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Text S1. Inverse Uncertainty Propagation. The Bayesian approach states the

deterministic inverse problem (eq. (1)) as one of Bayesian inference over the space of

unknown control variables, which are to be inferred from the observations and the ocean

GCM dynamics. The solution is given by the posterior probability density function

πpost(x|y) ∝ e−J(x). Hence, the deterministic and Bayesian formulation of the inverse

problem are interconnected by the fact that the deterministic least squares cost function

J is the negative log-posterior in the Bayesian interpretation. Furthermore, the deter-

ministic solution xmin is the Maximum a Posteriori (MAP) point, i.e., the most likely
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solution, in the Bayesian framework. For more details, the reader is referred to the books

by Tarantola (2005); Law, Stuart, and Zygalakis (2015).

To make the computation of the posterior probability density function πpost(x|y) com-

putationally tractable, a linearization of the observation operator about the MAP Point,

xmin, is necessary (e.g., Bui-Thanh et al., 2012). This yields

Obs(x) ≈ Obs(xmin) + A(x− xmin), (S.1)

where A = ∂(Obs)
∂x |xmin

is the Jacobian matrix of the observation operator x 7→ Obs(x),

evaluated at xmin. The posterior distribution πpost(x|y) ∝ e−J(x) then becomes

πpost(x|y) ∝ C · exp

(
−1

2

[
(x− xmin)T (AT R−1 A + B−1 )−1(x− xmin)

])
, (S.2)

where C is a constant factor, given by

C = exp

(
−1

2

[
(y −Obs(xmin))T R−1 (y −Obs(xmin)) + (xmin − x0)T B−1 (xmin − x0)

])
,

and can therefore be absorbed by the proportionality ∝. The right hand side of eq. (S.2)

describes a Gaussian N (xmin,P) with mean xmin and covariance matrix

P = (AT R−1 A + B−1)−1. (S.3)

The covariance matrix P (eq. (S.3)) is equal to H−1
J , the inverse of the linearized Hessian

matrix of the cost function J (eq. (1)) at xmin (see also Thacker, 1989).

The linearized Hessian HJ , in turn, is the sum of two matrices: AT R−1 A, which is

the linearized Hessian of the model-data misfit term Jmisfit (eq. (1)), and B−1, which is

the Hessian of the regularization term Jprior (eq. (1)). It is the first matrix, AT R−1 A,
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that characterizes the observational constraints on the control variables. Therefore, as a

next step, we perform an eigen-decomposition of the misfit Hessian. This will give fur-

ther insights into the model input components that are best determined by the observing

system under consideration.

As a preparatory step, we nondimensionalize the model-data misfit term, Jmisfit, through

a change of variables u = B−1/2 x. Here, B1/2 is an invertible square root of B, i.e., sat-

isfies B1/2 BT/2 = B. Nondimensionalization is necessary in order to treat all control

variables equally, since they represent different physical variables, characteristic of differ-

ent orders of magnitudes. In the new coordinates, the Hessian of Jmisfit(u) is given by

the nondimensionalized misfit Hessian (also referred to as the prior-preconditioned misfit

Hessian, e.g., Bui-Thanh et al., 2012), equal to the N ×N matrix

Hmisfit = BT/2 AT R−1 A B1/2. (S.4)

For simpicity, we will hereafter drop the term ’nondimensionalized’, and refer to Hmisfit

solely as the misfit Hessian. The misfit Hessian can be rewritten in terms of its eigen-

decomposition:

Hmisfit =
M ′∑

i=1

λiviv
T
i , (S.5)

with an orthonormal set of eigenvectors {vi}M ′
i=1 and corresponsing eigenvalues λi > 0. M ′

is defined as the number of strictly positive eigenvalues, while all remaining eigenvalues

λi, i > M ′, are equal to zero.
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The Woodbury Formula (e.g., Section 2.7.3 in Press et al., 2007) states that, given any

N ×N matrix M and any N ×M ′ matrix V, the following identity holds true:

(M + VVT )−1 = M−1 −M−1V (1 + VTM−1V)−1 VTM−1. (S.6)

Here, 1M ′×M ′ is the M ′ × M ′ identity matrix. Assuming M−1 is already known, the

formula provides an efficient way to compute the inverse of the sum of M and a low-rank

matrix VVT (if M ′ � N). Using eqs. (S.3), (S.4), and (S.5), we have

P = B1/2
(
H̃misfit + I

)−1

BT/2

= B1/2

(
M ′∑

i=1

λiviv
T
i + I

)−1

BT/2. (S.7)

The Woodbury Formula (eq. (S.6)) can now be applied to the inner piece in eq. (S.7),

with M = 1N×N and V defined as the matrix formed by columns of
√
λi · vi:

V =

[
√
λ1 · v1

∣∣∣ · · ·
∣∣∣
√
λM ′ · vM ′

]
.

