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Abstract

Vegetation  plays  a  key  role  in  regulating  the  material  and  energy  exchanges  among  the  biosphere,  the

atmosphere, and the pedosphere. Modeling and predicting vegetation key variables such as leaf area index

(LAI) and gross primary productivity (GPP) is crucial to understand and project the processes of vegetation

growth in response to climate change. While a number of studies developed models to simulate vegetation

GPP using satellite-derived LAI, the requirement of satellite-based model inputs largely limits the predicting

power of these developed models. This study developed the machine learning models, including both support

vector regression (SVR) and random forests (RF), which are capable of modeling LAI and GPP time series

using only meteorological variables. We first simulated the LAI time series directly using meteorological

variables as inputs to the machine learning models and then buffered its unrealistic day-to-day fluctuation, and

further modeled the GPP time series using meteorological variables and modeled LAI time series. We tested

our methods for four main plant functional types across North America and evaluated the models using both

satellite-based and flux tower data. The results demonstrate that the machine learning models perform well on

simulating the time series of both LAI and GPP. We identified that there is a need to improve the phenology

representation in the Biome-BGC model. The machine learning models provide an alternative way to predict

time series of LAI and GPP using only meteorological variables across large geographic regions, and also

provide benchmarking accuracies for future developments of the process-based models.

Keywords: leaf area index; machine learning; gross primary productivity; terrestrial ecosystem models
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1. Introduction

Terrestrial vegetation, through a series of physiological and ecological processes such as radiative transfer,

photosynthesis,  respiration,  and  evapotranspiration,  exchanges  material  and  energy  with  the  atmosphere,

pedosphere, and the other spheres, and affects the interaction between the land surface and the atmosphere.

Studying and modeling of the physiological and ecological processes of vegetation in response to climate and

environmental changes help understand the interaction and degree of global climate change and terrestrial

surface processes. Ecological metrics such as leaf area index (LAI), gross primary productivity (GPP), net

primary productivity (NPP) and evapotranspiration (ET) are quantitative indicators for studying the ecosystem

processes, and are key variables in terrestrial ecosystem models. The simulation accuracies of these ecological

metrics largely mark the robustness and reliability of the terrestrial ecosystem models, and therefore, they

have become important and difficult problems in many ecosystem modeling studies.

Vegetation GPP,  defined as the amount of organic carbon fixed by green plants through photosynthesis per

unit area per unit time, is the energy basis for vegetation to perform the other physiological and ecological

activities, and is a key indicator of carbon flux exchange between terrestrial ecosystems and the atmosphere.

Thanks to experimental studies at the leaf level, our understanding on leaf photosynthesis is greatly improved

and scientific researchers have developed methods, such as the light use efficiency (LUE) models, process-

based  terrestrial  ecosystem models  and  machine  learning  models,  to  simulate  GPP under  given  climate

conditions and LAI (defined as green leaf area per unit ground area). The LUE model assumes that light use

efficiency  that  plant  leaves  absorb  and  transform  solar  radiation  for  photosynthesis  is  reduced  under

environmental  constraints.  The  LUE  models  often  have  simple  forms  and  are  suitable  for  large-scale

modelling with satellite-derived LAI data. The widely used LUE models include CASA [C B Field et al.,

1995;  C S Potter et al.,  1993], MOD17  [S Running et  al.,  2000],  Eddy Covariance-Light Use Efficiency

(ECLUE) [W Yuan et al., 2007], and two-leaf light use efficiency (TL-LUE) [M He et al., 2013] model. The
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process-based terrestrial ecosystem models depict the physiological and  ecological  mechanisms associated

with vegetation growth and development in details, including radiative transfer, photosynthesis, respiration,

evapotranspiration, and soil processes. The process-based terrestrial ecosystem models mark the state-of-the-

art scientific understanding and achievement in numerical modeling of the ecosystem processes. Terrestrial

ecosystem models provide a number of output variables associated with energy and material fluxes between

the biosphere and the atmosphere. The widely used terrestrial ecosystem models and land surface models

include Biome-BGC [M A White, Thornton, P. E. , Running, S. W. , & Nemani, R. R. . , 2000], SiB2 [Piers J.

