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Key Points:

o Weakly and strongly coupled data assimilation are compared by applying
Local Ensemble Transform Kalman Filter to the joint-Lorenz96 model.

e Strongly coupled data assimilation performs better when cross-domain
interaction is large, but it does not increase system’s chaoticity.

o Strongly coupled data assimilation is vulnerable to both cross-domain and
intra-domain biases.

Abstract

Data assimilation methods in a coupled system, namely coupled data assimila-
tion (CDA), have been attracting researchers’ interests to improve Earth system
modeling. The CDA methods are classified into two; weakly coupled data as-
similation (wCDA), which considers cross-domain interaction only in a model’s
forecast phase, and strongly coupled data assimilation (sCDA), which addition-
ally uses other domain’s information in an analysis phase. Although sCDA can
theoretically provide better estimates than wCDA since sCDA fully uses a cross-
domain covariance, the effectiveness of sCDA is still in debate. In this paper,
we investigated the conditions under which sCDA is effective by applying Lo-
cal Ensemble Transform Kalman Filter (LETKF) to the joint-Lorenz96 model.
By continuously changing the magnitude of the cross-domain interaction of the
joint-Lorenz96 model, we found that the superiority of SCDA against wCDA is
particularly evident when the cross-domain interaction is large, albeit it does
not contribute to increasing the chaoticity of the system. In addition, the per-
formance of sSCDA is quite sensitive to the LETKF’s hyperparameters (such as
localization and inflation parameters) especially when the ensemble size is small,
and the insufficient calibration of these parameters deteriorate the sCDA’s per-
formance. Furthermore, sCDA is more vulnerable to model bias than wCDA;
both cross-domain and intra-domain biases degrade the estimation skills.

Plain Language Summary

Data assimilation (DA) integrates computer simulation and observation to im-
prove the estimate of system states. Since Earth is a coupled system in which
different domains such as atmosphere and ocean interact with each other, DA
methods in coupled system, namely coupled data assimilation (CDA) have been
attracting researchers’ interests in Earth system sciences. The CDA methods
are classified into two; weakly coupled DA (wCDA) and strongly coupled DA
(sCDA). sCDA has a potential as it uses cross-domain interaction information
additionally, but previous studies have mixed opinions regarding its effectiveness.
Thus, we aimed to reveal under which conditions sCDA is effective. Especially,
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we focused on the domain interaction intensity, which has been an overlooked
perspective in the previous studies. We found that the superiority of sCDA
against wCDA depends heavily on the cross-domain interaction. When the
cross-domain interaction is large, but it does not increase the chaoticity of the
system, SCDA most efficiently worked. Furthermore, SCDA is more vulnerable
to model bias than wCDA The findings are important to choose appropriate
CDA strategies for general coupled systems in earth system science.

1. Introduction

It has become increasingly important to predict a system of systems (coupled
systems, namely systems with two or more domains). Earth system models
typically solve such a system of systems and understand the interactions of
many different components of Earth such as atmosphere, land, and ocean (Tay-
lor et al., 2012). Such coupled systems are not limited to the earth system
models; weather-wildfire coupled system (Bakhshaii & Johnson, 2019), disaster-
evacuation coupled system (Liu & Lim, 2018), socio-hydrology (Di Baldassarre
et al., 2013; Jia et al., 2021), and socio-ecology (Sun & Hilker, 2021) are other
examples. As these coupled systems are strongly non-linear, the development of
efficient and practical methods of estimating, predicting, and controlling such
systems is the grand challenge for earth system scientists.

Data assimilation (DA) has been recognized as a useful method to estimate
the states of these complex coupled systems. It can provide the real-time esti-
mates of state variables by combining model forecast and observation. DA can
effectively maximize the potential of the sparsely distributed observations by
integrating them into dynamic models, so that it is suitable for earth system
models. DA methods are mainly classified into two: ensemble-based methods
such as Ensemble Kalman Filter (EnKF; Evensen, 1994) and variational meth-
ods such as 4D-Var (Ravier et al., 2000). These two classes of DA methods
have been intensively compared (e.g., Kalnay et al., 2007), and many studies
proposed combining them (e.g., Zhang et al., 2009). DA methods in coupled
systems are called “coupled data assimilation (CDA)”. As it is quite challenging
to develop adjoint models of the coupled systems, which are required for 4D-Var,
ensemble-based methods are preferred in CDA. The CDA methods are classi-
fied into two; weakly coupled data assimilation (wCDA) and strongly coupled
data assimilation (sCDA). The former considers cross-domain interaction only
in the model’s forecast phase, while the latter additionally uses other domain’s
information in the analysis phase.