This yields

P = B1/2

(
1−

M ′∑

i=1

λi
λi + 1

viv
T
i

)
BT/2 = B−

M ′∑

i=1

λi
λi + 1

(
B1/2 vi

) (
B1/2 vi

)T
,

using the fact that {vi}M ′
i=1 is a set of orthonormal vectors.

Text S2. Forward Uncertainty Propagation. Consistent with the linearization of

the observation operator (eq. (S.1)), the function x 7→ QoI(x) is linearized about xmin:

QoI(x) ≈ QoI(xmin) +
∂(QoI)

∂x |xmin

(x− xmin). (S.8)

The posterior distribution of the Bayesian solution of the inverse problem, πpost(x|y),

is approximately Gaussian, given by N (xmin,P), with P given by eq. (2). A forward
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propagation of the posterior uncertainty (dotted black arrow, (UQ2), Fig. 1) leads to a

posterior Gaussian distribution for QoI(x), since eq. (S.8) describes an affine transfor-

mation. The distribution is given by N (QoI(xmin), (σP
QoI)

2), where (σP
QoI)

2 is the (scalar)

variance, given by the projection

(σP
QoI)

2 = (∇xQoI)T P (∇xQoI) .

Similarly, the prior distribution of QoI(x) is obtained by a forward uncertainty propagation

of the Gaussian prior N (x0,B) (dotted green arrow, (UQ2), Fig. 1). This leads to a prior

Gaussian distribution for QoI(x), given by N (QoI(x0), (σB
QoI)

2) with

(σB
QoI)

2 = (∇xQoI)T B (∇xQoI) .
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We now combine all four temperature observations in our case study, while taking into73

account observational noise. In eq. (??), the resulting observing system is represented74

by75

Obs =
�
✓A, ✓B , ✓C , ✓D

�
, R = diag("2

A, "2
B , "2

C , "2
D). (1)76

Here, the noise variances "2
? are chosen as in Table ??. For the sake of brevity, we focus77

on the case "C = 0.2 �C, while the cases "C = 0.1 �C and "C = 0.3 �C are presented78

in the supporting information (Fig. S.1). We compute the eigenvectors and eigenvalues,79

{vi, �i}4
i=1, of the misfit Hessian Hmisfit (eq. (??)), as described in Figs. ??(c)-(e) and80

Appendix A.81

–4–

Figure S1. Figure caption on following page.
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Figure S1. The panels in the middle column, i.e., (b),(e),(h), coincide with

Figs. 8(a),(c), and Fig. 9(d). The left and the right column are as the middle col-

umn, but for a different choice of εC . (a)-(c): Orientation of the first eigenvector, v1

(black vector) within the {θA, θC}-informed subspace of the control space. The ellipses

show the contour lines of Jmisfit(u). The larger εC , the more v1 deviates from vC , from

v1 = vC in (a) to v1 being almost orthogonal to vC in (c). (d)-(f): τy component of v1.

The inlets show the corresponding eigenvalue λ1, as well as the associated effectiveness

λ1/(λ1 + 1) (diamonds). The larger εC , the more v1 reflects the characteristic sensitiv-

ity patterns of the subsurface observations, concentrated along the eastern and northern

boundary of the North Atlantic (cf. Fig. 4), but the lower λ1 and λ1/(λ1 + 1). (g)-(i):

Decay in proxy potential for the QoI, HTISR, as a function of α. For all three cases, the

DPP (α = 0) is equal to 35.0%. From left to right, the EPP (α = 1) decreases slightly

(although almost negligibly) from 12.6% in (g) to 12.2% in (i). From left to right, the

main contribution to proxy potential shifts from the second to the first eigenvector.
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