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Abstract15

Teleseismic shear-wave splitting analyses are typically performed by reversing the split-16

ting process through the application of frequency- or time-domain operations minimiz-17

ing transverse-component waveforms. These operations yield two splitting parameters,18

ϕ (fast-axis orientation) and δt (delay time). In this study, we investigate the applica-19

bility of a recurrent neural network, SWSNet, for determining the splitting parameters20

from pre-selected waveform windows. Due to the scarcity of sufficiently labelled real wave-21

form data, we generate our own synthetic training dataset. The model is capable of de-22

termining ϕ and δt with a root mean squared error (RMSE) of 9.58◦ and 0.143 s for noisy23

synthetic test data. The application to real data involves a deconvolution step to homog-24

enize the waveforms. When applied to data from the USArray dataset, the results ex-25

hibit similar patterns to those found in previous studies with mean absolute differences26

of 11.12◦ and 0.25 s in the calculation of ϕ and δt, respectively.27

Plain Language Summary28

In this study, we explore the use of a deep learning model called SWSNet to an-29

alyze seismic wave data. This method helps determine the properties of the Earth’s man-30

tle that affect how seismic waves travel. Typically, researchers use complex calculations31

to analyze seismic data, but our approach uses a deep learning model trained to recog-32

nize patterns in the data. Since there is not enough labelled data available for training,33

we create our own synthetic data for this purpose. Our model can accurately determine34

important characteristics of the subsurface layer, and when applied to real-world data,35

it produces results similar to previous studies. This work shows that SWSNet is a promis-36

ing tool for analyzing seismic data and understanding Earth’s interior.37

1 Introduction38

The analysis of seismic anisotropy serves as a unique tool for investigating the elu-39

sive dynamic processes occurring within the Earth’s mantle. Inferring vertically and lat-40

erally varying anisotropic structures from surface-recorded seismic waveforms can pro-41

vide vital constraints for geodynamic models of mantle deformation and flow. The study42

of teleseismic shear-wave splitting, a technique in use for over three decades, provides43

key insights about seismic anisotropy, aiding in the analysis of the dynamic processes within44

Earth’s interior (Long & Silver, 2009; Reiss & Rümpker, 2017; Savage, 1999; Silver &45

Chan, 1991).46

Two primary mechanisms contribute to the development of seismic anisotropy in47

the Earth’s mantle: strain-induced lattice preferred orientation (LPO) of upper mantle48

minerals such as olivine (resulting from differential motion between the lithosphere and49

asthenosphere, and mantle flow) (Silver & Chan, 1991) and shape preferred orientation50

due to the presence of vertically aligned fluid-filled fractures, cracks, and microcracks (Holtzman51

& Kendall, 2010).52

When a shear wave enters an anisotropic medium, it is split into two orthogonally53

polarized components that propagate at different speeds. This phenomenon can be de-54

scribed by two splitting parameters: the fast axis orientation (the polarization direction55

of the faster wave) ϕ, and the time delay between the two components δt. While ϕ rep-56

resents the orientation of the anisotropic materials, δt measures the strength of anisotropy57

and the extent of the anisotropic material. Teleseismic phases are typically employed to58

investigate the anisotropic properties of the Earth. The most frequently used phases in-59

clude SKS, SKKS, and PKS, and are collectively referred to as XKS phases. The con-60

version of these waves at the core-mantle boundary results in polarization in the direc-61

tion of the back-azimuth (Jia et al., 2021; Liu & Gao, 2013; Reiss & Rümpker, 2017).62
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Several software codes have been developed to determine the splitting parameters63

ϕ and δt through grid search or correlation approaches. Examples of such codes can be64

found in the works of Silver and Chan (1991) such as Liu and Gao (2013); Savage et al.65

(2010); Teanby et al. (2004); Wüstefeld et al. (2008); Wuestefeld et al. (2010). (Semi-66

)automatic approaches were recently suggested by Reiss and Rümpker (2017) and Link67

et al. (2022).68

In this paper, we present a novel Deep Learning-based approach for the analysis69

of shear-wave splitting. In a recent study, Zhang and Gao (2022) utilized an Convolu-70

tional Neural Network (CNN) for waveform classification to automatically select reliable71

