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Abstract15

Ocean observations are expensive and difficult to collect. Designing effective ocean ob-16

serving systems therefore warrants deliberate, quantitative strategies. We leverage ad-17

joint modeling and Hessian uncertainty quantification (UQ) within the ECCO (Estimat-18

ing the Circulation and Climate of the Ocean) framework to explore a new design strat-19

egy for ocean climate observing systems. Within this context, an observing system is op-20

timal if it minimizes uncertainty in a set of investigator-defined quantities of interest (QoIs),21

such as oceanic transports or other key climate indices. We show that Hessian UQ uni-22

fies three design concepts. (1) An observing system reduces uncertainty in a target QoI23

most effectively when it is sensitive to the same dynamical controls as the QoI. The dy-24

namical controls are exposed by the Hessian eigenvector patterns of the model-data mis-25

fit function. (2) Orthogonality of the Hessian eigenvectors rigorously accounts for redun-26

dancy between distinct members of the observing system. (3) The Hessian eigenvalues27

determine the overall effectiveness of the observing system, and are controlled by the sensitivity-28

to-noise ratio of the observational assets (analogous to the statistical signal-to-noise ra-29

tio). We illustrate Hessian UQ and its three underlying concepts in a North Atlantic case30

study. Sea surface temperature observations inform mainly local air-sea fluxes. In con-31

trast, subsurface temperature observations reduce uncertainty over basin-wide scales, and32

can therefore inform transport QoIs at great distances. This research provides insight33

into the design of effective observing systems that maximally inform the target QoIs, while34

being complementary to the existing observational database.35

Plain Language Summary36

Ocean observing faces multiple challenges: high instrument cost, difficult deploy-37

ment logistics via ships, harsh environments, and the necessity to sustain observations38

over long periods of time. Since oceanographers cannot measure the ocean everywhere39

and at all times, they have to carefully choose the location of their instruments. In an40

ideal scenario, measurements from a small number of instruments provide maximum in-41

formation about important ocean metrics, such as poleward ocean heat transport or re-42

gional heat content. This paper presents a new method for planning optimal instrument43

configurations, by combining computer simulations of the global ocean with the math-44

ematics of uncertainty quantification (UQ). As an example, we show that North Atlantic45

temperature measurements taken below the ocean surface do not only tell us about the46

ocean properties at the instrument locations themselves, but reduce uncertainty in re-47

gions hundreds to thousands of kilometers away. We can therefore use existing ocean ob-48

servations to extract more information about the ocean than previously appreciated. Our49

method helps to plan informative observing networks that are complementary to the ex-50

isting observational database.51

1 Introduction52

Sustaining long-term ocean observations to develop climate-quality observational53

records is crucial for understanding the ocean’s role in climate and for evaluating climate54

model simulations (National Academies of Sciences, Engineering, and Medicine, 2017).55

Yet, ocean observing faces multiple challenges: complex deployment operations in fre-56

quently rough weather (or ice) conditions, limited instrument lifetime due to corrosive57

and high-pressure environments, and the necessity of adequate spatial and temporal sam-58

pling. The high cost and logistical challenges call for deliberate and synergistic approaches,59

in which observationalists, modelers, and stakeholders co-design observing systems by60

drawing from a toolbox that includes expert knowledge and experience, consideration61

of logistical constraints, and quantitative tools based on model simulations (Fujii et al.,62

2019; Lee et al., 2019; Smith et al., 2019). Here, we present a new computational tool63

for designing optimal ocean observing systems: Hessian uncertainty quantification (UQ)64
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embedded in adjoint-based ocean state estimation. The tool has two distinguishing fea-65

tures, which, taken together, foster collaboration and system co-design within the oceano-66

graphic community. First, it gives insights into the physical mechanisms that govern op-67

timal design strategies; and second, it quantitatively assesses redundancy and optimal-68

ity of an (existing or future) observing system.69

To place our technique into context, we briefly recall the differences, merits and draw-70

backs for existing formal approaches to observing system design. Observing System [Sim-71

ulation] Experiments (OS[S]Es, Fujii et al., 2019) are the most common computational72

tools in oceanography to support observing system design (e.g., Balmaseda et al., 2007;73

Gasparin et al., 2019; Griffa et al., 2006; Halliwell et al., 2017). OS[S]Es test the skill74

of an existing or proposed observing system within a model simulation, and may there-75

fore be regarded as an evaluation (rather than a design) method (Majumdar, 2016). They76

require the investigator to select a specific design strategy for the observing system to77

be tested in the OS[S]E. In general, the design strategy is successfully guided by dynam-78

ical insight. For instance, placing moorings in boundary currents – following the prin-79

ciple of endpoint geostrophy – has been shown to be an effective design strategy for mon-80

itoring systems of the meridional overturning circulation at several latitudes in the At-81

lantic (Hirschi et al., 2003; Li et al., 2017; Perez et al., 2011).82

For observing systems that are to be deployed and informative beyond the bounds83

of fixed sections, the governing ocean dynamics are usually too complex to choose de-84

sign strategies based exclusively on simple dynamical balances or intuition. In such cases,85

adjoint models have proven valuable for exposing the critical, leading order dynamics,86

and for efficiently probing physical dependencies between observable and unobserved oceanic87

variables, e.g., in the Atlantic (Köhl & Stammer, 2004; Loose et al., 2020), the Pacific88

(Masuda et al., 2010; Verdy et al., 2013), and the Arctic (Kaminski et al., 2018; Nguyen89

et al., 2020). To guide observing system design, our approach is to leverage adjoint-derived90

dynamical information, and embed it in a quantitative Bayesian framework. Synthesiz-91

ing these two ingredients results in Hessian UQ.92

Hessian UQ extends the capabilities of adjoint modeling techniques that were pre-93

viously used to inform ocean observing system design, such as adjoint sensitivity (Heimbach94

et al., 2011; Masuda et al., 2010), observation sensitivity (Köhl & Stammer, 2004; Moore95

et al., 2011), and singular vectors (Fujii et al., 2008; Zanna et al., 2012). Despite giv-96

ing valuable insight into where observations may be useful, none of these latter techniques97

provide a measure of redundancy versus complementarity, nor of optimality of an ob-98

serving system. In contrast, Hessian UQ embedded in a variational data assimilation sys-99

tem allows one to calculate how much uncertainty is reduced with any changes applied100

to the observing system (Thacker, 1989), while accounting for data redundancy. It also101

provides a measure of optimality: the more uncertainty an observing system reduces in102

a defined target quantity (on a scale of 0% to 100%), the closer it is considered to be-103

ing optimal for the defined target.104

Hessian UQ has been routinely applied in numerical weather prediction (NWP, Leut-105

becher, 2003) and, more broadly, in computational science and engineering (CSE, Bui-106

Thanh et al., 2012), but it has only seen limited use in the oceanographic community.107

Previous studies have applied Hessian UQ after severely reducing the dimension of the108

space of uncertain parameters in an ad-hoc manner (Kaminski et al., 2015, 2018), or in109

the dual form of ‘representers’ (Bennett, 1985; Moore et al., 2017; Zhang et al., 2010).110

These examples have focused on regional ocean settings and on daily to monthly time111

scales. In this study, we take a step toward fully exploiting Hessian UQ to design ocean112

observing systems that are targeted at climate monitoring in a global context. To this113

aim, we apply Hessian UQ within the global ocean state estimation framework of the Es-114

timating the Circulation and Climate of the Ocean (ECCO) consortium (Heimbach et115

al., 2019), and elucidate oceanic teleconnections that communicate observational con-116

straints over basin-scale distances and monthly to interannual time scales.117
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In ocean climate research, the goal of an observing system is usually to accurately118

estimate certain quantities of interest (QoIs): forecasts or climate indices that are dif-119

ficult or impossible to observe directly. Examples of QoIs include transports across cer-120

tain oceanographic passages, ocean heat content near the polar ice sheets, regional sea121

level anomalies, or future sea-ice extent. We therefore focus on the information that an122

observing system contains about a given QoI, here referred to as the observing system’s123

‘proxy potential’ for the QoI on a scale of 0% to 100% (Loose et al., 2020). Proxy po-124

tential is defined by way of Hessian UQ, as the reduction in QoI uncertainty that would125

be achieved if the observing system was added to the ocean state estimate. Importantly,126

proxy potential can be assessed not only for existing but also for future observing sys-127

tems, because it does not require the actual measurement values of the observations (only128

their locations, times, types, and uncertainties).129

Loose et al. (2020) provided interpretations of Hessian UQ and proxy potential for130

idealized cases, in which an observing ‘system’ consists of only a single and noise-free ob-131

servation. Then, the observation’s proxy potential for a QoI reflects the degree to which132

adjustment mechanisms are shared between the observation and QoI. In this simple case,133

proxy potential can be understood as the dynamical analogue of statistical correlation134

(squared) between observation and QoI, with the important distinction that proxy po-135

tential accounts only for covariability that has dynamical underpinnings. The goal of this136

study is to leverage Hessian UQ to generalize the notion of proxy potential introduced137

by Loose et al. (2020) in three important ways (section 2): first, by extending this con-138

cept from a single observational asset to full observing systems; second, by quantifying139

observational redundancy versus complementarity; and third, by accounting for obser-140

vational noise.141

We illustrate the concepts of Hessian UQ and proxy potential in a North Atlantic142

case study (section 3). To provide a clear understanding of Hessian UQ, our case study143

focuses on observing systems that are comprised of only a few observations. We then dis-144

cuss how our approach and the dynamical insights obtained generalize to the design of145

full-fledged observing systems, including thousands to millions of observations (section 4).146

2 Uncertainty Quantification and Proxy Potential147

2.1 Ocean state estimation148

Ocean state estimation optimally fits an ocean general circulation model (GCM)149

to the available observations in a dynamically and kinematically consistent way. For this,150

one solves an inverse problem: given an observing system (gray box, Fig. 1), one adjusts151

the control variables x = (x1, . . . , xN ) (green box, Fig. 1), such as to minimize the scalar152

cost function153

J(x) =
1

2
(y −Obs(x))T R−1 (y −Obs(x))
︸ ︷︷ ︸

Jmisfit(x)