Although sCDA recently attracts researchers’ interests since it is expected to
maximize the potential of observation using a cross-domain covariance, the ap-
plication of sSCDA is mainly limited to simplified models or idealized experiments.
For example, Sluka et al., (2016) used atmospheric observations to update the
state variables of a simplified ocean model in their observation system simu-
lation experiment (OSSE). Suzuki et al. (2017) investigated the covariance
between near land-surface temperature and snow temperature using a coupled
atmosphere-land model. Sawada et al. (2018) assimilated river flow observa-



tions into an atmospheric model using a coupled atmosphere-river model. Note
that they performed an OSSE, in which they did not use real observations.
These previous studies assimilated observations in one model domain into the
other model domain and they did not do the other way around (we called this
type of one-way coupling in sSCDA quasi-strongly coupled data assimilation in
this paper). Thus, sCDA systems proposed previously have not realized the
fully strongly coupled data assimilation in the multiple model domains. In ad-
dition, Lin & Pu (2020)conducted sCDA in a coupled atmosphere-land model
and showed that assimilating 2-m humidity data into soil moisture particularly
contributed to improve forecast. Their study is one of the few studies which
assimilated real observation data in the sSCDA scheme. Although sCDA attracts
researchers in various disciplines, the application of sCDA to various types of
realistic coupled models is rather limited.

In spite of the SCDA’s application to various coupled systems, its effectiveness
is still in debate. In previous works, SCDA is not necessarily more effective than
wCDA. If cross-domain covariance cannot be adequately estimated (it happens
especially when a small ensemble size causes spurious correlation and/or process
models have large bias), SCDA degrades the skill to estimate the states of a cou-
pled system. The previous studies have extensively investigated whether sCDA
is superior to wCDA but their results are mixed. For example, Ballabrera-Poy
et al. (2009) tested sCDA by applying Ensemble Kalman Filter (EnKF) to the
multiscale Lorenz96 (Lorenz, 1995; Lorenz & Emanuel, 1998) model in which
8 slower domains have 32 faster sub-domains each. In this coupled system, as-
similating observations from the fast domains into the slow domains could not
improve the predictability of the whole system, and they attributed it to the spu-
rious covariances (due to the insufficient ensemble size) from the fast variables.
Han et al. (2013) coupled atmospheric Lorenz63, oceanic pycnocline, and sea-ice
models, and showed the difficulty of assimilating slower domain’s observations
into the faster domains. On the other hand, Liu et al. (2013) found that in
the coupled atmosphere (Lorenz63 model)-ocean (thermocline model) model, as-
similating observation of the dominant domain (namely atmosphere) to update
oceanic variables was effective. Raboudi et al. (2021) used the one-way coupled
multiscale Lorenz96 model to indicate that sCDA is superior to wCDA when
the ensemble member is large. Some previous studies evaluated the effective-
ness of sSCDA with more realistic models than the flavors of the Lorenz63 and
Lorenz96 models. Tondeur et al. (2020) used Modular Arbitrary Order Ocean-
Atmospheric Model (MAOOAM) (De Cruz et al., 2016), an atmosphere-ocean
model with arbitrary spatial resolutions. They suggested that frequent observa-
tions of the fast domain can suppress the error evolution, which is necessary for
sCDA to improve the estimation of state variables. Thus, it is crucial to identify
the conditions under which sCDA is effective than wCDA so that we can under-
stand whether implementing sCDA is worthy of its computational /development
cost in each specific coupled system.

Although sCDA has been widely applied in various coupled systems, they seem
to lack theoretical backgrounds. Specifically, to the authors’ knowledge, there



are no studies which focus on cross-domain interaction despite its importance: 1)
coupled systems in earth system sciences have diverse cross-domain interactions
from duplex to one-way, 2) they may spatiotemporally vary, and 3) they may
cause non-linearity or even chaotic nature of the coupled system. Therefore, in
this study, we focused on cross-domain interaction t

erms as one of the most important elements to characterize the coupled system.
Through an extensive investigation using joint Lorenz96 model, we aimed to
reveal the conditions under which sCDA is effective.

2, Method

This study uses the joint Lorenz96 model in which two Lorenz96 models with
40 dimensions are coupled. Although this is a toy model, it captures impor-
tant dynamics of the atmosphere: advection, dispersion, and attenuation. In
addition, it shows chaoticity, which means that small errors of the initial state
exponentially grow. Therefore, it is suitable and often used as a testbed of
data assimilation methods (e.g. Trevisan et al., 2010). Equation (1la) is the
traditional (non-coupled) 40-dimensional Lorenz96 model (Lorenz & Emanuel,
1998):

% = X  {Xpo— Xp} =X+ Fy (K = 1,2,...,40)#(1a)

In Lorenz (1995), he assumed multiscale coupled system shown below:
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dyYy c
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In this study, we set k to be 40, b = ¢, added forcing term (F=8.0) and set j
(the number of faster domains connected to one slow domain) to 1. This would
lead:

i = X {Xpo— Xy} =X+ P +aY, (k = 1. ,40)#(3a)

D — 2V, {Yyo— Yot} — Yy + Fy+ BX,, (k ..., 2,...,40)#(3b)

dt

By eliminating the multiscale interactions, we mainly assumed that spatial scales
are identical between two domains. During the time integration, timestep was
set to 0.005 (as 0.2 corresponds to one day, it means roughly 40 timesteps a
day), and the 4*"-order Runge-Kutta method was applied for time integration.