SWS measurements. However, a comprehensive analysis to infer anisotropic splitting pa-72

rameters has not yet been presented. Here, we introduce a Neural Network called SWS-73

Net (Shear-Wave Splitting Network) to determine the splitting parameters from pre-selected74

waveform windows. Due to the lack of sufficient labelled data, the model is trained on75

synthetic data, simulated under the assumption of a single anisotropic layer. A series of76

deconvolution and reconvolution steps are applied to real data to ensure maximum re-77

semblance. We demonstrate that SWSNet can produce results comparable to those of78

previous studies such as Liu et al. (2014) when applied to real data from the USArray79

and obtain mean absolute differences of 11.12◦ and 0.25 s in the calculation of ϕ and δt,80

respectively.81

2 Methods and Results82

For our study we use a supervised learning approach, which is a machine learning83

paradigm that relies on labelled data for training a model. The Deep Learning model84

we use learns to map the waveforms to the corresponding labels (in our case ϕ and δt)85

by minimising the difference between the true and predicted labels defined by the loss86

function.87

In principle, labelled waveform data from shear-wave splitting analyses is available88

from publications and data archives (see, e.g., Barruol et al. (2009)). However, for our89

purposes, the amount of available data is limited, and the labelling may not be as uni-90

form, as it would be required for efficient training. In order to overcome this limitation,91

we will use synthetic data as an alternative. Ideally, the generated synthetic waveforms92

will mimic the properties and characteristics of real data.93

2.1 Modeling shear-wave splitting94

In our approach, we consider waveform effects due to a single anisotropic layer, which95

is characterized by a horizontal symmetry axis (referred to as the “fast axis” and ori-96

ented at an angle ϕ with respect to North). A vertically incident shear wave, splits into97

horizontally polarized fast and slow components, where the fast component aligns par-98

allel to the symmetry axis, while the slow component is oriented perpendicular to it. Gen-99

erally, these two quasi-shear waves propagate at different speeds, resulting in a separa-100

tion by the delay time, δt, as they travel through the layer. A graphical representation101

of the coordinate systems used is given in Figure S1.102

The equations to describe shear-wave splitting in layered structures have recently
been summarized by Rümpker et al. (2023). In the frequency domain, the radial and trans-
verse displacement components, after passing through the layer, can be expressed as(

u
(r)
1

u
(t)
1

)
=

(
cos θ + i sin θ cos 2α i sin θ sin 2α

i sin θ sin 2α cos θ − i sin θ cos 2α

)(
u
(r)
0

u
(t)
0

)
(1)

where θ = ωδt/2, α = β − ϕ is the angular difference between back-azimuth and fast
axis, and index 0 denotes waveforms before passing through the anisotropic layer. For
XKS phases in a radially symmetric Earth, we can assume that u

(t)
0 = 0 upon enter-
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ing the (first) anisotropic layer on the receiver-side leg of the ray path, such that

u
(r)
1 = (cos θ + i sin θ cos 2α)u

(r)
0 (2)

u
(t)
1 = i sin θ sin 2αu

(r)
0 (3)

Note, that for relatively long periods, T ≫ δt (to first order in θ), this simplifies to

u
(r)
1 ≃ (1 + iω

δt

2
cos 2α)u

(r)
0 (4)

u
(t)
1 ≃ iω

δt

2
sin 2αu

(r)
0 (5)

where the factor iω yields a derivative of the radial-component waveform and the am-103

plitude is modulated by sin 2α. We will use this formulation in the development of our104

deconvolution approach, as described below.105

2.2 Neural Network Analysis - Synthetic Data106

We use synthetic data to train our model. The radial and transverse waveforms are107

generated with a sampling frequency of 50Hz for back-azimuths between 0−360◦ and108

fast axis ϕ ranging between 0−180◦. Consequently α can vary between 0−180◦, since109

ϕ and ϕ+180◦ represent the same fast axis orientation. Possible values for δt are be-110

tween 0.2-2.0 seconds. Note that δt characterizes the anisotropy within the layer and is111

not equal to an “apparent” delay time which could be much larger (e.g. Silver and Sav-112

age, 1994).113

Combinations of δt and ϕ are chosen from uniform random distributions for the114

ranges described above. We experiment with Convolutional layers (Kiranyaz et al., 2015),115