+
1

2
(x− x0)T B−1 (x− x0)
︸ ︷︷ ︸

Jprior(x)

. (1)154

The control variables x are the uncertain, independent input variables of the model, and155

consist not only of initial conditions (as common in NWP), but also of atmospheric forc-156

ing variables and uncertain model parameters (green box, Fig. 1). Jmisfit(x) measures157

the misfit between the vector of actual observations, y = (y1, . . . , yM ) (gray box, Fig. 1),158

and the vector of simulated observations, Obs(x) = (Obs1(x), . . . ,ObsM (x)) (pink box,159

Fig. 1), given the input variables x. Jprior(x) penalizes deviations from a first-guess x0160

of uncertain inputs. The M ×M matrix R and N ×N matrix B are chosen error co-161

variances, spelling out the assumption that observational noise and prior uncertainties162

follow the Gaussian distributions N (0,R) and N (x0,B), respectively (Tarantola, 2005).163
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control variables x, prior covariance B
initial conditions atmospheric forcing model parameters

x1 x2 xN

ocean general circulation model

Obs1(x) ObsM (x)

simulated observations Obs(x)

J(x) = Jmisfit(x) + Jprior(x)

y1 yM

QoI(x)
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Figure 1. Workflow for uncertainty quantification (UQ) in ocean state estimation. Starting

from an observing system (gray box), an inverse uncertainty propagation along path (UQ1) re-

duces the uncertainty in the control variables (green box), see secion 2.2. A subsequent forward

uncertainty propagation along path (UQ2) reduces the uncertainty in a chosen quantity of inter-

est (QoI, purple box), see section 2.3. Green and black arrows indicate propagation of prior and

posterior uncertainty, respectively.
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Figure 1. Workflow for Hessian uncertainty quantification (UQ) in ocean state estimation.

Starting from an observing system (gray box), inverse uncertainty propagation along path (UQ1)

reduces the uncertainty in the control variables (green box), see section 2.2. A subsequent for-

ward uncertainty propagation along path (UQ2) reduces the uncertainty in a chosen quantity

of interest (QoI, purple box), see section 2.3. Green and black arrows indicate propagation of

prior and posterior uncertainty, respectively. The degree to which the observing system reduces

uncertainty in the QoI, via a composite uncertainty propagation along paths (UQ1) and (UQ2),

is referred to as the observing system’s proxy potential for the QoI (section 2.4).
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The solution of the inverse problem is the minimizer of the cost function, xmin =164

minx J ; that is, a choice of control variables. The ocean state estimate itself is obtained165

by running the GCM with inputs xmin.166

2.2 Inverse uncertainty propagation167

To quantify uncertainties in the solution xmin of the inverse problem, one propa-168

gates observational information and uncertainty along path (UQ1) (Fig. 1). This inverse169

uncertainty propagation results in the posterior probability distribution of the control170

variables, given the observations. In practice, it is not feasible to compute the full pos-171

terior probability distribution, nor to map this distribution onto the full ocean state space.172

We therefore need to appeal to approximation methods.173

The posterior probability distribution can be approximated by the Gaussian N (xmin,P),174

with N ×N covariance matrix P equal to175

P = B −
M ′∑

i=1

λi
λi + 1

(
B1/2 vi

)(
B1/2 vi

)T
. (2)176

Here, {vi, λi}M
′

i=1 is the set of orthonormal eigenvectors vi with associated non-zero eigen-177

values λ1 ≥ . . . ≥ λM ′ > 0 of the misfit Hessian:178

Hmisfit = BT/2 AT R−1 A B1/2 =

M ′∑

i=1

λiviv
T
i . (3)179

In eq. (3), the entries of the M ×N matrix A are the sensitivities180

Ai,j =
∂(Obsi)

∂xj
, (4)181

evaluated at xmin. Furthermore, B1/2 denotes an N×N matrix which satisfies B1/2 BT/2 =182

B and has an inverse, B−1/2. The N×N matrix Hmisfit is the linearized (Gauss-Newton)183

Hessian of the nondimensionalized model-data misfit term, Jmisfit(u) (eq. (1)). Nondi-184

mensionalization is achieved through the change of variables u = B−1/2 x. In summary,185

eq. (2) phrases the posterior uncertainty P as the prior uncertainty B, reduced by any186

information {vi, λi} obtained from the observations. Expression (2) has been known and187

used in the NWP and CSE communities for many years (see, e.g., Bui-Thanh et al., 2012;188

Leutbecher, 2003). A self-contained derivation is relegated to the supporting informa-189

tion (Text S1).190

Next, we inspect the set {vi, λi} in more detail as it fully characterizes the infor-191

mation obtained from the observations (gray box, Fig. 1). The eigenvectors {vi}M
′

i=1 of192

the misfit Hessian (eq. (3)) are the data-informed directions within the control space.193

Along a data-informed direction vi, the function Jmisfit(u) has curvature λi > 0 (Fig. 2(a)).194

The eigenvalue λi captures the strength of the data constraint imposed on the control195

direction vi, with large λi corresponding to a strong observational constraint. The con-196

trol directions along which Jmisfit(u) is not curved are not informed by the observations197

(Fig. 2(b)). Note that M ′ ≤ min(M,N); that is, the number of independent data-informed198

directions, M ′, is less than or equal to the number of observations, M , and the number199

of control variables, N .200

If an observing system consists of only a single observation (M = 1) with simu-201

lated counterpart Obs1(x) = Obs(x) and observational noise variance R = ε2 > 0,202

the misfit Hessian (eq. (3)) simplifies to Hmisfit = λ1 v1v
T
1 , with203

v1 = (σB
Obs)

−1
[
B1/2∇xObs

]
∈ RN , λ1 =

(σB
Obs)

2

ε2
> 0, (5)204
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Figure 2. (a),(b) Curvature of the nondimensionalized model-data misfit function, Jmisfit(u)

(see eq. (1)), at the cost function minimizer umin, along two directions in the control space: (a)

the data-informed direction vi (eq. (3)) and (b) a non-informed direction. (c)-(e): The data-

informed subspace (gray plane) of the control space is spanned by the prior-weighted sensitivity

vectors B1/2 rxObs1, . . . ,B
1/2 rxObsM , here shown for the case of two observations (M = 2).

To obtain the eigenvectors of the misfit Hessian (eq. (3)), this set of M prior-weighted sensitivity

vectors is (d) orthonormalized and (e) rotated. (f) The direction of interest, q (eq. (9)), decom-

posed into q = qobs + qnull. The data-informed component, qobs, is the projection of q onto

the data-informed subspace. Parts of the unit sphere of the control space are displayed in black.

The larger the radius of the orange dashed circle, defined by the length of qobs, the higher the

dynamical proxy potential of the considered observing system for the QoI.
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Figure 2. (a),(b) Curvature of the nondimensionalized model-data misfit function, Jmisfit(u),

at the cost function minimizer umin, along two directions in the control space: (a) the data-

informed direction vi (eq. (3)) and (b) a non-informed direction. (c)-(e): The data-informed

subspace (gray plane) of the control space is spanned by the prior-weighted sensitivity vectors

B1/2∇xObs1, . . . ,B
1/2∇xObsM , here shown for the case of two observations (M = 2). To obtain

the eigenvectors vi of the misfit Hessian (eq. (3)), this set of M prior-weighted sensitivity vectors

is (d) orthonormalized and (e) rotated, within the data-informed subspace. (f) The direction of

interest, q (eq. (10)), decomposed into q = qobs + qnull. The data-informed component, qobs, is

the projection of q onto the data-informed subspace. Parts of the unit sphere of the control space

are displayed in black. The larger the radius of the orange dashed circle, defined by the length of

qobs, the higher the dynamical proxy potential of the considered observing system for the QoI.
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where ∇xObs = (∂(Obs)/∂x1 , . . . , ∂(Obs)/∂xN ), evaluated at xmin, and205

σB
Obs =

∥∥∥B1/2∇xObs
∥∥∥ > 0. (6)206

Put differently, the only data-informed direction is spanned by the prior-weighted sen-207

sitivity vector B1/2∇xObs (eq. (5)), where ‘prior-weighting’ is through multiplication208

by B1/2. Similarly, for an observing system with more than one observation (M > 1),209

the data-informed subspace of the control space is spanned by the M prior-weighted sen-210

sitivity vectors B1/2∇xObs1 , . . . , B1/2∇xObsM (Fig. 2(c)). One has to modify these211

M vectors by two steps to obtain the eigenvectors of the misfit Hessian (Appendix A).212

In essence, the set of prior-weighted sensitivity vectors is orthonormalized (Fig. 2(d)) and213

rotated (Fig. 2(e)), within the data-informed subspace.214

For M = 1, the observational noise, ε2, appears in the denominator of λ1 (eq. (5)).215

In particular, for vanishing ε2, the eigenvalue λ1 tends to infinity. This fact generalizes216

to the case M > 1: in the limit of vanishing observational noise (R ↘ 0), the eigen-217

values λi of the misfit Hessian (eq. (3)) tend to infinity,218

λi ↗∞. (7)219

That is, Jmisfit(u) becomes increasingly curved (Fig. 2(a)) and the constraint by the ob-220

servations increasingly strong.221

2.3 Forward uncertainty propagation222

To assess the observational constraints on a QoI, the inverse uncertainty propaga-223

tion along path (UQ1) has to be followed by a forward uncertainty propagation along224

path (UQ2) (Fig. 1). In other words, we quantify how the uncertainty reduction in the225

controls, due to the new observational information, reduces uncertainty in the QoI, a di-226

agnostic of the model evaluated at xmin. Forward propagation of prior uncertainties (B,227

dotted green arrow) and posterior uncertainties (P, dotted black arrow) along path (UQ2)228

results in the prior and posterior QoI variances (see Isaac et al., 2015, or Text S2 in sup-229

porting information):230

(σC
QoI)

2 = (∇xQoI)
T

C (∇xQoI) =
∥∥∥C1/2∇xQoI

∥∥∥
2

, C ∈ {B,P}. (8)231

We infer the prior-to-posterior reduction in QoI uncertainty, relative to the prior uncer-232

tainty:233

∆σ2
QoI =

(σB
QoI)

