE distributions 389 

with the climate-based parameter substantially improved from those with global calibrations and 390 

default parameters in the climate classes Af, Aw, BS, and BW, highlighting the representativeness 391 

of the climate-based parameters. A notable feature of the NSE distributions of the climate-based 392 

calibrations was the narrower ranges between the first and third quartiles compared to those with 393 

default parameters, exhibiting the robustness of the calibration procedures. The climate-based and 394 
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global calibrations produced similar NSE distributions in the temperate and continental climate 395 

classes (i.e., Ca, Cb, Da, and Db) suggesting that a large number of stations in these climate classes 396 

probably contributed to the parameters selected in the uniform calibration because: (1) Relatively 397 

higher NSE scores were obtained for these climate classes, and (2) The number of stations listed 398 

in the four climate classes totaled 400 (51.2% of total stations).  399 

Overall, using ABC in the climate-based calibration procedure markedly improved the 400 

representativeness and robustness of the parameter sets used in the H08 global hydrological model. 401 

Table 5 summarized the number of stations with “satisfactory” and “good” performances (see 402 

section 2.4.3). For the Dc climate class, two cases of the climate-based calibrations were also 403 

presented: the differences between the initial attempt (Dc (unif.): treating the whole area 404 

uniformly) and the second attempt (Dc (div.): dividing the whole into six subareas). The number 405 

of total stations with good and satisfactory performances sequentially increased from the default 406 

to the global, reaching a maximum for the climate-based parameters. In total, 61.7% and 30.1% of 407 

the stations exhibited “satisfactory” and “good” performances, respectively. For the climate-based 408 

calibration, the NSE scores improved at 72.2% of all the stations from the default, and 35.6% from 409 

the global parameters. Note that the global and climate-based parameters for each of the climate 410 

classes Ca, Cb, and Db were identical; thus, no improvement from the global parameters was 411 

achieved in these climate classes. However, the effects of dividing Dc were remarkable, 412 

significantly increasing the number of stations with a “satisfactory” performance (from 93 to 158) 413 

and “good” performance (from 18 to 70).  414 

Figure 9 compared the default parameters and identified values of SD, CD, γ, and τ obtained 415 

from the three calibration methods (individual, climate-based, and global). Note that the number 416 

of stations per catchment varied (Table 2). The blue-shaded boxplots, representing the distributions 417 

of individual calibrations for Af, Am, and BS showed quite narrow ranges because the number of 418 

the stations in those classes was too few (3, 4 and 6, respectively). Moreover, the posterior 419 

distribution of the climate-based calibration for BW was indistinct because the posteriors included 420 

the parameter sets that yielded NSE scores lower than 0.0. Except for the climate classes Af, Am, 421 

and BS, the blue-shaded boxplots of the two parameters, SD and CD, showed relatively narrow 422 

ranges for the Aw, Ca, Cb, Da, and Db classes. Because SD and CD were sensitive parameters and 423 

explain more effectively variabilities in the NSE scores than γ and τ (Figure 1), the narrower ranges 424 

of the individual parameters for these climate classes justify our hypothesis to identify 425 

representative parameters based on their climate class. Conversely, the ranges of the individual 426 

parameter SD in the class Dc and ET showed broad distributions in the search domain. This was 427 

consistent with the lower performance of the initial attempt to search climate-based parameters in 428 

these classes.  429 

The climate-based parameters (red dots in Fig. 9) were mostly identified in the ranges of 430 

the first and third quartiles of the individual parameter distributions. This suggests that they 431 

successfully captured the differences in the hydrological properties on a global scale. The six 432 

climate-based parameters of the Dc climate class also showed consistency with the individual 433 

calibration. While the individual parameters of SD demonstrated wide distributions in the search 434 

domain, four out of the six climate-based parameters identified for each subarea were within the 435 

box. The individual parameters of CD displayed a relatively narrow range, and the six parameters 436 

were concentrated near the median values of the individual parameter. 437 

In contrast, the global calibration (green dots) and default parameter (blue dots) values 438 

were both set constant for SD and CD and deviated from the distributions of the individual 439 
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parameters, particularly in the tropical (Af, Am, and Aw) and arid (BS and BW) climate classes 440 