Bi-directional Long Short-Term Memory (Bi-LSTM) (Hochreiter & Schmidhuber, 1997)116

layers and a combination of both. The model hyperparameters are chosen by experiment-117

ing to maximise the model performance on validation data. Each 1D convolutional layer118

used has a Rectified Linear Unit (ReLU) activation function (Agarap, 2018). The model119

outputs three values corresponding to the probability of the measurement being non-null120

and the normalised predictions for δt and ϕ. Here, any measurement with α < 2, 88 <121

α < 92 and α > 178 is considered a null measurement. A ReLU activation function122

is used for layers predicting α and δt while a sigmoid function is used to output the prob-123

ability corresponding the measurement being non-null. A schematic example of such an124

architecture is shown in Figure 1.125

The model is trained using the Adam Optimiser (Kingma & Ba, 2014). Mean squared126

error and binary cross-entropy are used as loss functions for regression and classification127

respectively. Apart from using Maxpooling layers in the model architecture, early stop-128

ping (Prechelt, 2012) is used to further prevent overfitting, whereby training stops if val-129

idation loss does not decrease for 8 consecutive epochs. We find a Convolutional Neu-130

ral Network to be working best on this dataset.131

2.2.1 Results - Synthetic Data132

We train the Neural Network on two types of dataset– one is noise-free and the other133

has 10-30% noise applied independently to the fast and slow components. Some exam-134

ples for these datasets can be found in Figures S2 and S3 in the Supplementary Infor-135

mation. Figure 2 shows the results when these models are applied to a noisy synthetic136

test data. As can be seen from Figure 2, the Neural Network has RMSE 62.46◦ and 0.59137

s in the predictions of α and δt respectively when trained on noise-free synthetic data.138

However when trained on noisy data, the RMSE in the prediction of α and δt decrease139

to 9.47◦ and 0.06 s thus demonstrating that the training of the neural network on noise-140

free synthetic data fails to appropriately mitigate the effects of noise. Since noise is bound141
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Figure 1. The architecture of SWSNet. The model takes as input the (deconvolved) trans-

verse component and comprises of two blocks of 1D convolution and Maxpooling operations,

followed by two bi-directional LSTM layers. The final outputs are the normalised values of α

(αnorm) and δt (δtnorm) and the probability of the measurement being non-null.

to be present in the real data, we train our model on noisy data for the subsequent anal-142

ysis. The results of this analysis on the noise-free test data are comparable and can be143

seen in Figure S4 in the Supporting Information.144

2.3 Application to real data145

2.3.1 Direct application of the Neural Network146

When the Neural Network trained on the synthetic data is directly applied to the147

real data (radial and transverse components), it performs unsatisfactorily when predict-148

ing δt. A plot between the true and predicted δt in this case can be seen in the Supple-149

mentary Information (Figure S5). This happens as real waveforms look significantly dif-150

ferent from the synthetic data. Thus a direct application of the trained Neural Network151

to the real waveforms renders unusable results. This necessitates an intermediate step152

to bridge the gap between the synthetic and real waveforms.153

2.3.2 Deconvolution approach154

Observed real waveforms are not only affected by anisotropic layering but may vary155

significantly due to different source mechanisms (and path effects). This poses a chal-156

lenge to the training of the deep learning model, as it becomes impossible to include all157

waveform variations that may arise from different source mechanisms and complexities158

of the medium. Here, we choose a deconvolution approach to mitigate source effects and159

“homogenize” the waveforms. This method is similar to the one utilized in receiver-function160

processing, for instance Langston (1979); Owens et al. (1984); Ammon (1991).161

We deconvolve both the radial and transverse component by the radial component.
In the frequency-domain, in view of eq. (5), the procedure applied to real data can be
described as follows:

u
(r)
∗ = u

(r)
1 /u

(r)
1 = 1 (6)

u
(t)
∗ = iω

δt

2
sin 2αu

(r)
0 /u

(r)
1 ≃ iω

δt

2
sin 2α (7)
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Figure 2. (a)-(b) Ground truth vs predicted values of α and δt for model trained on noise-free

synthetic data. (c)-(d) Ground truth vs predicted values of α and δt for model trained on noisy

synthetic data. In both cases the input data used for testing is afflicted with noise.