2 − (σP
QoI)

2

(σB
QoI)

2
=

M ′∑

i=1

λi
λi + 1

(q • vi)
2 ∈ [0, 1). (9)234

The second equality in eq. (9) holds by virtue of eqs. (8) and (2). Here, {(vi, λi)}M
′

i=1 are235

the eigenvectors and eigenvalues of the misfit Hessian (eq. (3)), • denotes the scalar (or236

‘dot’) product between two vectors in RN , and237

q = (σB
QoI)

−1
[
B1/2∇xQoI

]
∈ RN . (10)238

The unit vector q is of key interest: it is the direction within the control space to be con-239

strained in order to inform the QoI. It can be written as the orthogonal decomposition240

q = qobs +qnull (Fig. 2(f)). qobs is the component that lies in the data-informed sub-241

space, given by the projection qobs =
∑M ′

i=1(q•vi) vi. Uncertainty is only reduced along242

the data-informed component, qobs, not along the nullspace component, qnull.243

2.4 Dynamical and effective proxy potential244

Relative reduction in QoI uncertainty, ∆σ2
QoI (eq. (9)), rigorously quantifies the dy-245

namical constraints of an observing system (gray box, Fig. 1) on a QoI (purple box, Fig. 1),246
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as the result of the composite uncertainty propagation along paths (UQ1) and (UQ2).247

We refer to ∆σ2
QoI as the proxy potential of the observing system for the QoI (Loose et248

al., 2020). Building on eq. (9), we distinguish between dynamical proxy potential249

DPP(Obs1, . . . ,ObsM ; QoI) =

M ′∑

i=1

(q • vi)
2 ∈ [0, 1] (11)250

and effective proxy potential251

EPP(Obs1, . . . ,ObsM ; QoI) =

M ′∑

i=1

λi
λi + 1

(q • vi)
2 ∈ [0, 1) (12)252

of the examined observing system for the QoI. Recall that M ′ ≤ M is the number of253

independent data constraints, characterized by the eigenvectors and eigenvalues {vi, λi}M
′

i=1254

of the misfit Hessian (eq. (3)). Geometrically, DPP is equal to the squared length of qobs,255

the data-informed component of q in control space (Fig. 2(f)). Note that EPP < DPP.256

For vanishing observational noise, EPP approaches DPP, since all eigenvalues λi tend257

to infinity (eq. (7)), and consequently all factors λi/(λi+1) tend to 1 (see also Appendix258

B and Fig. 7). The bounds for DPP and EPP correspond to the cases for which the ob-259

serving system provides no constraint (EPP = DPP = 0), and for which it serves as a260

perfect proxy for the QoI, in the case of noise-free observations (DPP = 1) and noisy ob-261

servations (EPP ↗ 1).262

If the observing system under consideration consists of only a single observation263

(M = 1), eq. (11) simplifies to DPP(Obs1; QoI) = (q • v1)2, which coincides with the264

definition of dynamical proxy potential in Loose et al. (2020, eq. (4) therein).265

3 Application to the North Atlantic266

We illustrate the concepts of Hessian UQ and proxy potential in a North Atlantic267

case study. Section 3.1 describes our experimental setup, including our choice of QoI and268

observations. We then assess proxy potential of the observations for the QoI, for the cases269

of noise-free observations (DPP, section 3.2) and noisy observations (EPP, section 3.3).270

3.1 Experimental Setup271

Our experimental setup coincides with the one described in section 3.1 of Loose272

et al. (2020) and is embedded in the ECCO version 4, release 2 (ECCOv4r2, Forget et273

al., 2015) state estimation framework. We use the Massachusetts Institute of Technol-274

ogy general circulation model (Marshall et al., 1997; Adcroft et al., 2018), in a global con-275

figuration, at a nominal horizontal resolution of 1◦, and with 50 vertical levels. The lin-276

ear sensitivities of the QoI and observed quantities to all control variables (eqs. (5),(10),277

and Appendix A) are computed using the respective adjoint models generated through278

algorithmic differentiation with the commercial tool Transformation of Algorithms in For-279

tran (TAF, Giering & Kaminski, 2003).280

Our QoI is heat transport across the Iceland-Scotland ridge (black line, Fig. 3), de-281

noted by HTISR. We study four different hypothetical temperature observations in the282

North Atlantic, located inside the yellow dots in Fig. 3, and labeled by θA, θB , θC , θD.283

Observations θA and θC are in the Irminger Sea at (40 ◦W, 60 ◦N), observation θB off284

the Portuguese coast at (12 ◦W, 41 ◦N), and θD in Denmark Strait at (28 ◦W, 66 ◦N). θA,285

θB , and θD are subsurface observations, situated at 300 m depth, whereas θC is a sur-286

face observation. Exact definitions for the model calculations of HTISR and θ? can be287

found in Loose et al. (2020). We quantify dynamical and effective proxy potential of the288

five-year mean of the observations for the five-year mean of our QoI, for zero lag. Sen-289

sitivities of the QoI (eq. (10)) and observations (eq. (5)) to the control variables are com-290

puted from the final five years (2007-2011) of the ECCOv4r2 state estimate.291
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Figure 1. Overview map of the case study in this work (modified from Fig.2 in Loose et al.,

2020). The quantity of interest (QoI) is heat transport across the Iceland-Scotland ridge (ISR,

black line). The temperature observations ✓A, ✓B , ✓C , ✓D are located inside the yellow dots. ✓A,

✓B , ✓D are subsurface (at 300 m depth), ✓C at the sea surface. The arrows show approximate

pathways of near-surface currents carrying warm Atlantic waters (orange) and cold Arctic waters

(purple): NAC = North Atlantic Current; NwAC = Norwegian Atlantic Current; IC = Irminger

Current.

1 Introduction61

2 Application to the North Atlantic62

This section illustrates the concepts of UQ and proxy potential for a case study in63

the North Atlantic. Section 2.1 describes the experimental setup, including our choice64

of QoI and observations. We then assess dynamical (section ??) and e↵ective (section ??)65

proxy potential of the observations for the QoI.66

2.1 Experimental Setup67

Our experimental setup coincides with the one described in section 3.1, Loose et68

al. (2020), and is briefly reviewed in the following. We work within the ECCO version69

4 release 2 (ECCOv4r2, Forget et al., 2015) state estimation framework. The ocean GCM70

that underlies ECCOv4r2 is the Massachusetts Institute of Technology general circula-71

tion model (MITgcm, Marshall, Adcroft, et al., 1997; Marshall, Hill, et al., 1997), in a72

global configuration and at a nominal horizontal resolution of 1� with 50 vertical levels.73

The quantification of dynamical and e↵ective proxy potential requires the linear sensi-74

tivities of the QoI and observed quantities to all contorl variables (eqs. (??),(??), and75

–3–

Figure 3. Overview map of the case study in this work (modified from Fig. 2 in Loose et

al., 2020). The QoI is heat transport across the Iceland-Scotland ridge (black line), denoted by

HTISR. The temperature observations θA, θB , θC , θD are located inside the yellow dots. θA,

θB , θD are subsurface (at 300 m depth), θC at the sea surface. The arrows show approximate

pathways of near-surface currents carrying warm Atlantic waters (orange) and cold Arctic waters

(purple): NAC = North Atlantic Current; NwAC = Norwegian Atlantic Current; IC = Irminger

Current.

Table 1. Control Variables and Prior Uncertainties in our Case Study.

m Forcing Fm(i, j) Symbol Time average # Variables ∆Fm

1 Net upward surface heat flux Qnet,↑ five years 6 · 105 50 W/m2

2 Net surface freshwater flux EPR five years 6 · 105 5 · 10−8 m/s
3 Zonal wind stress τx five years 6 · 105 0.05 N/m2

4 Meridional wind stress τy five years 6 · 105 0.05 N/m2

–10–
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As in Loose et al. (2020), the control variables are comprised of the time-mean, spatially-292

varying forcing fields Qnet,↑, EPR, τx, and τy (Table 1). These two-dimensional forc-293

ing fields, Fm(i, j), m = 1, . . . , 4, are flattened and concatenated into a long control vec-294

tor, x = (x1, . . . , xN ). The length of the control vector, N , is O(106), equal to 4 times295

the number of model surface cells covering the global ocean (next to last column, Ta-296

ble 1). We assign each of the four forcing fields, Fm(i, j), a spatially constant prior stan-297

dard deviation, ∆Fm (last column, Table 1; see also Loose et al., 2020). Moreover, prior298

cross-correlations are set to zero, corresponding to the assumption that the decorrela-299

tion length in the surface forcing is less than the grid scale (∼ 1 ◦). These choices re-300

sult in a diagonal N × N prior covariance matrix, B, whose diagonal is populated by301

the (∆Fm)2 assigned in Table 1. The rationale for our simplified choice of control vari-302

ables and prior covariance matrix is that it allows a more concise presentation of the re-303

sults, facilitating a clear understanding of the methodology presented in section 2 and304

its underlying dynamical and mathematical concepts.305

3.2 Noise-free Observations306

We begin by exploring the DPP of the temperature observations θ?, ? = A,B,C,D,307

for our QoI, HTISR. DPP is equal to the relative uncertainty reduction in HTISR that308

is achieved when adding θ? to the underlying state estimation framework, in the limit309

of vanishing observational noise (eq. (11)). We first study the DPP of each observation310

individually (section 3.2.1), and then the DPP of observing systems that are formed by311

multiple θ? (section 3.2.2).312

3.2.1 Degree of Shared Adjustment Mechanisms313

The DPP of each observation θ? for HTISR quantifies the degree to which the di-314

rection of interest, q, projects onto the θ?-informed subspace of the control space (eq. (11)315

and Fig. 2(f)). We denote the (one-dimensional) θ?-informed direction by v?. As an ex-316

ample, Figs. 4(a)-(e) show q (eq. (10)) and v? (eq. (5)), restricted to their τy components:317

q|τy = (σB
HT)−1

[
∂(HTISR)

∂τy(i, j)
∆τy

]
, v?|τy = (σB

? )−1

[
∂θ?