(in Fig. 9). This fact highlighted the significance of the gained improvement from the default and 441 

global parameters in these regions (Table 5). Because the number of stations in the tropical and 442 

arid regions accounts for only 11.7% (91 stations), the improvement will be more prominent if the 443 

number of stations per climate system increases.   444 

 445 

4 Discussion 446 

4.1 Does climate exert a dominant control on hydrological properties on a global scale? 447 

In this study, we tested the identifiability of representative parameters determined for the 448 

Köppen climate classes. The representative parameters provided improved streamflow simulations 449 

compared with those of the default and the global calibration. Moreover, the climate-based 450 

parameters showed remarkable improvement in four out of the five climate classes composed of 451 

more than 50 watersheds (i.e., Aw, Ca, Cb, and Db). This supports our initial hypothesis that 452 

similarity in climate properties is a dominant control on hydrological properties on a global scale. 453 

Our results are also consistent with the previous findings of the validities of transferring parameters 454 

of global hydrological models based on climate properties (Nijssen et al., 2001a, b; Beck et al., 455 

2016). 456 

We highlighted the importance of the direct or indirect connections of the effects of climate 457 

on the hydrological function of watersheds. First, we revealed the most critical relationship 458 

between the climate and modeled values of the bulk transfer coefficient CD, which depends on the 459 

roughness of the canopy surface (Stull 1991). CD showed a decreasing trend from the warmer to 460 

the cooler climate classes (Figure 9 (b)). The parameter values obtained for the individual and 461 

climate-based calibrations are consistent with the notion that tropical regions typically have a high 462 

evapotranspiration efficiency due to dense vegetation, unlike cooler regions, which generally have 463 

a low evapotranspiration efficiency. In the first generations of land surface models (LSMs), CD 464 

was set to the standard value for grassland vegetation (Manabe 1969, Hartmann 1994). Milly and 465 

Shmakin (2002) developed the Land Dynamics (LaD) model, which calculates the water and 466 

energy balance with parameters based on the vegetation and soil types. The global simulation of 467 

LaD showed an improved annual water balance, justifying the parameterization based on land 468 

surface attributes. Most of the operational LSMs today employ detailed and complex 469 

parameterization of the land surface scheme but use a priori parameters with look-up tables, 470 

limiting their abilities for model improvement via sensitivity analysis (Samaniego et al., 2017). 471 

Our approach employed a simple land surface scheme, but the identifiability of the “effective” 472 

heat-flux parameterization will benefit further improvement. 473 

The soil depths (SD) obtained from the climate-based calibration showed a decreasing 474 

trend with cooling climate, from the tropical (Af, Am, and Aw) through to the subarctic (Dc) and 475 

tundra (ET) (Figure 9 (a)), suggesting that the water-holding capacity in the subsurface has direct 476 

or indirect links with climate (Harman & Troch, 2014; Troch et al., 2015). Direct links may include 477 

the weathering of rock, which is related to the amount and temperature of water flowing through 478 

it, so the rate of soil-formation is higher in regions with ample rainfall and warmer temperatures 479 

(Rasmussen et al., 2005). This rationale corroborated the decrease in soil depth along the climate 480 

gradient. Studies involving direct comparisons of modeled SD with global maps of soil depth (e.g., 481 

Pelletier et al., 2016) are worthy of future research. However, as water can be stored in the soil 482 
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layer as well as in deeper bedrock (Sayama et al., 2009; Ajami et al., 2011), and the optimized 483 

parameters of subsurface storage may include such deep aquifer storage, a direct comparison may 484 

not be possible between parameterized soil depths (SD) and the actual volume of water stored in 485 

the soil layer. Understanding the global variance in subsurface storage capacity is more relevant 486 