We initially set ¢ to 1 (which means there is no time-scale difference between
the domains) and investigated the impact of cross-domain interaction on the
DA skill. As the previous studies implies that the time-scale differences are
the cause of poorly estimated inter-domain covariances (Han et al. 2013), we
later adopted different ¢ (namely, 0.5, 0.3 and 0.2) so that we could analyze the
impact of time-scale difference.

In this experiment, we adopted the observation system simulation experiment
(OSSE). In OSSE, we adopt simulated values as the true state, and try to
estimate the simulated values by DA. It is initially used to check whether the
new observation systems are useful, but it is often used as a method to verify
the skills of newly developed DA methods (Penny, 2014; Raboudi et al., 2018;
Yoshida & Kalnay, 2018).

The coupled system was initialized with random initial conditions following
40-dimensional gaussian distribution N(0,5) and spun up for 36000 days
(0.2/0.005*36000=1.44 million timesteps). Then, DA was conducted every 6
hours (10 timesteps) for 180 days. To generate observations, we assumed that
13 out of 40 dimensions are observable (namely dimension 1, 4, 7, 10, 13, 16,
19, 23, 26, 29, 32, 35 and 38). Gaussian errors were added to the synthetic
truth; when ¢ = 1, the standard deviation of a gaussian error is set to 1.0 so
that we can assume a 20% sampling error (note that the standard deviation of
the state variable is approximately five). When c is not equal to 1, we assumed
the 20% sampling error in the same manners.

Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007; Miyoshi
& Yamane, 2007) was adopted as a DA method. In LETKF, we can easily
choose a certain subset of the observations to be assimilated into the specific
model domains, and thus it has been applied in the previous sCDA studies
(Yoshida & Kalnay, 2018). By utilizing this characteristic, we can implement
both wCDA and sCDA by changing the observations to be assimilated.

In ensemble-based filtering, the dimensions of the analysis space in k-
dimensional system is less than k — 1, and more than the number of
non-negative Lyapunov Exponents (LE) of the system (Ng et al., 2011). After
calculating the number of positive LEs in the coupled system (results shown in
the next section), this study adopted 20 ensemble members as the insufficient
ensemble size and 80 ensemble members as the sufficient ensemble size. As
the previous studies show that the score does not improve further when the
ensemble member exceeds a certain threshold (Sakov & Oke, 2008; Yoshida &
Kalnay, 2018), we did not conduct experiments with ensemble sizes larger than
80.

In LETKF, we have hyperparameters such as localization and covariance infla-
tion, both of which are introduced to accurately estimate background covariance
matrix. In this study, the observation localization (Miyoshi et al., 2007) was
applied, so that the observation covariance matrix R~' was multiplied by the
localization function L(r), taking the physical distance between the analyzed



dimension and observed dimension (eq. (3)) into account. By introducing this
method, we can set L(r) to zero for faraway observations, and thus we can
prevent those observations from being assimilated.

Lir) = exp (% (92) &if r<2y/10/30 4(3)
0 &ifr=2y10/30

While some previous studies proposed dynamically estimating the localization
scales (Wang & Bishop, 2003; Yoshida & Kalnay, 2018), in this study we applied
the hyperparameter sweep (in other words, we evaluated many possible combi-
nations of the hyperparameters). This is because this study’s scope includes the
comprehensive analysis of the LETKF’s stability to the hyperparameters in two
settings of CDA (i.e., sSCDA and wCDA). We used four localization parameters
o (3,5,7,9) for each domain and four inflation parameters (1.02, 1.06, 1.10,
1.14). We applied multiplicative inflation (Anderson & Anderson, 1999).

Four types of the CDA methods are implemented. We defined the quasi-sCDA
to distinguish it from the fully coupled sCDA. In quasi-sCDA, we strongly cou-
pled only one domain and the other domain was weakly coupled. For example,
in quasi-sCDA (domain A only, namely qgsCDA__A), we used observations from
both domain A and domain B to update domain A’s forecast but used obser-
vations from domain B only to update domain B’s observation (see the lower
left and upper right squares of Figure 1-c). Therefore, observations in domain
A were not used to update domain B. Note that the previous studies of sSCDA
which used realistic models mainly adopted quasi-sCDA.