∂τy(i, j)
∆τy

]
. (13)318

Here, the normalization factors σB
HT = 6 TW and σB

? , whose values are reported in Ta-319

ble 2, are prior uncertainties, computed according to eqs. (8) and (6), respectively. In320

eq. (13), prior-weighting, i.e., multiplication by B1/2, has simplified to an element-wise321

multiplication of the sensitivity vectors by the constant ∆τy (Table 1). The value in each322

model grid cell in Figs. 4(a)-(e) correspond to a vector entry of q = (q1, . . . , qN ) and323

v? = (v1, . . . , vN ), as visualized in the inlets in Figs. 4(a),(b).324

The Qnet, EPR, and τx vector components are not shown, but their relative con-325

tributions to the magnitude of the vectors q and v? are illustrated in Figs. 4(f)-(j). The326

relative contribution of each forcing field Fm to q is computed via327

∥∥q|Fm

∥∥2
= (σB

HT)−2
∑

i,j

(
∂(HTISR)

∂Fm(i, j)
∆Fm

)2

, m = 1, . . . , 4, (14)328

and similarly for v?. The dark green bars in Figs. 4(f)-(j) are the area-integrated, nor-329

malized and prior-weighted sensitivities from Figs. 4(a)-(e). Put differently, the ratios330

in Figs. 4(f)-(j) measure the relative importance of each forcing field, Fm, for impact-331

ing HTISR and θ?, respectively. Wind forcing (τx, τy) is more influential than buoyancy332

forcing (Qnet, EPR) for HTISR and for all observations θ?, except for the surface obser-333

vation θC , which is highly sensitive to local air-sea heat fluxes (Fig. 4(i), and Fig. 4(c)334

in Loose et al., 2020).335

The yellow labels in Fig. 4 present the DPP (eq. (11)) of θ? for HTISR, given by336

DPP? = DPP(θ?; HTISR) = (q • v?)2. (15)337

–11–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

manuscript submitted to JGR: Oceans

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

QoI = HTISR

q = direction of interest

(a)

qm

ql

0% 25% 50% 75% 100%

(f)

vA = ✓A-informed direction

(b)

vm

vl

DPPA = 19%

0% 25% 50% 75% 100%

(g)

vB = ✓B-informed direction

(c)

DPPB = 1%

0% 25% 50% 75% 100%

(h)

vC = ✓C -informed direction

DPPC = 1%

(d)

0% 25% 50% 75% 100%

(i)

vD = ✓D-informed direction

(e)

DPPD = 30%

0% 25% 50% 75% 100%

(j)

Qnet," EPR ⌧x ⌧y

Figure 2. (a)-(e): Sensitivities of five-year mean (a) heat transport across the Iceland-

Scotland ridge (HTISR), (b) subsurface temperature in the Irminger Sea (✓A), (c) subsurface

temperature o↵ the Portuguese coast (✓B), (d) surface temperature in the Irminger Sea (✓C), (e)

subsurface temperature in Denmark Strait (✓D) to changes in five-year mean meridional wind

stress ⌧y. The sensitivities are weighted and normalized (thus unitless), and are the ⌧y restriction

of the vectors q (in (a)) and v? (in (b)-(e)), see eq. (1). As an example, the inlets in (a) and (b)

show two vector entries of q = (q1, . . . , qN ) and vA = (v1, . . . , vN ), respectively. (f)-(j): Relative

contributions of the control fields Qnet,", E-P-R, ⌧x and ⌧y (Table 1) to the magnitude of the

vectors (f) q, (g) vA, (h) vB , (i) vC , (j) vD, see eq. (2). The yellow labels show the dynamical

proxy potential of ✓? for HTISR (eq. (3)).
–5–

Figure 4. (a)-(e): Sensitivities of five-year mean (a) heat transport across the Iceland-

Scotland ridge (HTISR), (b) subsurface temperature in the Irminger Sea (θA), (c) subsurface

temperature off the Portuguese coast (θB), (d) surface temperature in the Irminger Sea (θC), (e)

subsurface temperature in Denmark Strait (θD) to changes in five-year mean meridional wind

stress τy. The sensitivities are weighted and normalized (thus unitless), and are the τy restriction

of the vectors q (in (a)) and v? (in (b)-(e)), see eq. (13). As an example, the inlets in (a) and (b)

show two vector entries of q = (q1, . . . , qN ) and vA = (v1, . . . , vN ), respectively. (f)-(j): Relative

contributions of the control fields Qnet,↑, EPR, τx and τy (Table 1) to the magnitude of the vec-

tors (f) q, (g) vA, (h) vB , (i) vC , (j) vD, see eq. (14). The yellow labels show the DPP of θ? for

HTISR (eq. (15)).
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The vectors q and v? are composed of the sensitivities of the QoI and observations, re-338

spectively, to all control variables, capturing all possible dynamical mechanisms via which339

perturbations in the control variables can change the QoI and observations. Therefore,340

DPP? (eq. (15)) evaluates the degree to which HTISR and θ? share their adjustment physics.341

Since wind adjustments dominate HTISR and (most) observations θ? (Figs. 4(f)-(j)), a342

comparison of the τy sensitivity map in Fig. 4(a) with the τy sensitivity maps in Figs. 4(b)-343

(e) elucidates the dynamical mechanisms and teleconnections that generate proxy po-344

tential. These mechanisms are discussed in detail in Loose et al. (2020) and only briefly345

reviewed in the next paragraph.346

In Figs. 4(a)-(e), sensitivities emerge in two main regions: (I) in the coastal wave347

guide along the eastern boundary of the subtropical North Atlantic; and (II) in topo-348

graphic wave guides in the northeast Atlantic and the Nordic Seas (see Figs. 5(a)-(c) for349

labeled regions). Wind forcing in region (I) drives a pressure adjustment mechanism (Jones350

et al., 2018; Loose et al., 2020) which alters both the ISR geostrophic transport and the351

Irminger Current (Fig. 3), causing anomalies in HTISR and in all temperature observa-352

tions (Figs. 4(a)-(e)). Wind forcing in region (II) spins up an anomalous barotropic cir-353

culation around Iceland (Loose et al., 2020), which simultaneously alters the Norwegian354

Atlantic and East Greenland Currents (Fig. 3), causing anomalies in HTISR and in the355

temperature observations θA, θC , θD (Figs. 4(a),(b),(d),(e)). HTISR and subsurface tem-356

perature in Denmark Strait, θD, are the quantities that are most sensitive to the latter357

mechanism, driven by wind forcing in region (II). Consequently, θD has the largest DPP358

for HTISR among all observations considered (30%). The lower DPP of θA (19%) is ex-359

plained by the strong sensitivity of θA to wind forcing in both regions (I) and (II). This360

results in destructive interference of information propagation because wind forcing in re-361

gion (I) causes responses in HTISR and θA of equal sign, while wind forcing in region (II)362

causes responses in HTISR and θA of opposite sign (Figs. 4(a),(b)). The DPP of θB and363

θC is only 1%, since θB is not sensitive to wind forcing in region (II) (Fig. 5(c)), and θC ,364

as a surface observation, is mostly sensitivity to local forcing (Fig. 5(d)). These char-365

acteristics lead to small sensitivity overlaps of HTISR with θB and θC .366

3.2.2 Data Redundancy versus Complementarity367

Next, we demonstrate how DPP generalizes when considering multiple but still noise-368

free observations. We begin by combining θA with either of the remaining temperature369

observations θ?, ? = B,C,D. In eq. (1), the resulting observing system is represented370

by Obs = (θA, θ?). To tease out independent sensitivity patterns between θA and θ?,371

we orthonormalize the vector pair {vA,v?} via step (M.1), illustrated in Fig. 2(d) and372

formalized in Appendix A. This results in the orthonormal vector pair {vA, (v?)⊥}.373

The observations θA and θB contain independent information. Indeed, θA is sen-374

sitive to wind forcing in both regions (I) and (II) (Fig. 5(a)), whereas θB is sensitive to375

wind forcing only in region (I) (Fig. 5(b)). Viewed in the {θA, θB}-informed subspace376

of the control space (Fig. 5(g)), independent sensitivity information corresponds to vec-377

tors vA and vB being close to orthogonal, with an enclosed angle of β = 74 ◦. Conse-378

quently, (vB)⊥ is only a slight modification of vB (Figs. 5(b),(d),(g)). In contrast to θB ,379

the observation θD shows very similar sensitivity to wind forcing as θA, concentrated in380

both regions (I) and (II) (Figs. 5(a),(c)). Similar sensitivity information is reflected by381

an angle of only δ = 30 ◦ between vA and vD (Fig. 5(h)). Orthonormalization of the382

vector pair results in a removal of sensitivity to wind forcing in regions (I) and (II) (Fig. 5(e)).383

The independent sensitivity information extracted from the observing systems (Fig. 5)384

is independent of the chosen QoI.385

We now return to our QoI, and use the independent sensitivity patterns obtained386

in Fig. 5 to quantify the DPP of the system {θA, θ?} for HTISR. DPP is obtained through387

a projection of q onto the {θA, θ?}-informed plane (Fig. 2(f), eq. (11)). This projection388
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Figure 5. (a)-(c): Replots of subpanels in Fig. 4, as indicated by the gray labels. The black

boxes (I) and (II) contain the dominant sensitivity patterns that are the main origin of proxy

potential for HTISR (see section 2.2.1). (d),(e): Modified sensitivity maps from (b),(c), as a result

of extracting independent sensitivity information from the observation ✓A and ✓?, for (d) ? =

B, (e) ? = D. The modified sensitivity maps are the ⌧y component of (v?)?, computed as linear

combinations of vA and v?, as shown in (g),(h). (f): Three-dimensional subspace of the control

space that is informed by the triple {✓A, ✓B , ✓D}. (g),(h): Planes embedded in (f), showing the

two-dimensional subspaces informed by the pairs (g) {✓A, ✓B} and (h) {✓A, ✓D}. The planes are

spanned by (g) vA and vB , with enclosed angle � = 74 �, and (h) vA and vD, with enclosed

angle � = 30 �. Orthonormalizing the pair {vA,v?} results in (g) (vB)? and (h) (vD)?.
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Figure 5. (a)-(c): Replots of subpanels in Fig. 4, as indicated by the gray labels. The black

boxes (I) and (II) contain the dominant sensitivity patterns that are the main origin of proxy

potential for HTISR (see section 3.2.1). (d),(e): Modified sensitivity maps from (b),(c), as a result

of extracting independent sensitivity information from the observation θA and θ?, for (d) ? =