(Harman and Troch, 2014). Moreover, it would help us understand the long-term water-balance or 487 

the baseflow characteristics of watersheds. Milly (1994) demonstrated that water storage in the 488 

soil was essential to explain the seasonal variation of water-balance over the Eastern United States. 489 

Yoshida & Troch (2016) showed that the estimated storage of the deep aquifers in volcanic 490 

watersheds varied with geological timescales under similar climatic conditions of the Western 491 

United States and Japan. As these studies were conducted in regions with similar climatic 492 

conditions, a comprehensive understanding between the subsurface storage and climate on the 493 

global scale was limited.  494 

The Dc climate class showed diversified individual parameters, and the representative 495 

parameters for the entire area yielded poor results. This suggests that the Köppen climate classes 496 

are not the only measure that explains global hydrological differences. We found that the 497 

individual parameters in Dc did not exhibit spatially randomized patterns, but rather smoothness 498 

in space (Figure 6), which divided the entire area into sub-areas and improved the NSE score. This 499 

corroborates the findings of Addor et al. (2018) that the spatial smoothness of hydrological 500 

signatures can be satisfactorily regionalized when the signatures exhibit smoothness, most likely 501 

reflecting the climate. 502 

It is out of the scope of this paper to elucidate why and how these differences in the subareas 503 

emerged; however, we will provide several possible explanations that can be investigated in the 504 

future. A highly constrained CD suggests that the values reflect surface roughness’s actual 505 

properties, showing low evaporative potential in the arctic climate. This is also consistent with the 506 

global differences in CD (Figure 9 (b)). Conversely, the interpretations of variabilities in SD are 507 

not straightforward, ranging from 0.208 (subarea VI) to 3.027 (subarea II). We suggest that the 508 

variance may reflect the processes relevant to permafrost or lakes, which are not or poorly 509 

represented in the H08 model. The extremely small SD values for the subarea VI (Eastern Siberia) 510 

correspond to the areal extension of the ‘continuous’ permafrost, which means that 90-100% of 511 

the area was covered permafrost (Brown et al, 2002, Figure S3). As the permafrost decreases, SD 512 

values tend to increase (westward on the Eurasia continent). However, for subarea III (Eastern 513 

Canada), the SD value was the largest even though the area was covered with ‘continuous’ or 514 

‘discontinuous’ permafrost. This might be explained by the existence of large lakes (Lehner and 515 

Döll, 2004, Figure S4). Relatively low NSE scores in this area, even after the subarea-based 516 

calibration (Figure 7 (c)), also suggests the influence of other factors that were not accounted for 517 

by the model on observed discharges (i.e., disturbance by the storage in lakes). 518 

 519 

4.2 Practical guidance for the application of ABC to large scale hydrological modeling 520 

The ABC algorithm is based on the rationale that one can approximate ‘true’ posterior 521 

distributions when sampling can be conducted an unlimited number of times (Beaumont et al., 522 

2002; Sisson et al., 2018). However, due to the high demand for computational resources, the 523 

calibrations of global hydrological models would not be conducted in an ideal way. In this study, 524 

the number of prior samples was limited to 5000. The challenge was to derive useful information 525 

from the limited number of samples using the framework of ABC. The successful identification of 526 
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the parameters in this study may be attributed to the low dimensionality of the problem of four 527 

sensitive parameters, thanks to the previous attempt to calibrate the H08 at the individual 528 

watershed (Hanasaki et al., 2014; Masood et al., 2015; Mateo et al., 2014; Yoo, 2016). For the 529 

problems with higher dimensionality, the simple rejection algorithm requires substantial iterations 530 

to obtain useful posterior distributions (Sadegh and Vrugt, 2013).  531 

The approximated posterior distribution accuracy depends on the choice of the summary-532 

metrics and the effects of other sources of errors (e.g., climate forcing or model structures). The 533 

use of discharge-based metrics in ABC possesses similarity with the limits of the acceptability 534 

approach of generalized likelihood uncertainty estimation, GLUE (Beven & Binley, 1992). The 535 

theoretical connections between ABC and GLUE were thoroughly discussed in the references 536 