Table 1 summarizes our experiments. They are classified into two: perfect
model experiments and imperfect model experiments. In the perfect model ex-
periments, we assumed that the dynamics had no errors; uncertainties were at-
tributed to state variables only. In the other experiments, we assumed imperfect
models. In the experiment 2, we assumed the bias in cross-domain interaction
terms and intra-domain forcing terms. In experiment 3, we assumed that we did
not know the magnitude of cross-domain interaction term and tested if CDAs
could estimate these cross-domain interaction parameters. In the experiment 3,
both state variables and interaction parameters were jointly estimated online.
In other words, we applied state augmentation; we concatenated the parameter
vector to the state vector and estimated both of them simultaneously. As for the
domain interaction term which needs to be estimated, we adopted the similar
method to Relaxation to Prior Spread method (Whitaker & Hamill, 2012). We
set a =1 (see equation 3 in their study) to maintain the spread of the domain
interaction term. The initial conditions of parameter ensembles were derived
from gaussian distribution whose mean is 0.2 larger than the truth and whose
standard deviation is 0.01. Note that the spreads of the state variables are
inflated with multiplicative inflation (same method as the other experiments).

The observations were assimilated for 180 days with 5 different initial conditions.



As its interval was set to be six hours, DA was conducted as a total of 720 times.
The first quarter of the analysis result was discarded as the spin-up period of
DA, and the rest (540 times) were compared with the synthetic truth.

The adopted score metric is the domain average of tRMSE (tRMSE), which is
defined below:

IRMIE 2
tRMSE = 35 3., ¢ sio 20 (8 —aii™) #(4)

where z31 stands for the analysis value of dimension k in time t, and z{rh

stands for the true value of dimension k in time t. DA was conducted and
tRMSE was calculated from 5 different initial conditions, and the score was
defined as the trimmed mean of five tRMSEs (largest and smallest ones are
discarded). If some calculations failed due to filter divergence, the trimmed
mean was calculated in the same manner. When only two or less experiments
were converged, we considered that we could not get a result.

To summarize, this research introduced the four patterns of localization radius in
domain A, the four patterns of localization radius in domain B, the four patterns
of covariance inflation, the five initial conditions, and the two ensemble numbers
(20 and 80). Totally we had 640 implementations of CDA for the single 5 value.
The calculation was conducted with Oak-forest PACS (the supercomputer in the
University of Tokyo); MPI parallelization is introduced in the hyperparameter
sweep for efficient calculation.

Table 1. Model settings in the experiments

Exp. ID Experiment Coupled-DA Model settings
method used
-1 Perfect model wCDA, sCDA, Symmetric
qsCDA_A, coupling with
qsCDA_B same temporal
scales:
=,-14 1.4,
¢=1,0.5,0.2
-2 One-way

coupling with
same temporal

scales:
=0,-14 14,
c=1

-3 wCDA, sCDA Inverse coupling
with same
temporal scales:
=-,-1.4 1.4,
c=1



Exp. ID Experiment Coupled-DA Model settings
method used

-4 wCDA, sCDA Symmetric
coupling with
different
temporal scales:

=,-14 1.4,

¢=0.5, 0.3, 0.2
Bias in model wCDA, sCDA Symmetric
parameters coupling:

i) bias in

inter-domain

parameters:

atrue = 6true =
0.5

ii) bias in
inter-domain
parameters:

prye = ﬁtrue -

—1.0
iii) bias in
intra-domain
parameters:
Ftrue =38.0
Estimate wCDA, sCDA Symmetric
interaction coupling: =,
(spatiotemporally -14 1.4
uniform) (We know that
interaction is
spatiotemporally
uniform)

*Note: for all types of DA experiments, we conducted 640 DA run with four
types of localization in domain A (3, 5, 7 and 9), localization in domain B (3, 5,
7 and 9), four types of covariance inflation (1.02, 1.06, 1.10 and 1.14 for other
than Experiment 2 and 1.06, 1.10, 1.14 and 1.18 for Experiment 2), two types
of ensembles (20 and 60), and five types of initial conditions.



Observation used
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3.1 Basic characteristics of the joint-Lorenz96 model
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the time evolution of the joint-Lorenz96 model is shown in Figure 2 (¢ = 1,
a = ). The values oscillate largely when the absolute value of f is large, which
implies the relative instability of the system. The Covariant Lyapunov Vectors
(CLVs) are computed. Lyapunov vectors indicate the direction where system’s
error grows rapidly. When the Lyapunov Exponents (LEs, which indicate the
speed of error growth on the direction of corresponding CLVs) are positive,

the system is unstable in that direction and small error grows exponentially.

Figure 3 indicates the number of positive LEs. When f§ is negative, LEs are
not related to the absolute value of 8, while when § is positive, the number
of positive LEs increases when ( increases. The maximum number of positive
LEs is 30, which implies 40 ensemble members (consequently 80 ensembles as
well) are sufficient to run ensemble based Kalman Filters in this model.