B, (e) ? = D. The modified sensitivity maps are the τy component of (v?)⊥, computed as linear

combinations of vA and v?, as shown in (g),(h). (f): Three-dimensional subspace of the control

space that is informed by the triple {θA, θB , θD}. (g),(h): Planes embedded in (f), showing the

two-dimensional subspaces informed by the pairs (g) {θA, θB} and (h) {θA, θD}. The planes are

spanned by (g) vA and vB , with enclosed angle β = 74 ◦, and (h) vA and vD, with enclosed

angle δ = 30 ◦. Orthonormalizing the pair {vA,v?} results in (g) (vB)⊥ and (h) (vD)⊥.
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Figure 6. (a)-(f): Dynamical proxy potential (Eqs. (16),(10)) of six di↵erent observing sys-

tems for the QoI, HTISR. Each observing system is formed by the temperature observations ✓?

contained in the vector of colored labels below each subpanel. DPP(✓A; HTISR) = 19% (gray

bar) forms the baseline, and the hatched contributions show the gain in DPP when adding more

observations. (g)-(i): Generation of the hatched contributions in (b)-(d), taking into account

data redundancy and complementarity between ✓A and ✓? for (g) ? = B, (h) ? = D, (i) ? = C;

left panel (solid bar): (q • v?)2; right panel (hatched bar): (q • (v?)?)2. (j),(k): Replots of

Figs. 5(e),(f). qobs (orange vector, cf. Fig. ??(b)) is the {✓A, ✓?}-informed component of the di-

rection of interest q, for (j) ? = B, (k) ? = D. The orange dashed circle shows the length of qobs,

and the orange dots the projections of qobs onto vA and v?. (l) Same as (j),(k), but for ? = C.
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Figure 6. (a)-(f): DPP (eqs. (16),(11)) of six different observing systems for the QoI, HTISR.

Each observing system is formed by the temperature observations θ? contained in the vector of

colored labels below each subpanel. DPPA = 19% (gray bar) forms the baseline value, and the

hatched contributions show the gain in DPP when adding more observations. (g)-(i): Generation

of the hatched contributions in (b)-(d), taking into account data redundancy and complemen-

tarity between θA and θ? for (g) ? = B, (h) ? = D, (i) ? = C. Left, solid bar: DPP? = (q •
v?)2. Right, hatched bar: (q • (v?)⊥)2. (j),(k): Replots of Figs. 5(g),(h). qobs (orange vector, cf.

Fig. 2(f)) is the {θA, θ?}-informed component of q, for (j) ? = B, (k) ? = D. The orange dashed

circle shows the length of qobs, and the orange dots the projections of qobs onto vA and v?. (l)

Same as (j),(k), but for ? = C.
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requires an orthonormal basis of the {θA, θ?}-informed plane, for which one may choose389

either {v1,v2} (Fig. 2(e), eq. (11)), or {vA, (v?)⊥} (Fig. 2(d)). Here, we choose the lat-390

ter, i.e., we compute391

DPP(θA, θ?; HTISR) = DPPA + (q • (v?)⊥)2. (16)392

The first term on the right hand side is equal to 19% (cf. Fig. 4(b)) and forms the base-393

line value in Figs. 6(a)-(f). The second term shows the gain in DPP when adding θ? to394

θA, and is displayed by the hatched contribution in Figs. 6(b)-(d). The generation of the395

hatched contribution is further explained in Figs. 6(g)-(i). The left, solid bar in each panel396

shows the DPP of each individual observation, DPP? = (q • v?)2, computed through397

the projection of prior-weighted and normalized sensitivity vectors (cf. Figs. 4(c)-(e)).398

The right, hatched bar in each panel shows (q•(v?)⊥)2; this projection uses the mod-399

ified sensitivity patterns from Fig. 5.400

The consequence of orthonormalization now becomes apparent. When combining401

θA and θB , data complementarity results in a DPP of (19 + 6)% = 25% (Fig. 6(b)),402

exceeding the sum of DPPA = 19% and DPPB = 1% (Fig. 6(g)). Put differently, con-403

sidering θA and θB in combination helps to extract some of the observations’ sensitiv-404

ity information which is lost in destructive interference when treating θA or θB in iso-405

lation, as was described in section 3.2.1. Data complementarity can be viewed from yet406

another angle, when inspecting the position of q projected onto the {θA, θB}-informed407

subspace, denoted by qobs (Fig. 6(j)). qobs is not aligned with either of the vectors vA408

or vB . Therefore, a true information gain in the QoI is achieved when combining the ob-409

servations θA and θB : the length of qobs increases, when advancing from the θA-informed410

and θB-informed components (orange dots, Fig. 6(j)) to the {θA, θB}-informed compo-411

nent (radius of orange circle, Fig. 6(j)).412

Adding the observations θD or θC to θA involves a certain degree of data redun-413

dancy, which is quantified in Figs. 6(h),(i). Proxy potential of θA for HTISR originates414

in wind forcing in regions (I),(II) (Fig. 5(a)); this sensitivity information is already con-415

tained in θD (Fig. 5(c), Fig. 6(k)). Consequently, DPP(θA, θD; HTISR) does not exceed416

DPPD = 30% (Figs. 6(c),(h)). Similarly, the relevant sensitivity information contained417

in the Irminger Sea surface observation θC is already contained in the Irminger Sea sub-418

surface observation θA (Fig. 6(l)). Thus, θC does not lead to a gain in DPP when added419

to θA (Fig. 6(d)).420

Finally, we are interested in the maximum achievable DPP for HTISR, obtained by421

combining all four observations in our case study. Viewed within the three-dimensional422

subspace that is informed by the observing system {θA, θB , θD} (Fig. 5(f)), the {θA, θD}-423

informed yellow plane is almost orthogonal to the {θA, θB}-informed green plane (where424

the black plane would be exactly orthogonal to the green plane). Hence, when adding425

θD to the observing system {θA, θB}, the gain in DPP (green-yellow hatched, Fig. 6(e))426

almost coincides with (q•(vD)⊥)2 (yellow hatched, Fig. 6(c)), leading to a total DPP427

of 35% (Fig. 6(e)). Completing the observing system by θC does not increase the DPP428

any further (Fig. 6(f)).429

3.3 Noisy Observations430

So far, our analysis has assumed noise-free observations. Next, we study the EPP431

of our observations θ?; this notion does account for observational noise, as encoded in432

the Gaussian noise matrix R (eq. (1)). Recall that the EPP of θ? for HTISR is equal to433

the relative uncertainty reduction in HTISR that is achieved when adding θ? to the un-434

derlying state estimation framework (eq. (12)). Following the common assumption of un-435

correlated observation errors (e.g., Forget et al., 2015), we only need to specify the di-436

agonal entries of R, i.e., the error variance ε2
? of each observation θ?. We assign ε? =437

0.1 ◦C for all observations (Table 2). We also consider the impact of varying εC , by test-438
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Table 2. Observational noise ε?, prior uncertainty σB
? , sensitivity-to-noise ratio λ?, and effec-

tiveness λ?/(λ? + 1), for each observation θ?, ? = A,B,C,D.

Obs Location ε? σB
? λ? λ?/(λ? + 1)

θA Irminger Sea (subsurface) 0.1 ◦C 0.048 ◦C 0.23 19%
θB Portuguese Coast (subsurface) 0.1 ◦C 0.059 ◦C 0.35 26%
θC Irminger Sea (surface) 0.1 ◦C 0.230 ◦C 5.29 84%

0.2 ◦C 0.230 ◦C 1.32 57%
0.3 ◦C 0.230 ◦C 0.59 37%

θD Denmark Strait (subsurface) 0.1 ◦C 0.071 ◦C 0.50 33%

manuscript submitted to JGR: Oceans

Table 1. Observational noise "?, prior uncertainty �B
? , sensitivity-to-noise ratio �?, and e↵ec-

tiveness �?/(�? + 1), for each observation ✓?, ? = A, B, C, D.

Obs Location "? �B
? �? �?/(�? + 1)

✓A Irminger Sea (subsurface) 0.1 �C 0.048 �C 0.23 19%
✓B Portuguese Coast (subsurface) 0.1 �C 0.059 �C 0.35 26%
✓C Irminger Sea (surface) 0.1 �C 0.230 �C 5.29 84%

0.2 �C 0.230 �C 1.32 57%
0.3 �C 0.230 �C 0.59 37%

✓D Denmark Strait (subsurface) 0.1 �C 0.071 �C 0.50 33%

0 1 2 3 4 5
0%

50%

100%

�

�
/
(�

+
1)

E↵ectiveness of observation

"? = 0.1 �C: ✓A ✓B ✓C ✓D

"? = 0.2 �C: ✓C

"? = 0.3 �C: ✓C

noise-free observations

Figure 1. Black curve: the function � 7! �/(� + 1), mapping the sensitivity-to-noise ratio, �

(Eq. (1)), onto the e↵ectiveness, �/(� + 1), of an observation. The e↵ectiveness of an observation

indicates what fraction of the dynamical proxy potential can be retrieved. The colored lines show

the pairs {�?, �?/(�? + 1)} for the four observations ✓?, cf. Table 1. An observation that falls into

the light gray rectangle has � < 1.
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Figure 7. The black curve is the function λ 7→ λ/(λ + 1). The colored lines map the SensNR

of θ? (λ?, eq. (17), circles) to the effectiveness of θ? (λ?/(λ? + 1), diamonds), cf. the values in Ta-

ble 2. An observation that falls into the light gray rectangle has SensNR smaller than 1.

ing for εC = 0.2 ◦C and εC = 0.3 ◦C. The rationale for this addition is that climato-439

logical surface temperature, measured by θC , is more variable than climatological sub-440

surface temperature (Locarnini et al., 2013), and can therefore be expected to be more441

noisy.442

3.3.1 Sensitivity-To-Noise Ratio443

The strength of the constraint provided by each individual observation θ? is quan-
tified by the eigenvalue λ? (eq. (5)) corresponding to the θ?-informed direction v? (Fig. 2(a)).
It is given by

λ? =
(σB
? )2

ε2
?