(Nott et al., 2012; Sadegh & Vrugt, 2013), but we point out the consequences of selecting NSE as 537 

the summary metrics. The low sensitivity of γ and τ might partly reflect our use of monthly-538 

averaged streamflow for the calibration or NSE for summary metrics. Parameters γ and τ explain 539 

the groundwater recession rate, but the monthly streamflow was presumably insufficient to 540 

represent the recession rate, especially for large watersheds (i.e., with catchment areas >10,000 541 

km2). γ and τ might have shown more sensitivity to the overall results if we had used daily or 542 

weekly mean streamflow data to calibrate the smaller watersheds. Moreover, NSE is particularly 543 

sensitive to the timing of flood peaks because it calculates error residuals based on the ratio of the 544 

mean square error to the variance of observed streamflows (Nash & Suttcliffe, 1979). Using other 545 

hydrological signatures would provide more explicit contributions of these parameters, e.g., 546 

baseflow index (Vogel & Kroll, 1992; Kroll et al., 2004), or the slope of the flow duration curves 547 

(Yadav et al., 2007; Zhang et al., 2008).  548 

Lastly, we determined the method to identify representative parameter sets for each climate 549 

class using median values of the posterior distribution obtained with an acceptance ratio of 5%. 550 

However, we do not argue that these criteria are conclusive, but rather that the application of this 551 

method to other datasets and with different purposes may result in different criteria.  552 

 553 

4 Conclusion  554 

In this study, we introduced the ABC technique to calibrate four sensitive parameters of 555 

the H08 global hydrological model for gauged watersheds and aggregated the 5000 simulated 556 

samples into 11 Köppen climate classes. We then tested the hypothesis that the parameters derived 557 

from the aggregated posterior distribution represent the hydrological properties in the same climate 558 

class, and are transferable to the watersheds in that climate classes (climate-based calibration). By 559 

randomly splitting watersheds into equal-sized calibration and validation datasets, we found that 560 

the representativeness and robustness of the climate-based parameters are satisfied with an NSE 561 

acceptance ratio of 5% and the median of the posterior distribution to define representative 562 

parameters. The simulation with the climate-based parameters yielded satisfactory (NSE > 0.0) 563 

and good (NSE > 0.5) performances at 480 and 234 stations (61.7% and 30.1% of 777 stations), 564 

respectively, demonstrating a significant improvement from those simulated with default 565 

parameters. Simulations using climate-based parameters also showed higher NSE scores than 566 

those with default parameters for 72.2% of the watersheds.  567 

The 11 Köppen climate classes' identified parameters showed consistency with the physical 568 

interpretation of soil formation and efficiencies in vapor transfer with a wide variety of vegetation 569 
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types. The consistency of the defined parameter values with physical underpinnings indicates that 570 

the correct parameters were determined, ensuring the robustness of the parameters, particularly 571 

when transferred to ungauged watersheds. One of the significant advantages of applying ABC to 572 

a global hydrological model is that it can be easily implemented without complex code 573 

modifications and, as in this study, the results of the same calculations can be used to determine 574 

the ideal combination of parameters in an exploratory manner. Therefore, this technique is suitable 575 

for studies aiming to constrain model parameters that better predict watershed behaviors on a 576 

global scale. 577 
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 791 

Figure 1. Cross plots of the posterior distributions of the individual calibration obtained with the 792 

acceptance ratio 30% (at watershed ID: 4362600). Each subplot represents the bivariate plots 793 

between (a): SD-CD, (b): SD-γ, (c): SD-τ, (d): CD-γ, (e): CD-τ, and (f): γ-τ. The crosses indicate 794 

the mode (yellow), median (white) and mean (light blue) of the posterior distributions, 795 

respectively.  796 
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 798 

Figure 2. Spatial distributions of the parameter values obtained from the individual calibration. 799 

Each subplot represents the values of (a): SD, (b) CD, (c) γ, and (d) τ. 800 

  801 



manuscript submitted to Water Resources Research 

 