3.2 Perfect model experiments

Figure 4 shows the result of the experiment 1 with the ensemble size of (a) 20
and (b) 80. The dashed lines indicate the number of converged experiments
out of 320 trials (64 hyperparameter settings * 5 initial conditions). When the
cross-domain interaction is too large, the systems is dominantly driven by the
cross-domain interaction term. The results indicate that the system is more
likely to diverge when the absolute value of 3 is large, especially in the case of
small ensembles. The boxplot indicates the stability of LETKF to the hyper-
parameters. As there are 64 patterns of hyperparameters in LETKF, we can
calculate tRMSE for each setting, which are used to draw each boxplot. The hor-
izontal axis shows cross-domain interaction, and the vertical axis shows tRMSE.
Firstly, when the ensemble size is large (Figure 4-a), SCDA stably scores better
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than wCDA. Even when the cross-domain interaction is zero (and thus no cross-
domain covariance), sSCDA can accurately provide the information of “having
no cross-correlation”, so that SCDA does not degrade the score. Besides, sCDA
is more stable than wCDA especially when the cross-domain interaction is large.
Meanwhile, when the ensemble size is small (Figure 4-b), the sSCDA scores bet-
ter when [ increases under optimal hyperparameter settings. However, when
the domain interaction is small, wCDA scores better than sCDA, which indi-
cates that the strong cross-domain interaction is essential for the superiority of
sCDA. In addition, there are large variances of tRMSE with each § in the case
of sSCDA | which indicates that tRMSE significantly changes when the differ-
ent set of hyperparameters is given. Subsequently, the performance of sCDA is
quite sensitive to hyperparameters. Hence, the calibration of hyperparameters
is essential for the accurate and stable prediction in sCDA.

Comparison of CDA patterns in Domain A — WCDA
(ensembles = 80, obs = 13 out of 40 from both domain) — SCDA
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5 compares CDA scores and chaoticity of the coupled system. The minimum
tRMSE of wCDA and sCDA is extracted from the boxplots in Figure 5 in
red and blue solid lines, respectively. In addition, the green dotted line shows
the value of dM/dt. It is a logarithm of the error expansion speed when we
added small perturbations to the initial conditions on attractor, and thus
corresponds to the chaoticity of the system. For detailed explanation of dM/dt,
see Gutiérrez et al. (2008). Figure 5 shows that the minimum tRMSE is well
correlated with dM/dt, which implies that minimum tRMSE can be explained
by the impact of the cross-domain interaction on the chaoticity of the system.
In addition, when § is negative (and its absolute value is large), sCDA scores
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better than wCDA even with small ensembles. In other words, sCDA is
the most effective when cross-domain interaction is large, albeit it does not
contribute to the chaoticity of the system. This is one of the important findings
regarding the conditions under which sCDA works better than wCDA.

Figure 6 shows the average tRMSE of domain A as a function of domain A’s
localization scales and the inflation magnitudes. The result is averaged over
the four localization patterns in domain B. Overall, the poor tuning of inflation
may degrade the average tRMSE. In other words, the range of inflation which
provides better estimates depends on the number of ensembles. Small infla-
tion provides poor estimates when the ensembles is small, while large inflation
provides poor estimates when the ensemble is large. The reason may be that
the small ensemble causes the underestimation of background error covariance,
which requires larger covariance inflation for appropriate filtering. In terms of
localization, the second and fourth graphs in the bottom row show that the
unstable result is caused also by the inappropriate choice of localization scales
in sCDA with small number of ensembles. These results occur irrespective to

8.

Result of Domain A (8=-1.0,n=80)
wCDA , min RMSE = 0.54 sCDA , min RMSE = 0.45

< <C

8" 8"

- ™ . 0.83 . - m

1.02 1.06 111 1.14 1.02 1.06 1.1 1.14

inflation inflation

Figure 7 shows the hyperparameter settings with top 10 tRMSE score in
domain A among the 64 patterns of LETKF hyperparameter settings. In
general, the tendency of the hyperparameters that show good scores strongly
depends on ensemble size, which is a universal property for both sCDA and
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wCDA. The settings that work well for the small ensemble can be applied to
the large ensemble for neither wCDA nor sCDA. In other words, it is difficult
to initially compute using small ensembles with the cheap computational cost
to find the optimal hyperparameters and then apply them to large ensembles.
As optimal parameter settings greatly depend on the domain interaction and
the number of ensembles, it is essential to tune the hyperparameters from
time to time. The optimal inflation tends to be small when the ensemble is
large. Although there is no clear trend for localization, it seems that it is
better to take a longer localization scale and pick up weak correlations in large
ensembles. The rightmost column shows the hyperparameter characteristics
of the uncoupled Lorenz96 model. If the parameter trends for the uncoupled
model are the same as those for the coupled models, the optimal settings
in the pre-combined system can be straightforwardly applied to the coupled