=
1

ε2
?

4∑

m=1

∑

i,j

(
∂θ?

∂Fm(i, j)
∆Fm

)2

. (17)

λ? describes the sensitivity-to-noise ratio (SensNR): it is large if either θ? has high over-444

all prior-weighted sensitivity, (σB
? )2, or if the observational noise ε2

? is small. Since sur-445

face temperature is much more sensitive to atmospheric forcing than subsurface temper-446
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ature (σB
C � σB

? , ? = A,B,D, Table 2), the SensNR of θC is higher than that of θA, θB , θD447

(Fig. 7). This remains true if the noise variance for θC (i.e., (εC? )2) is assumed four – or448

even nine – times as large as that of the subsurface observations (Fig. 7).449

Note that (σB
? )2 is equal to the prior uncertainty in the observed quantity θ? (cf.450

eq (8)), i.e. the uncertainty given the prior knowledge in the ocean state estimate, be-451

fore taking the actual measurement. Thus, observations with SensNR smaller than 1 (here:452

θA, θB , θD, gray rectangle in Fig. 7) are characterized by a prior uncertainty, (σB
? )2, that453

is smaller than their assumed observational uncertainty, ε2
?.454

The EPP (eq. (12)) of θ? for HTISR is given by455

EPP? =
λ?

λ? + 1
DPP?. (18)456

The factor λ?/(λ?+1) < 1 indicates what fraction of DPP? can be retrieved and will457

therefore be referred to as the ‘effectiveness’ of the observation θ?. Note that, in con-458

trast to DPP?, the observation’s effectiveness is independent of the QoI under consid-459

eration. Instead, it is solely determined by the observation’s SensNR λ?. Since the func-460

tion λ 7→ λ/(λ + 1) increases monotonically with λ (Fig. 7), observations with higher461

SensNRs are more effective. Therefore, the effectiveness of the surface observation θC462

is higher than that of the subsurface observations θA, θB , θD (Fig. 7). In fact, the effec-463

tiveness of θA, θB , θD is less than 50%, due to their SensNR being less than 1 (gray rect-464

angle, Fig. 7).465

3.3.2 Combining Noisy Observations466

We now combine all four temperature observations of our case study, while tak-467

ing into account their observational noise. In eq. (1), the resulting observing system is468

represented by469

Obs =
(
θA, θB , θC , θD

)
, R = diag(ε2

A, ε
2
B , ε

2
C , ε

2
D). (19)470

Here, the noise variances ε2
? are chosen as in Table 2. For the sake of brevity, we focus471

on the case εC = 0.2 ◦C (cases with alternative choices for εC are presented in the sup-472

porting information, Fig. S.1). We compute the eigenvectors and eigenvalues, {vi, λi}4i=1,473

of the misfit Hessian Hmisfit (eq. (3)), as described in Figs. 2(c)-(e) and Appendix A.474

By definition, the first eigenvector v1 points in the direction of maximal curvature475

of Jmisfit(u). This direction is almost aligned with the θC-informed direction, spanned476

by vC (Fig. 8(a)), because the surface observation θC has a much higher SensNR than477

the remaining observations (Fig. 7). The remaining eigenvectors, v2,v3,v4, have little478

contribution from θC (purple dots, Fig. 8(a)), and are instead a linear combination of479

v?, ? = A,B,D (Fig. 8(b)). The τy component of v2 (Fig. 8(d)) extracts the dominant480

sensitivity patterns along the eastern boundary of the North Atlantic (region (I)), shared481

by θA, θB , and θD, and in the northeast Atlantic and the Nordic Seas (region (II)), shared482

by θA and θD (Figs. 5(a)-(c)). The τy component of v3 (Fig. 8(e)) is governed by sen-483

sitivities in region (I), as set by θB . Meanwhile, the τy component of v4 (Fig. 8(f)) is484

dominated by sensitivity dipoles local to the three observing sites (yellow dots), which485

emerge due to the effect of Ekman pumping.486

The eigenvalues λi (inserted in Figs. 8(c)-(f)) are closely linked to the SensNRs λ?487

(Table 2) of all observations θ? involved, via the following relations (Bunch et al., 1978):488

4∑

i=1

λi = λA + λB + λC + λD and λ1 ≥ max{λA, λB , λC , λD}. (20)489

Each eigenvalue λi determines the effectiveness, λi/(λi+1), of the eigenvector vi (di-490

amonds in Figs. 8(c)-(f) and Fig. 9(b)). We consider how the effectiveness of the observ-491

ing system components changes with observational noise, and inflate the observational492
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vC

v1

(a)

v2

v3

v4

(b)

�1: 1.41

58%

v1

(c)

�2: 0.65

39%

v2

(d)

�3: 0.32

24%

v3

(e)

�4: 0.04

4%

v4

(f)

Figure 3. Eigendecomposition {vi, �i}4
i=1 of H̃misfit (eqs. (3),(??)) for the observing system

in eq. (13), with "? = 0.1 �C for ? = A, B, D and "C = 0.2 �C (cf. Table ??). (a),(b): Orienta-

tion of the eigenvectors v1,v2,v3,v4 (purple vectors/dots) within the (a) {✓A, ✓C}-informed, (b)

{✓A, ✓B , ✓D}-informed subspace of the control space (cf. Fig. ??(l), Fig. ??(f)). The ellipses in

(a) show the contour lines of Jmisfit(u). (c)-(f): ⌧y component of the four eigenvectors. The inlets

show the eigenvalues �i, as well as the associated e↵ectiveness �i/(�i + 1) (diamonds).
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Figure 8. Eigen-decomposition {vi, λi}4i=1 of Hmisfit (eq. (3)) for the observing system in

eq. (19), with ε? = 0.1 ◦C for ? = A,B,D and εC = 0.2 ◦C. (a),(b): Orientation of the eigen-

vectors v1,v2,v3,v4 (purple vectors/dots) within the (a) {θA, θC}-informed, (b) {θA, θB , θD}-
informed subspace of the control space (cf. Fig. 6(l), Fig. 5(f)). The ellipses in (a) show the

contour lines of Jmisfit(u). (c)-(f): τy component of the four eigenvectors. Each inlet reports the

eigenvalue λi, and the associated effectiveness λi/(λi + 1) (diamonds).
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Decay in e↵ectiveness

Decay in proxy potential for HTISR

DPP EPP DPP EPP

Figure 4. (a),(b) Decay in e↵ectiveness of (a) each individual observation ✓? and (b) the

eigenvectors vi of the combined observing system (eq. (3)), as a function of ↵. Incresasing the

parameter ↵ inflates the observational noise (↵R) from no noise (↵ = 0) to full noise (↵ =1).

Without noise, all observations have an equal e�ciency of 100%. The colored diamonds repeat

the values for �/(� + 1) from Fig. 2, Table 1, and Figs. 3(c)-(f). (c),(d) Decay in proxy potential

for the QoI, HTISR, again as a function of ↵. Without noise, proxy potential is equal to DPP

(pentagons, cf. Figs. ??(a)-(f)); but decays to EPP (squares) for fully inflated noise. The black

dashed curve in (c) coincides with the one in (d), showing proxy potential for all observations

combined. The yellow symbols in (a),(c) are repeated from Fig. 2.
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Figure 9. (a),(b) Decay in effectiveness of (a) each individual observation θ? and (b) the

eigenvectors vi of the combined observing system (eq. (19)), as a function of α. Incresasing the

parameter α inflates the observational noise (αR) from no noise (α = 0) to full noise (α =1).

Without noise, all observations have an equal effectiveness of 100%. The colored diamonds re-

peat the values for λ/(λ + 1) from Fig. 7 and Figs. 8(c)-(f). (c),(d) Decay in proxy potential

for the QoI, HTISR, again as a function of α. Without noise, proxy potential is equal to DPP

(pentagons, cf. Figs. 4(b)-(e), Fig. 6(f)); but decays to EPP (squares) for fully inflated noise.

The black dashed curve in (c) coincides with the one in (d), and shows proxy potential for all

observations combined.
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noise covariance by a factor α, to αR. As α varies from 0 (no noise) to 1 (full noise), ef-493

fectiveness decays as λ/(λ+α), from 100% to λ/(λ+1) (eq. (B1)). Here, λ is a place-494

holder for either a SensNR λ? (Fig. 9(a)) or an eigenvalue λi (Fig. 9(b)). The decay in495

effectiveness of the surface observation θC (Fig. 9(a)) as well as v1 (Fig. 9(b)) is slower496

than that of the remaining observations and eigenvectors.497

Decay in effectiveness causes decay in proxy potential. When inflating observational498

noise, proxy potential decays as λ?/(λ?+α) · (q•v?)2 for each individual observation499

(Fig. 9(c)), and as500

4∑

i=1

λi
λi + α

(q • vi)
2 (21)501

for the full observing system (Fig. 9(d)), see Appendix B. For noise-free observations,502

proxy potential is equal to DPP (α = 0, colored pentagons). It decays to EPP for fully503

inflated noise (α = 1, colored squares). Even though the surface observation θC has high-504

est SensNR and, thus, slowest decay in effectiveness (Fig. 9(a)), its proxy potential for505