 802 

Figure 3. The cross plots of the posterior distributions for the climate class Db with the 803 

acceptance ratio of 10%. Each subplot represents the relations between (a): SD-CD, (b): SD-γ, 804 

(c): SD-τ, (d): CD-γ, (e): CD-τ, and (f): γ-τ. The crosses depict the mode (yellow), mean (light 805 

blue), and median (white) of the posterior distributions, respectively.  806 
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808 

 809 

 810 

Figure 4. The ranges of NSE scores obtained from the validation dataset of the repeated two-fold 811 

cross-vlidation for two climate classes (Db and Dc) for 100 iterations. 812 
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 814 

Figure 5. Cross plots of the parameters identified by the individual calibration for the climate 815 

class Dc. Each subplot represents the relations between (a): SD-CD, (b): SD-γ, (c): SD-τ, (d): CD-816 

γ, (e): CD-τ, and (f): γ-τ. The contour shows the kernel density of the individual parameters. The 817 

plots show the values of the individual parameters and their colors indicate the subareas shown 818 

in Figure 6 and Table 5. 819 
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 821 

Figure 6. Parameter map for the climate class Dc. Each subplot represents the values of (a): SD, 822 

(b): CD, (c): γ, and (d): τ. 823 

 824 

  825 



manuscript submitted to Water Resources Research 

 

 826 

Figure 7. NSE scores for the climate class Dc. Each of the panel shows (a): NSE scores obtained 827 

from the climate-based calibration (Dc unif., in which whole area was treated unifrormly), (b): 828 

NSE scores obtained from the climate-based calibration dividing the whole area into 6 subareas 829 

(posterior-median to derive the representative parameters), (c): same as (b) but posterior-mode 830 

was used, and (d): differences in NSE scores between (a) and (c). 831 
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 833 

 834 
 835 

Figure 8. NSE scores obtained using the H08 model default parameters and calibrations using 836 

the individual watershed, climate-based, and global parameter sets for the 11 climate classes 837 

(statistical measure = median; acceptance ratio = 5%; Dc was divided into subareas). Note that 838 

NSE scores of BW for the default and global parameters were always below -3.0. 839 

 840 
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 842 

Figure 9. Comparison for all climate classes of optimized values of SD, CD, γ, and τ (colored 843 

dots) with boxplots of the distributions of the individual calibrations (statistical measure = 844 

median; acceptance ratio = 5%). 845 
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 847 

Table 1. Default values for the H08 global hydrological model parameters and ranges of values 848 

used for randomly generated parameter sets.  849 

 850 

 Range Default 

Soil depth (SD) 0.05–4.0 1.0 

Bulk transfer coefficient (CD) 0.001–0.012 0.003 

† Shape parameter for subsurface runoff (γ)  1–4 1–2† 

† Time constant for subsurface runoff (τ) 10–400 50–300† 

† Number differed by climatic zones. (γ, τ) is (2.0, 100) for tropical forest; (2.0, 300) for tropical 851 

monsoon, savanna, and dry climates; (2.0, 200) for temperate and continental (warmer) climates; 852 

and (1.0, 50.0) for continental (cooler) and polar climates (Hanasaki et al., 2008a). 853 

 854 

 855 

Table 2. Köppen climate classes used in this study and number of stations for each climate class  856 

Climate  Abbreviation Number of stations 

Tropical rain forest Af 3 

Tropical monsoon  Am 4 

Tropical savanna  Aw 61 

Arid  BW  17 

Semi-arid  BS  6 

Hot summer temperate  Ca  99 

Warm summer temperate  Cb 129 

Hot summer continental  Da 18 

Warm summer continental  Db 164 

Subarctic  Dc 262 

Tundra  ET 14 

Total  777 

 857 
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Table 3. NSE values as tolerance in ABC for each climate class according to the acceptance ratios 859 