Trend of LETKF parameters when RMSE scored top 10 (ensemble = 80, wCDA, Domain A)
. B=-1.0 B=-05 B=0.0 B=05 B=1.0 cf.) Lorenz96 (40dim)
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However, the optimal settings in the uncoupled Lorenz96 system can be used
only when the ensemble is sufficiently large and when 0 (i.e., the domain
interaction does not affect the chaoticity of the system). To summarize, it can
be concluded that (1) the strategy of "firstly estimating the hyperparameters
in the uncoupled system, and then applying the obtained optimal settings to
the large-ensemble sSCDA” does not work well, and (2) CDA is quite sensitive
to the hyperparameters of LETKF.

Figure 8 shows the results when quasi-strongly coupled data assimilation is
introduced; we swept the hyperparameters (inflation, domain A’s localization,
and domain B’s localization), and the shown RMSE is the result with optimal
hyperparameters. When the ensemble size is set to sufficiently large, sCDA
scores the best, gsCDA__A (sCDA only in domain A) and qsCDA_B (sCDA
only in domain B) follow, and wCDA is the worst. Even when only domain B is
strongly coupled, domain A can be improved to some extent because improved
estimates of domain B have a positive effect on the estimation of domain A
through the cross-domain interaction in the forecast step. When the ensemble
size is small, wCDA scores better unless the interaction term is large.

Next, we provide the results of the one-way coupled system (experiment ID:
1-2). Figure 9 shows the results (hyperparameters are swept, and the results
with optimal hyperparameters are shown) in the one-way coupled system (only
domain A influences domain B). Since there is no reverse impact (namely domain
A to domain B), it is theoretically impossible that the effect of strongly coupled
B spills over to A and make A’s estimates better. Therefore, when only one of
them can be strongly coupled due to constraints such as a development cost, it is
better to choose the domain that drives the entire coupled system. Besides, when
B takes large negative value, sCDA outperforms wCDA even when ensemble is
small. However, compared to the difference between "wCDA” and "qsCDA_ B”
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in Figure 8-a, the difference of them in Figure 9 is small. Compared to the
one-way coupled system, the interdependent coupled system is more likely to
be improved by sCDA.

Minimum RMSE of domain A when LETKF parameters are tuned
(ensembles = 80, obs = 13 out of 40 from both domain)
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same experiment was conducted for the case where the signs of and were
different, which hereafter called inverse coupling (experiment ID: 1-3, Figure
10). The results stayed the same: 1) for small ensembles, wCDA is better
when the inter-domain interaction is small, and sCDA is better only when the
inter-domain interaction becomes strong, and 2) for large ensembles, when
the inter-domain interaction is small, the scores are similar, but when the
inter-domain interactions are large, sSCDA is better. This also suggests that, at
least for coupled systems with equal velocities, the magnitude of the domain
interaction is important, and it does not substantially depend on the direction
of domain interactions (whether it is a two-way, one-way, or inverse).

Figure 11 shows the results when there exists time-scale difference between the
domains  (experiment ID: 1-4). When domain B is twice as fast as domain A
(Figure 11-a: ¢ = 0.5), the main result remains the same as those in the previous
experiments: SCDA outperforms wCDA when the cross-domain interaction is
large (especially large negative). In addition, wCDA starts to outperform sCDA
especially in the slow domain when the time-scale difference becomes larger
(Figure 11-b, and Figure 11-c). The result implies that when the time scale
difference becomes more significant, SCDA may not be the appropriate choice.

In terms of hyperparameters, although the calibration of localization parameters
is important in small ensembles, the score primarily depends on an inflation
parameter. In addition, the range of inflation with better estimates depends on
the number of ensembles. The tendency is the same as experiment 1-1 (shown in
Figure 6): Small inflation provides poor estimates when the ensembles is small,
while large inflation provides poor estimates when the ensemble is large. The
only difference is that the extent to which the result degrades more severely
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with inappropriate inflation, which in turn appears that CDA is more sensitive

to hyperparameters in the coupled systems with larger time scale differences.

Besides, the instability occurs when the slower system is weakly coupled (not
shown); namely, the observation in the fast domain is not assimilated to the
slower domain. It implies that observing and assimilating the domain with large
scale/perturbation can constrain the whole system, even though the background
error covariance is overestimated. Although overestimation of error covariance
may contribute to degrading the score, the use of observation from both domains
may be able to cancel such a drawback, and thus sSCDA’s score does not depend
so heavily on hyperparameters as wCDA.

