As the largest river basin on Earth, the Amazon is of major importance to the world’s climate and water resources. Over the past decades, advances in satellite-based remote sensing (RS) have brought our understanding of its terrestrial water cycle and the associated hydrological processes to a new era. Here, we review major studies and the various techniques using satellite RS in the Amazon. We show how RS played a major role in supporting new research and key findings regarding the Amazon water cycle, and how the region became a laboratory for groundbreaking investigations of new satellite retrievals and analyses. At the basin-scale, the understanding of several hydrological processes was only possible with the advent of RS observations, such as the characterization of “rainfall hotspots” in the Andes-Amazon transition, evapotranspiration rates, and variations of surface waters and groundwater storage. These results strongly contribute to the recent advances of hydrological models and to our new understanding of the Amazon water budget and aquatic environments. In the context of upcoming hydrology-oriented satellite missions, which will offer the opportunity for new synergies and new observations with finer space-time resolution, this review aims to guide future research agenda towards an integrated monitoring and understanding of the Amazon water from space. Integrated multidisciplinary studies, fostered by international collaborations, set up future directions to tackle the great challenges the Amazon is currently facing, from climate change to increased anthropogenic pressure.

Ayan Fleischmann

and 29 more

The Amazon River basin harbors some of the world’s largest wetland complexes, which are of major importance for biodiversity, the water cycle and climate, and human activities. Accurate estimates of inundation extent and its variations across spatial and temporal scales are therefore fundamental to understand and manage the basin’s resources. More than fifty inundation estimates have been generated for this region, yet major differences exist among the datasets, and a comprehensive assessment of them is lacking. Here we present an intercomparison of 29 inundation datasets for the Amazon basin derived from remote sensing-based products, hydrological models and multi-source products. Spatial resolutions range from 12.5 m to 25 km, and temporal resolution from static to monthly intervals, covering up to a few decades. Overall, 26% of the lowland Amazon basin is estimated as subject to inundation by at least one product. The long-term maximum inundated area across the entire basin (lowland areas with elevation < 500 m) is estimated at 599,700 ± 81,800 km² if considering only higher quality SAR-based products and 490,300 ± 204,800 km² if considering 18 basin-scale datasets. However, even the highest resolution SAR-based product underestimates the local maximum values, as estimated by subregional products, suggesting a basin-wide underestimation of ~10%. The minimum inundation extent shows greater disagreements among products than the maximum extent: 139,300 ± 127,800 km² for SAR-based products and 112,392 ± 79,300 km² for the overall average. Discrepancies arise from differences among sensors, time periods, dates of acquisition, spatial resolution, and data processing algorithms. The median total area subject to inundation in medium to large river floodplains (drainage area > 1,000 km²) is 323,700 km². The highest spatial agreement is observed for floodplains dominated by open water such as along the lower mainstem rivers, whereas intermediate agreement is found along major vegetated floodplains fringing larger rivers (e.g., Amazon mainstem floodplain). Especially large disagreements exist among estimates for interfluvial wetlands (Llanos de Moxos, Pacaya-Samiria, Negro, Roraima), where inundation tends to be shallower and more variable in time. Our data inter-comparison helps identify the current major knowledge gaps regarding inundation mapping in the Amazon and their implications for multiple applications. In the context of forthcoming hydrology-oriented satellite missions, we make recommendations for future developments of inundation estimates in the Amazon and present a WebGIS application (https://amazon-inundation.herokuapp.com/) we developed to provide user-friendly visualization and data acquisition of current Amazon inundation datasets.

Adrien Paris

and 14 more

This study intends to integrate heterogeneous remote sensing observations and hydrological modelling into a simple framework to monitor hydrological variables in the poorly gauged Congo River basin (CRB). It focuses on the possibility to retrieve effective channel depths and discharges all over the basin in near real time (NRT). First, this paper discusses the complexity of calibrating and validating a hydrologic–hydrodynamic model (namely the MGB model) in the CRB. Next, it provides a twofold methodology for inferring discharge at newly monitored virtual stations (VSs, crossings of a satellite ground track with a water body). It makes use of remotely sensed datasets together with in-situ data to constrain, calibrate and validate the model, and also to build a dataset of stage/discharge rating curves (RCs) at 709 VSs distributed all over the basin. The model was well calibrated at the four gages with recent data (Nash-Sutcliffe Efficiency, NSE> 0.77). The satisfactory quality of RCs basin-wide (mean NSE between simulated discharge and rated discharge at VSs, NSEmean = 0.67) is an indicator of the overall consistency of discharge simulations even in ungauged upstream sub-basins. This RC dataset provides an unprecedented possibility of NRT monitoring of CRB hydrological state from the current operational satellite altimetry constellation. The discharges estimated at newly monitored locations proved to be consistent with observations. They can be used to increase the temporal sampling of water surface elevation (WSE) monitoring from space with no need for new model runs. The RC located under the fast sampling orbit of the SWOT satellite, to be flown in 2022, will be used to infer daily discharge in major contributors and in the Cuvette Centrale, as soon as data is released.