Note that we assumed u
(r)
0 /u

(r)
1 ≃ 1 in the derivation of eq. (7). This implies that the162

radial-component waveform is a sufficient representation of the incoming waveform (be-163

fore it enters the anisotropic layer), which further limits the applicability to waveforms164

of relatively long periods. The value of 1 for the radial component in the frequency do-165

main corresponds to a δ-function in the time domain. For the transverse component, the166

factor iω causes a time-domain derivative (of the unsplit waveform) with amplitude mod-167

ulated by sin 2α. In a second step, the deconvolved components can now be convolved168

with a reference waveform, such as the normalised derivative of an exponential function169

(Figure S6, radial component as shown in Figure 3), to yield a standard radial compo-170

nent, and uniform transverse component that depends on the two splitting parameters.171

Figure S7 shows the appearance of the transverse component for different α and δt pairs.172

For real data, first the waveform within the selected time windows are resampled173

at 50Hz and then the mean is removed. For both the real and synthetic data the follow-174

ing steps are applied:175

• A Hanning window is applied to smoothen the transition to zero amplitude at the176

boundaries of the time window.177

• The data is zero padded to have a uniform total of 2000 time samples correspond-178

ing to a 40 s time window.179

• A butterworth lowpass filter with corner frequency of 1 Hz is applied to suppress180

higher-frequency noise.181

• The radial component is deconvolved from both the radial and transverse com-182

ponents as per equations 6 and 7.183
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Table 1. A comparison between splitting parameters for individual waveforms shown in Figure

3, calculated by Link et al. (2022) and SWSNet. A more detailed comparison between grid search

results, results from Link et al. (2022) and SWSNet can be found in table S1 in the Supplemen-

tary Information.

Event ID ϕ(◦) ϕ(◦) δt (s) δt (s)

(Link et al., 2022) (SWSNet) (Link et al., 2022) (SWSNet)

U14A2007-07-27T15:10:07SKS 48.00 50.64 1.44 1.62

G27K2019-03-10T08:33:53SKS 83.00 84.95 1.03 0.90

J48A2013-04-09T12:17:01SKS 75.00 72.89 0.82 0.90

E59A2015-05-30T11:45:14SKS 82.00 84.99 1.13 1.10

• The clean waveform shown in Figure S7 (radial component in Figure 3) is con-184

volved with both the deconvolved waveforms (radial and transverse components).185

• A Hanning window is applied to reduce the effect of possible sinusoidal “ringing”186

on the transverse component of the reconvolved data.187

• The waveform is cropped to the central 10 seconds.188

• Another Hanning window is applied followed by the normalisation of the data such189

that the absolute maximum amplitude in the transverse component is 1.190

With this approach it is only the transverse component that carries meaningful in-191

formation about the splitting parameters. Therefore we retrain our model on the trans-192

verse component of the de/reconvolved synthetic waveforms. Once again we experiment193

with different model architectures find out that the combination of Convolutional and194

Bi-LSTM layers, as shown in Figure 1, works best. This model will henceforth be called195

the SWSNet. A detailed description of the hyperparameters used can be seen in Figure196

S8. As the input data structure is relatively simple a deeper network does not improve197

the results and simpler network is sufficient. Please note that the labels corresponding198

to α and δt are always scaled to be in the range 0-1 as this is known to benefit learn-199

ing. A training data size of 50,000 waveforms is experimentally found to be optimum (Fig-200

ure S9). The performance of SWSNet on a synthetic test dataset is summarised in Fig-201

ure S10.202

2.4 Application to USArray203

We apply our model to pre-selected waveforms from the USArray dataset and com-204

pare our results with Liu et al. (2014) and those calculated by the automatic Splitracer205

toolbox proposed by Link et al. (2022). To make sure that only meaningful results are206

used in the calculation of station averages we perform a quality check on the estimations207

made by the neural network on given waveforms. We perform splitting inversion using208

the splitting parameters predicted by the neural network and check the percentage re-209

duction in the transverse component energy (sum of squared amplitudes) as proposed210

by Silver and Chan (1991). An experimentally chosen threshold of 60% reduction in trans-211

verse component of energy is used to select the waveforms to be used for calculating sta-212

tion averages. Some examples are shown in Figure 3. It is observed that the performance213

of SWSNet is comparable to that of SplitRacer. Figure 4 shows a visual representation214

of the station-averages of the splitting parameters calculated by SWSNet and Liu et al.215