Minimum RMSE when LETKF parameters are tuned
(ensembles = 80, obs = 13 out of 40 from both domain)
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3.3 Imperfect model experiments

In the imperfect model experiments, we assumed that some of the model parame-
ters are biased. In Figure 12, we assumed symmetrical domain interactions (i.e.,
interaction term = ). In Figures 12-a to 12-b, the true model parameters
were set to a = § = 0.5. However, in the forecast phase (the time evolution
phase) of DA, we used the biased interaction terms, ranging from 0.1 to 0.9.
The horizontal axis shows biased , and the vertical axis shows tRMSE. While
sCDA performs better than wCDA in terms of the optimal scores, SCDA is more
sensitive to hyperparameters than wCDA (namely, the range of the boxplot is
long) especially with the small ensemble size. When the interaction is relatively
weak, the cross-domain error covariance, which is inherently weak and hard to
estimate, becomes even harder to be estimated under imperfect model settings.
Figure 12-c shows the case where @« = g = —1.0. Our perfect model experi-
ments showed that sSCDA is effective in this domain interaction term. However,
in this inperfect model experiment, sSCDA only slightly outperforms wCDA (see
also Figure 4). Such a decrease in the effectiveness of sCDA may be due to
the disadvantage of using the disturbed background error covariance by the
model’s imperfectness. sCDA substantially degrades the score when there are
large biases in the process model. Figure 12-d shows the results for the one-way
coupling case where « = 0 and 8 = —1.0. When the bias is large (i.e., the
biased is 0.1 or 0.9), wCDA outperforms sCDA even in the case of the large
ensemble (80 ensembles). It seems to contradict with the result that sCDA was
more effective where is significantly negative. This can be explained as follows:
in one-way coupled system, when domain A were weakly coupled, it would con-
tinue to be accurate as it is not affected by the bias. However, if domain A is

19



strongly coupled, the bias in the interaction term deteriorates the estimation of
domain A. This will spill over to domain B, resulting in a worse score than with
wCDA. In other words, in a one-way coupled system, because the presence of
bias can disrupt the score of the whole system, wCDA’s ability to prevent these
disruptions (see the upper boxplots in Figure 12-d) by not updating domain A’s
model forecast via biased dynamics, must be taken into consideration. In addi-
tion, we also tested the case where the bias exists in the intra-domain dynamics.
Figure 12-e shows the results when we assume a bias in the external force term
F (true value is 8.0) in the domain for symmetric coupling case (o = 8 = —1.0).
Even in the case of 80 ensembles, a 20% bias in F makes wCDA better. It
turns out that when intra-domain bias prevents the accurate estimation of the
intra-domain covariance, it is even more difficult to correctly estimate the cross-
domain covariance. In other words, it is strongly suggested that sSCDA may not
contribute to the better estimation of the system when the dynamics of each
domain is not accurately described by the process models. When we compare
the threshold of the bias when wCDA outperforms sCDA; it is approximately
40% in domain interaction term (in figure 12-d, wCDA is better when the biased
B is 0.7), while it is approximately 20% in the intra-domain dynamics (in figure
12-e, wCDA is better when the biased F is 9.6). Therefore, the biases in both
intra-domain dynamics and inter-domain dynamics deteriorate SCDA score. As
the origin of the bias may not be clearly identifiable in many real-world applica-
tions, the poor skill of sSCDA when bias is assumed is an important implication
for the real-world applications.
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Next, we provide the results of imperfect model experiments, in which we as-
sumed that the domain interaction terms were unknown and thus jointly esti-
mated with the state variables.(Experiment ID: 3). The rightmost columns in
Figures. 12-a to 12-c show the results of the estimation of the interaction term
B by state-augmentation. Note that we have a strong hypothesis here: we know
that the interaction is symmetric and uniform in all 40 dimensions. In such
cases, as a lot of information can be used for parameter estimation and the bias
in the model can be corrected by data assimilation.
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Figure 13 shows the results of the joint state-parameter estimation with various
B value. Figures 13-a and 13-b shows the boxplot of the tRMSE for ensem-
bles 20 and 80, respectively. The result is similar to that of the perfect model
experiment; sSCDA works well 1) when the cross-domain interaction § is large
(especially largely negative) 2) and when the ensemble number is large. Consid-
ering that the deviation of the estimated § from the true value is approximately
0.05 in this experiment (not shown), it can be said that the present experiment
is equivalent to the case of the complete model. It suggests that sCDA performs
well under imperfect model scenarios when we can utilize DA to mitigate/lessen
model biases. In addition, we conducted OSSE where g varies spatially and
temporarily (not shown). The overall results were same: sCDA outperforms
wCDA when we have large number of ensembles, or the cross-domain terms is
large (especially negative).