HTISR is lower than that of the subsurface observations θA and θD, due to its almost506

negligible DPP at the very outset α = 0 (Fig. 9(c)). Through a similar argument, v1507

contributes less to proxy potential than v2 and v3 (Fig. 9(d)), despite its relatively high-508

est effectiveness (Fig. 9(b)). The insignificance of θC implies that proxy potential of the509

observing system {θA, θB , θC , θD} for HTISR is essentially insensitive to the choice of the510

observation error εC (Figs. S1(g)-(i)).511

4 Discussion512

Hessian UQ and optimal observing system design have remained under-explored513

computational tools in oceanography, despite their successful application by the NWP514

and CSE communities. In this paper, we provided dynamical insight into Hessian UQ515

and how to leverage this method to design ocean climate observing systems. Our results516

warrant some general, conceptual remarks (section 4.1), as well as discussion of specific517

implications for our North Atlantic case study (section 4.2). We conclude with a discus-518

sion of dimension reductions of the Hessian (section 4.3), limitations (section 4.4), and519

an outlook (section 4.5).520

4.1 Conceptual considerations521

In the context of Hessian UQ, optimality refers to a well-defined goal of the observ-522

ing system, often expressed in terms of one or several QoIs to be monitored (e.g., ocean523

transports) or predicted (e.g., sea-ice area). Given such a QoI, we rephrased the degree524

of optimality of an observing system in terms of ‘proxy potential’ (eq. (12)), defined as525

the reduction in QoI uncertainty (on a scale of 0% to 100%) that would be achieved if526

the observing system was added to the ocean state estimate. We showed that proxy po-527

tential combines three main concepts: (i) the degree of shared adjustment physics be-528

tween QoI and observations, measured by the projections q • vi (Fig. 4); (ii) data re-529

dundancy versus complementarity of the distinct members of the observing system, through530

orthogonality of {vi} (Figs. 5, 6); and (iii) the sensitivity-to-noise ratios (SensNR) of the531

observational assets, which determine the effectiveness of the observing system, through532

multiplication by the factors λi/(λi + 1) (Fig. 9).533

Concept (i) can be interpreted as the dynamical analogue of statistical correlation534

between QoI and observations, where proxy origins (in the space of uncertain control vari-535

ables) are unambiguously identified by the adjoint model (Loose et al., 2020).536

Concept (ii) is associated with the eigenvectors vi of the misfit Hessian. Given their537

orthogonal structure, the eigenvectors may be compared to statistical empirical orthog-538

onal functions (EOFs), but with the following important distinction. Whereas EOF pat-539
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terns are based purely on statistical evidence, the Hessian eigenvector patterns are com-540

puted through the model’s linearized dynamics. The eigenvector patterns arise as a lin-541

ear combination from sensitivities of the observed quantities that are part of the observ-542

ing system under investigation. They elucidate the dynamical connections between changes543

registered by the observing system and (local and remote) oceanic perturbations back544

in time that cause these observed changes (Fig. 8).545

Concept (iii) is linked to the eigenvalues λi of the misfit Hessian. The eigenvalues546

quantify the strength of the constraints imposed by the observing system, and are de-547

termined by the SensNR of all observations that are part of the observing system. The548

SensNR of an observation can be regarded as the dynamical analogue of the statistical549

signal-to-noise ratio (SNR). The SensNR accounts for all possible forcing scenarios (as550

captured by changes in the control variables), while the SNR is based on the statistics551

of observed or simulated data, which samples only certain forcing occurrences. The lead-552

ing eigenvectors inherit the sensitivity patterns from observations with highest SensNR553

(Figs. 8, S.1). The higher the observations’ SensNRs (or eigenvalues), the more efficiently554

the observations reduce uncertainty in the state estimate and QoIs (Fig. 9).555

4.2 Implications for our case study556

We found that wind anomalies in the coastal and topographic wave guides, along557

the eastern and northern boundaries of the North Atlantic, are the largest origins of proxy558

potential (Fig. 4). Such wind anomalies drive pressure adjustment mechanisms with a559

basin-wide response in North Atlantic circulation and temperature (Loose et al., 2020):560

adjustments that are registered by QoIs and observations alike, even if the observing sys-561

tem is remote from the QoI. This result can be rephrased in terms of UQ (Fig. 1) as fol-562

lows. North Atlantic temperature observations reduce uncertainties in various atmospheric563

forcing variables at various locations (via path UQ1). Among these, it is primarily un-564

certainty reduction in momentum fluxes along the eastern and northern boundaries of565

the North Atlantic which then lead to uncertainty reduction in the QoI (via path UQ2).566

For a given subsurface temperature observation in the Irminger Sea, our Hessian567

UQ analysis revealed that a subsurface temperature observation off the Portuguese coast568

would provide more independent information than a subsurface temperature observa-569

tion in Denmark Strait (Figs. 5, 6). This result is explained by the fact that the Irminger570

Sea and Denmark Strait subsurface observations have very similar adjustment physics.571

Finally, our case study suggests that surface temperature observations have lower572

proxy potential for remote QoIs than subsurface temperature observations, despite their573

higher SensNR (Fig. 9). This is due to strong sensitivity of surface temperature to lo-574

cal air-sea fluxes, which overrides their sensitivity to the large-scale, basin-wide adjust-575

ment mechanisms that are relevant for remote QoIs (Fig. 4).576

4.3 Dimension reduction577

One of the main computational challenges to UQ is the curse of dimensionality (Bellman,578

1957). Since the uncertain parametric model inputs (or control variables) are typically579

adjusted on a grid point basis of the GCM, their number is large: O(106) to O(108). The580

calculation of the full Hessian – a matrix with O(1012) to O(1016) elements – would re-581

quire years of extensive computer resources, an intractable endeavor.582

The success of Hessian UQ relies on approaches that are more computationally ef-583

ficient, two of which we consider: first, an a-priori reduction, and second, a data-informed584

reduction of the control space dimension. In this paper we have pursued the second ap-585

proach, as further discussed in the next paragraph. In contrast, Kaminski et al. (2015,586

2018) follow the first approach, by aggregating and adjusting their control variables uni-587

formly over large regions (e.g., Fig. 2 in Kaminski et al., 2015), rather than on a model588
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Figure 10. (a),(b): Replot of Figs. 4(a),(b). (c): Definition of eight ‘large regions’ covering

the global ocean. (d),(e): Same ⌧y sensitivities as in (a),(b), but now accumulated over the eight

regions defined in (c). The maps in (d),(e) are the ⌧y restictions of q and vA, if the control space

is reduced a-priori from O(106) dimensions (Table 1) to only 32, via the ‘large region approach’.

The yellow labels show the values for dynamical proxy potential (DPP, eq. (??)), using the full

control space (cf. Fig. 4(b)) and the a-priori reduced control space. On the right, DPP evaluates

to 0% due to an entire cancellation in the projection q • vA. For instance, sensitivities of equal

sign in the subtropical Atlantic (region 2, (d) vs. (e)) make a positive contribution to q • vA,

while sensitivities of opposite sign in the Norwegian Sea (region 5, (d) vs. (e)) make a negative

contribution.

Due to di�culties with a-priori reductions (Fig. 10), we followed and advocate the537

approach of data-informed reductions of the control space, which exploit the following538

fact. Even though the Hessian in our North Atlantic case study consists of O(1012) en-539

tries (section 3.1.2), the misfit Hessian is only of rank 4, equal to the number of obser-540

vations involved. The four Hessian misfit eigenvectors with non-zero eigenvalues capture541

the Hessian’s full information and were extracted e�ciently. This concept generalizes to542

full observing systems, e.g., mooring arrays, which include thousands to millions of ob-543

servations in time and space. While it is then intractable to compute all (thousands to544

millions of) misfit Hessian eigenvectors, randomized algorithms for low-rank approxima-545

tions can be used to extract the leading ones with highest eigenvalues (M 0 ⌧ M in eq. (3),546

Bui-Thanh et al., 2012; Liberty et al., 2007). Moore et al. (2017) performed a related547

technique in a regional ocean setting, and obtained data-informed reduced-rank approx-548

imations of the Hessian, but with reductions sought in the observation space, rather than549

the control space. The two approaches are equivalent (or ‘dual’ to each other), and the550

implementation of the underlying variational data assimilation scheme may determine551

which of the two approaches is more convenient to employ. We argue that an eigende-552

composition in the control space, as suggested here, may allow a more straightforward553

detection of proxy origins.554

Our results suggest that surface temperature observations have lower proxy poten-555

tial for remote QoIs than subsurface temperature observations, despite their higher Sen-556

sNR (Fig. ??). This is explained by the strong sensitivity of surface temperature to lo-557

cal air-sea fluxes, which overrides their sensitivity to the large-scale basin-wide adjust-558

ment mechanisms that are relevant for remote QoIs (Fig. ??). On the one hand, this re-559

sult emphasizes that the stopping criterion for truncating the eigenvalue spectrum has560
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Figure 1. (a),(b): Replot of Figs. ??(a),(b). (c): Definition of eight ‘large regions’ covering

the global ocean. (d),(e): Same ⌧y sensitivities as in (a),(b), but now accumulated over the eight

regions defined in (c). The maps in (d),(e) are the ⌧y restictions of q and vA, if the control space

is reduced a-priori from O(106) dimensions (Table ??) to only 32, via the ‘large region approach’.

The yellow labels show the values for dynamical proxy potential (DPP, eq. (??)), using the full

control space (cf. Fig. ??(b)) and the a-priori reduced control space. On the right, DPP evaluates

to 0% due to an entire cancellation in the projection q • vA. For instance, sensitivities of equal

sign in the subtropical Atlantic (region 2, (d) vs. (e)) make a positive contribution to q • vA,

while sensitivities of opposite sign in the Norwegian Sea (region 5, (d) vs. (e)) make a negative

contribution.