(2014). Unlike Link et al. (2022), Liu et al. (2014) does not employ a joint splitting anal-216

ysis, allowing for a more direct comparison with our approach, as it is also based on av-217

eraging results from individual split phases at a given station. The corresponding com-218

parison between SWSNet and Link et al. (2022) can be seen in Figure S11.219
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Figure 3. Examples of application of SWSNet to deconvolved real waveforms from USAr-

ray Dataset. The middle and rightmost panels show a comparison between the deconvolved real

waveforms shown on the corresponding left panel and synthetic transverse components simu-

lated using the splitting parameters predicted by SWSNet. The middle panel shows the radial

component while the right panel shows the transverse components. The similarity between the

transverse components is observable. The corresponding splitting parameters can be found in

Table 1.

3 Discussion and Conclusion220

We explore the different factors that affect the station-averaged results, and find221

that the predominant factor is the number of acceptable measurements for a given sta-222

tion, whereby the difference between the station averaged splitting parameters calculated223

by SWSNet and those from Liu et al. (2014) diminishes with an increased number of ac-224

ceptable measurements corresponding to a station (Figure S12).225

For the deconvolution approach, as applied to real data, we find errors to be much226

lower when the neural network is trained and tested on noise-free synthetic data as com-227

pared when it is trained and tested on noisy synthetic data. This makes sense, as the228

deconvolution homogenizes the waveforms, even if noise is present. However, there is a229

certain degree of discrepancy between the ground truth and the predicted splitting pa-230

rameters for individual waveforms.231

We also compare our method against a simple grid search algorithm that, like pre-232

vious studies, finds the splitting parameters for which (upon waveform inversion) the en-233

ergy in the transverse component is the lowest. We plot the energy distributions for dif-234

ferent combinations of α and δt for five randomly chosen events from five different sta-235

tions, and find the parameters to calculated by SWSNet to be quite close to those found236

by grid search and what is calculated by Link et al. (2022) (Figure S13). We further ob-237
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Figure 4. (a) Splitting parameters calculated by SWSNet (b) Splitting parameters calculated

by Liu et al. (2014). The orientation of the straight lines is representative of the fast axis orienta-

tion while the length represents delay time. Similar general pattern is observed in both cases. (c)

Station-wise comparison between ϕ calculated by SWSNet and Liu et al. (2014) (d) Station-wise

comparison between δt calculated by SWSNet and Liu et al. (2014)

serve that grid search on an average takes 3-6 times the amount of time taken by SWS-238

Net to calculate splitting parameters for a single waveform.239

In this study we introduce a deep learning model SWSNet that has the potential240

to replace grid search methods used by previous studies to find splitting parameters for241

a waveform. Due to the dearth of labelled real data we train the model on synthetic data.242

We demonstrate that a direct application of model trained on the synthetic waveforms243

to real waveforms does not work well, the real waveform being affected by source mech-244

anisms and path effects. This is resolved by using a deconvolution approach to minimise245

the difference between real and synthetic data. We retrain the model on transverse com-246

ponents of deconvolved synthetic waveforms contaminated by random noise, and show247

that the model learns to perform reasonably well in identifying the splitting parameters248

for such waveforms. We then apply our model to pre-selected waveforms from the US-249

Array dataset and show that the station averages calculated using SWSNet follow the250

same general trends as previous studies. We observe that the robustness of the proposed251

method increases with increased number of measurements for a given station. The cur-252

rent version of the model is trained entirely on synthetic data, but in future versions real253

data can be added to the training set for improved representation.254
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4 Open Research255

The raw seismic waveforms used in this study are open for download from the IRIS256

Data Management Center under the network code TA (IRIS Transportable Array, 2003).257

The event selection and corresponding labels used for training of SWSNet are available258

in the supplementary data alongside Link et al. (2022).259
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Reiss, M. C., & Rümpker, G. (2017, 01). SplitRacer: MATLAB Code and GUI328

for Semiautomated Analysis and Interpretation of Teleseismic Shear-Wave329

Splitting. Seismological Research Letters, 88 (2A), 392-409. Retrieved from330

https://doi.org/10.1785/0220160191 doi: 10.1785/0220160191331
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