Comparison of CDA patterns in Domain A — WCDA
when we need to estimate both parameters — sCDA
(ensembles = 20, obs = 13 out of 40 from both domain)
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4, Discussion

The extensive analysis has revealed the CDA’s characteristics with various cross-
domain interaction. First, the estimation skills (explained by the minimum
tRMSE of both sCDA and wCDA) corresponds to dM/dt (chaos intensity index
in Gutiérrez et al., 2008). It is reasonable that the chaoticity determines the
DA skills. When comparing SCDA and wCDA, the large number of ensembles
and the large magnitude of the domain interaction term are necessary for sCDA
to be more effective than wCDA. Although the previous studies have found
the importance of the large ensembles in sSCDA (e.g., Raboudi et al., 2021),
the efficiency of sSCDA with regard to the chaoticity has not been discussed.
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The advantage of SCDA is most pronounced in systems with small dM/dt and
large cross-domain interactions. In other words, sCDA efficiently works in the
systems where the cross-domain interaction is large but does not enlarge the
chaoticity of the whole system. This finding is useful to identify the systems
in which sCDA can be efficiently applied. For example, in the field of tropical
disturbance where atmosphere-ocean interaction may suppress the evolution of
the system, introducing sCDA may efficiently improve the predictability of the
whole system.

Second, in a one-way coupled system, both master and slave systems can be
improved by strongly coupling the master system that drives the whole system,
which is consistent with the previous works (Z. Liu et al., 2013; Sawada et al.,
2018). In addition, we suggest that the degree of effectiveness increases with the
coupling strength, which is reasonable considering that dM/dt is hardly changed
by the coupling strength in a one-way coupled system.

Third, the intensive calibration of hyperparameters of covariance inflation and
localization is necessary in sCDA. The results of our study indicate that sCDA
outperforms wCDA with the use of adequate hyperparameters. In terms of infla-
tion parameter, the results of Han et al. (2013), which used fixed inflation value
and showed sCDA does not easily outperform wCDA with seemingly sufficient
ensemble size, implies that the inflation may have played the key role. In terms
of localization, the poor tuning of localization deteriorated sCDA’s score in this
study. Therefore, the cross-domain localization, as well as the intra-domain lo-
calization, is also an important perspective in SCDA as discussed in Stanley et
al. (2021), which discussed the localization methods with various localization
functions. In addition, we also found that the hyperparameter settings that
works well in a small ensemble cannot be directly transferred to a large ensem-
ble. Efficient hyperparameter tuning methods are necessary to maximize the
potential of sSCDA.

Fourth, sCDA is vulnerable to both intra-model and inter-model biases be-
cause the biased model causes the inaccurate estimates of the background cross-
covariance. In our case, 20% bias in intra-domain terms made wCDA better
than sCDA, while it was 40% bias in the inter-domain case. Therefore, sSCDA
cannot be used for fields where the model structures or model parameters are
highly uncertain such as socio-hydrological models (see Sawada and Hanazaki
2020, for instance).

Fifth, when there is a time scale difference in the system, the main result re-
mains the same: sCDA outperforms wCDA when the cross-domain interaction
is largely negative. In addition, the improvement of sCDA’s score drastically
decreased especially in the slow domain when the time scale difference becomes
more significant. As suggested in previous studies, the difficulty of coupled
data assimilation lies in the fact that timescales differ across domains (Yoshida
& Kalnay, 2018). This result suggests that data assimilation that simply ex-
ploits cross-domain covariance may not work. Recently, it has been found that
coupled systems have a unique mode that was not present in the single domain
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(Carlu et al., 2019). To make coupled data assimilation more effective, it may be
necessary to maximize the potential of sSCDA by extracting information which
is specific to the coupled system, such as focusing on the stable subspace (Quinn
et al., 2020).

Finally, we would like to discuss possible future strategies for the study of more
generalized CDA. Since we attempted to analyze the sensitivity of LETKF hy-
perparameters in this study, we do not consider automatic/dynamic tuning of
hyperparameters such as localization and covariance inflation. However, it is
impractical in terms of computational cost to conduct hyperparameter sweep
in the real-world applications. Hence, it is essential to investigate whether the
scores of dynamic localization and covariance inflation schemes (Miyoshi, 2011;
Yoshida & Kalnay, 2018) depend on domain interactions.

5.Conclusion

In this study, we clarified the characteristics of coupled data assimilation in
chaotic systems. OSSE with the joint-Lorenz96 model was performed in both
complete and incomplete model settings, and two conditions for the success of
sCDA were found: sufficient ensemble sizes and sufficient magnitude of interac-
tions. The impact of SCDA was particularly pronounced in the case where the
interaction term is large but does not contribute to the chaoticity of the system.
In the absence of a sufficient ensemble size, 1) SCDA’s score strongly depends on
the LETKF hyperparameters, i.e., highly unstable, and 2) sCDA outperformed
wCDA only in cases where the interaction can damp the dynamics of other do-
mains, and the bias of the model is small. Experiments with various domain
interaction schemes, such as unidirectional, symmetric, and inverse, revealed
that the above properties basically depend on the magnitude of the interaction,
and not so much on the direction of the interaction.
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