SensNR (Figs. ??,S.1). The higher the observations’ SensNRs (or eigenvalues), the less108

pronounced is the noise-masking of proxy potential (Fig. ??).109

Atmospheric forcing variables, as well as the remaining control variables in the un-110

derlying ocean state estimaton and Hessian UQ framework (Fig. ??), provide the for-111

mal candidates for proxy origin. Since the control variables are typically adjusted on a112

grid point basis of the GCM, their number is large: O(106) to O(108). The calculation113

of the full Hessian - a matrix with O(1012) to O(1016) elements - would require years of114

heavy computer resources: an intractable endeavor. The success of Hessian UQ relies there-115

fore on a computationally more e�cient approach, with two possible solutions: first, an116

a-priori reduction, and second, a data-informed (a-posteriori) reduction of the control117

space. In this paper we have outlaid the second approach, as further discussed in the next118

paragraph. Meanwhile, Kaminski et al. (2015, 2018) follow the first approach, and ad-119

just their control variables uniformly over large regions (e.g., Fig. 2 in Kaminski et al.,120

2015), rather than on a model grid point basis. This ‘large region approach’ reduces their121

control space to a total of about 150 control variables, and it is then feasible to explic-122

itly compute the full Hessian (1502 entries). In practice, the large region approach en-123

tails to spatially accumulate sensitivities of QoIs and observed quantities over the de-124

fined large regions, as exemplified in Fig. 1. The eight regions defined in Fig. 1(c) would125

reduce the dimension of our control space from O(106) (Table ??) to 8·4 = 32. Mean-126

while, the spatial accumulation of sensitivities would imply that proxy origins and ad-127

justment mechanisms, e.g., along the basin boundaries, are no longer resolved (Figs. 1(d),(e))128

and proxy potential would be artificially lost (yellow label).129

Due to di�culties with a-priori reductions (Fig. 1), we followed and advocate the130

approach of data-informed reductions of the control space, which exploit the following131
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Figure 10. (a),(b): Replot of Figs. 4(a),(b). (c): Definition of eight ‘large regions’ covering

the global ocean. (d),(e): Same τy sensitivities as in (a),(b), but now accumulated over the eight

regions defined in (c). The maps in (d),(e) are the τy restictions of q and vA, if the control space

is reduced a-priori from O(106) dimensions (Table 1) to only 32, via the ‘large region approach’.

The yellow labels show the values for dynamical proxy potential (DPP, eq. (11)), using the full

control space (left, cf. Fig. 4(b)) and the a-priori reduced control space (right). On the right,

DPP evaluates to 0% due to an entire cancellation in the projection q • vA. For instance, sen-

sitivities of equal sign in the subtropical Atlantic (region 2, (d) vs. (e)) make a strongly positive

contribution to q • vA, while sensitivities of opposite sign in the Norwegian Sea (region 5, (d) vs.

(e)) make a strongly negative contribution.

grid point basis. This ‘large region approach’ reduces their control space to a total of589

about 150 control variables, and it is then feasible to explicitly compute the full Hessian590

(1502 entries). In practice, the large region approach requires to spatially accumulate591

sensitivities of QoIs and observed quantities over the pre-defined large regions, as exem-592

plified in Fig. 10. The eight regions defined in Fig. 10(c) reduce the dimension of our con-593

trol space from O(106) (Table 1) to 8 · 4 = 32. However, the spatial accumulation of594

sensitivities implies that proxy origins and adjustment mechanisms, e.g., along the basin595

boundaries, are no longer resolved (Figs. 10(d),(e)) and proxy potential is artificially lost596

(right yellow label). Note that for other QoIs, this approach could overestimate (rather597

than underestimate) proxy potential and uncertainty reduction.598

Because of the ad-hoc nature of a-priori control space reductions, and the difficul-599

ties it incurs (Fig. 10), we advocate the approach of data-informed reductions of the con-600

trol space for the following reason. Even though the Hessian in our North Atlantic case601

study consists of O(1012) entries (section 3.1), the misfit Hessian is only of rank 4, equal602

to the number of observations involved. The four Hessian misfit eigenvectors with non-603

zero eigenvalues capture the Hessian’s full information. They were extracted efficiently604

while preserving the physical mechanism that led to uncertainty reduction. The concept605

of data-informed control space reduction generalizes to large, complex observing systems,606

e.g., mixed mooring arrays and autonomous instruments, which include thousands to mil-607

lions of observations in time and space. While it becomes intractable to compute all (thou-608

sands to millions of) misfit Hessian eigenvectors, randomized numerical linear algebra609

for low-rank approximations can be used to extract the leading eigenvectors with high-610

est eigenvalues (M ′ � M in eq. (3), Bui-Thanh et al., 2012; Kalmikov & Heimbach,611

2014; Liberty et al., 2007).612
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Moore et al. (2017) used a related technique in a regional ocean setting. They de-613

rived data-informed reduced-rank approximations of the Hessian, but with reductions614

sought in the observation space, rather than the control space. The two approaches are615

equivalent (or ‘dual’ to each other), and the implementation of the underlying variational616

data assimilation scheme may determine which of the two approaches is more convenient617

to employ. We argue that an eigen-decomposition in the control space, as suggested here,618

has the appeal of a straightforward dynamical attribution of proxy origins.619

4.4 Limitations620

Some shortcomings of the method presented should be acknowledged. Hessian UQ621

relies on an accurate specification of the prior and noise covariance matrices, B and R622

(eq. (1)). This is emphasized, for instance, by the fact that the relative weight of sur-623

face vs. subsurface observational noise determines the observations’ relative effectiveness,624

and thus the patterns that dominate the leading eigenvectors of the misfit Hessian (Fig. S.1).625

A second limitation is that Hessian UQ makes a Gaussian approximation of the poste-626

rior probability function for the uncertain control space and the estimated ocean state627

space. This approximation is accurate if the linearized model provides a good represen-628

tation of the ocean dynamics on the time scales investigated. The results by Loose et629

al. (2020) indicate that on the five-year time scale considered, nonlinearity is not a ma-630

jor obstacle. A third shortcoming is that the results may suffer from model dependency,631

a problem common to all methods for model-informed observing system design.632

4.5 Outlook633

In our case study, we made simplifying assumptions regarding the control variables634

and the prior error covariance matrix (Table 1) to enable a clearer understanding of the635

methodology. These simplifications are readily relaxed in future work. Based on the in-636

sights gained here, we aim to compute reduced-rank approximations of the Hessian for637

large observing systems within the ECCO framework. Our case study highlights that638

the stopping criterion for truncating the eigenvalue spectrum has to be chosen carefully,639

because the leading Hessian eigenvectors are not always the most important ones for in-640

forming a given QoI. Indeed, eigenvectors lower down in the spectrum captured impor-641

tant dynamical teleconnections originating from the sensitivity of subsurface (rather than642

surface) observations. Future work should address the interesting question whether the643

abundance of surface observations (available from satellite altimetry) and their mutual644

complementarity (due to their local sensitivity) may be able to cover for the large-scale645

sensitivities of subsurface observations.646

The technique presented in this paper is complementary to the more widely used647

OSSEs. Hessian UQ elucidates dynamical teleconnections that communicate observa-648

tional constraints – via ocean currents, wave dynamics, Ekman dynamics, and geostro-649

phy – over basin-scale distances and on monthly to interannual time scales. It provides650

an approach for guiding the design of observing systems that (1) maximize the informa-651

tion about QoIs that are difficult or impossible to observe directly, and (2) are comple-652

mentary to the existing observational database. We hope that Hessian UQ, in combi-653

nation with OSSEs and other tools, will be more widely used for tackling the grand com-654

munity challenge of co-designing a cost-effective and long-term Atlantic observing sys-655

tem in the coming years.656

Appendix A Eigen-Decomposition of the Misfit Hessian657

For an observing system with M observations, the eigen-decomposition of the mis-658

fit Hessian (eq. (3)) can be computed from the prior-weighted sensitivity vectors ci =659
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B1/2∇xObsi via the following two steps: (M.1) a QR decomposition of B1/2 AT in RN660

and (M.2) and an eigen-decomposition in RM , cf. Figs. 2(c)-(e).661

In step (M.1), the QR decomposition of B1/2 AT =
(

c1 · · · cM
)

is computed662

via the Gram-Schmidt process:663

• w̃1 := c1, w1 = ‖w̃1‖−1 w̃1664

• For j = 2, . . . ,M : w̃j = cj −
∑j−1
i=1 cj •wi, wj = ‖w̃j‖−1 w̃j665

Then the matrices Q :=
(

w1 . . . wM

)
∈ RN×M and666

R̃ =




‖w̃1‖ w1 • b2 w1 • b3 · · ·
0 ‖w̃2‖ w2 • b3 · · ·
0 0 ‖w̃3‖ · · ·
...

...
...

. . .


 ∈ RM×M667

provide the desired QR decomposition, i.e., they satisfy B1/2 AT = QR̃. In step (M.2),668

one finds an orthogonal M ×M matrix O and λ1 ≥ . . . ≥ λM ≥ 0 such that669

R̃ R−1 R̃T = O diag(λ1, . . . , λM ) OT ,670

by means of dense matrix algebra. Combining steps (M.1) and (M.2) gives671

Hmisfit = B1/2 AT R−1 A B1/2 = Q R̃ R−1 R̃T QT = QO diag(λ1, . . . , λM ) OTQT ,672

and the ith column of QO contains the ith eigenvector of Hmisfit, with corresponding eigen-673

value λi ≥ 0. The eigenvectors corresponding to non-zero eigenvalues are the data-informed674

directions v1, . . . ,vM ′ .675

Step (M.2) is feasible, as long as the number of observations, M , is small enough676

to allow for dense matrix algebra in RM . For large M , one has to resort to randomized677

numerical linear algebra for low-rank approximations of the misfit Hessian. Such ran-678

domized algorithms continue to follow the outlined steps (M.1) and (M.2), except that679

the decomposition in (M.1) is substituted by an approximate, low-rank QR factoriza-680

tion (Halko et al., 2011; Liberty et al., 2007).681

Appendix B Inflating Noise and Prior Covariances682

Modifying the noise covariance matrix via R → αR reflects a uniform deflation683

(0 < α < 1) or inflation (α > 1) of observational noise. This modification results in a684

reciprocal scaling of the misfit Hessian, Hmisfit → Hmisfit/α. Here, we substituted αR685

for R in eq. (3), and assume the sensitivity matrix A unchanged (even though its eval-686

uation point may change). The scaled misfit Hessian, Hmisfit/α, has unchanged eigen-687

vectors vi, and new eigenvalues λi/α. Therefore, effectiveness scales as688

λ

λ+ 1
→ (λ/α)

λ/α+ 1
=

λ

λ+ α
(B1)689

and proxy potential as in eq. (21).690

We note that the same scaling of the misfit Hessian, Hmisfit → Hmisfit/α, can be691

achieved by modifying the prior covariance matrix via B→ B/α, while keeping the noise692

covariance matrix unchanged. The value α = 0 in Fig. 9 corresponds therefore either693

to the limit of vanishing observational noise or inifinite prior uncertainty. Similarly, α =694

1 represents not only the case of unchanged R and B, but also the case of γR and B/γ,695

for any γ > 0.696
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