 860 

 Acceptance Ratio 

Climate 0.1% 1% 5% 10% 20% 

Af 0.546 0.472 0.337 0.206 -0.033 

Am 0.888 0.868 0.842 0.814 0.755 

Aw 0.919 0.851 0.688 0.526 0.189 

BS 0.598 0.455 0.255 0.113 -0.099 

BW 0.396 0.240 -0.873 -4.527 -18.569 

Ca 0.899 0.838 0.710 0.602 0.437 

Cb 0.888 0.831 0.708 0.619 0.473 

Da 0.811 0.718 0.602 0.516 0.355 

Db 0.816 0.680 0.511 0.380 0.202 

Dc 0.810 0.671 0.474 0.340 0.171 

ET 0.797 0.684 0.548 0.401 0.212 

 861 

 862 

 863 

 864 

 865 
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 867 

Table 4. Number of stations for “satisfactory” and “good” performances for the climate-based, global, and default parameters.  868 

 869 

  “Satisfactory” performance (0.5>NSE>0) “Good” performance (NSE>0.5) Gain of NSE Climate-based 

Climate Num

. 

Climate-based Global Default Climate-based Global Default from Default from Global 

Af 3 1 (0.333) 0 (0.000) 0 (0.000) 0 (0.000) 0 (0.000) 0 (0.000) 3 (1.000) 3 (1.000) 

Am 4 1 (0.250) 1 (0.250) 1 (0.250)  1 (0.250)  1 (0.250) 1 (0.250) 4 (1.000) 4 (1.000) 

Aw 61 24 (0.393) 9 (0.148) 2 (0.033) 14 (0.230) 3 (0.049) 1 (0.016) 61 (1.000) 57 (0.934) 

BS 17 5 (0.294) 5 (0.294) 1 (0.059) 0 (0.000) 0 (0.000) 0 (0.000) 14 (0.824) 9 (0.529) 

BW 6 2 (0.333) 0 (0.000) 0 (0.000) 0 (0.000) 0 (0.000) 0 (0.000) 6 (1.000) 5 (0.833) 

Ca 99 69 (0.697) 69 (0.697) 49 (0.495) 26 (0.263) 26 (0.263) 21 (0.212) 65 (0.657) 0 (0.000) 

Cb 129 101 (0.783) 101 (0.783) 54 (0.419) 74 (0.574) 74 (0.574) 20 (0.155) 107 (0.829) 0 (0.000) 

Da 18 16 (0.889) 14 (0.778) 10 (0.556) 7 (0.389) 4 (0.222) 3 (0.167) 17 (0.944) 11 (0.611) 

Db 164 96 (0.585) 96 (0.585) 40 (0.244) 37 (0.226) 37 (0.226) 10 (0.061) 130 (0.793) 0 (0.000) 

Dc (unif.) 262 93 (0.355) 91 (0.347) 166 (0.634) 18 (0.069) 8 (0.031) 23 (0.088) 71 (0.271) 160 (0.611) 

Dc (div.) 262 157 (0.599) 91 (0.347) 166 (0.634) 70 (0.267) 8 (0.031) 23 (0.088) 150 (0.573) 178 (0.679) 

ET 14 8 (0.571) 3 (0.214) 10 (0.714) 5 (0.357) 0 (0.000) 7 (0.500) 4 (0.285) 10 (0.714) 

Total (Dc unif.) 777 416 (0.535) 389 (0.501) 333 (0.429) 182 (0.234) 153 (0.197) 86 (0.111) 482 (0.620) 259 (0.333) 

Total (Dc div.) 777 480 (0.617) 389 (0.501) 333 (0.429) 234 (0.301) 153 (0.197) 86 (0.111) 561 (0.722) 277 (0.356) 

 870 
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Table 5. The geographical divisions of the climate class Dc. 872 

 873 

Subarea Range of longitude [degree] Note (River Names, Area) 

1:  180 W - 105 W Alaska. Yukon River, East of McKenzie River 

2:  105 W – 30 W Eastern Canada, Canadian Prairies, Quebec 

3:  30 W – 40 E Scandinavia 

4:  40 E – 60 E Eastern Europe 

5:  60 E -90 E Western Siberia 

6:  90 E – 180 E Eastern Siberia 
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