Sellers et al., 1996; P. J. Sellers et al., 1996], TEM [Q Zhuang et al., 2011], JULES [M J Best et al., 2011; D

B Clark et  al.,  2011],  CLM  [K W Oleson et  al.,  2013],  and CoLM  [Y Dai et  al.,  2003].  These  models

commonly adopt the photosynthesis model proposed by [G D Farquhar et al., 1980] and [G J Collatz et al.,

1991] to simulate leaf-scale photosynthesis rates and further upscale leaf photosynthesis to the canopy level.

The Terrestrial ecosystem models have sound scientific basis but rely on climate forcing variables and model

parameterization. Accompanying the development of the computer science, machine learning models, such as

artificial  neural  network  (ANN)  and  support  vector  machine  (SVM),  have  been  applied  in  modeling

ecosystem processes. Machine learning models are data-driven models based on mathematical and statistical

principles and establish the non-linear relationships between input and target features by minimizing the loss

function through an iterative training process [M F McCabe et al., 2017; J Verrelst et al., 2015]. A number of

studies had proven that the performance of machine learning models on simulating vegetation GPP and its

time series. For example, [F Yang et al., 2007] trained SVM to predict vegetation GPP using remote sensing

variables,  such  as  land  surface  temperature,  enhanced  vegetation  index  (EVI),  land  cover,  and  ground-

measured climate variables. [M Schlund et al., 2020] proposed a new two-step approach that apply an existing

emergent  constraint  on  CO2 fertilization  in  combination  with  a  supervised  machine  learning  model  to

constrain uncertainties in multi-model predictions of GPP. The machine learning models once developed and

trained have fast computing capabilities, and can be conveniently applied to studies on the continental or
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global scale. However, it is nearly impossible to interpret the processes in the model and gain knowledge on

the physiological mechanisms of vegetation processes.

Vegetation LAI, the metric that reflects the amount of vegetation leaves, is the core input or intermediate

variable in the above-mentioned models for GPP simulation. In essence, our ability to simulate LAI largely

determines the accuracy of the modeled GPP as well as related ecosystem processes. The current models,

however, still have limited accuracies on simulating vegetation LAI time series. The LUE models and the

machine learning-based models normally adopt observational LAI data obtained from field measurements or

remote  sensing  images,  and  thus  have  limited  predicting  powers  when  observational  LAI  data  are  not

available. LAI used in terrestrial ecosystem models or land surface models can be static (i.e., using time series

or temporally averaged LAI derived from satellite data on a pixel basis)  or dynamic (i.e.,  predicting the

seasonality of LAI based on climate drivers). A number of numeric models, such as Ecosys [R F Grant et al.,

2009], Biome-BGC [M A White, Thornton, P. E. , Running, S. W. , & Nemani, R. R. . , 2000], IBIS [J A Foley

et al., 1996], and ORCHIDEE [G Krinner et al., 2005], enclose a phenology sub-model to simulate LAI time

series  via  meteorological  variables.  The  land  surface  models  such  as  CLM simulates  the  timing  of  key

phenological phases, such as spring onset and autumn offset, using a combination of empirical equations. The

dynamic global vegetation models such as LPJ-ML use equations that directly predict LAI time series from

meteorological variables. [A D Richardson et al., 2012] highlighted considerable uncertainties associated with

vegetation phenology modeling in 14 state-of the-art terrestrial ecosystem models.

To our best knowledge, nearly few studies to date attempt to develop machine learning models for simulating

LAI time series or seasonal cycles using only meteorological variables as model inputs. There are a number of

studies that adopt machine learning approaches to retrieve LAI time series or key phenophases from remote

sensing data. For example, [T Wang et al., 2017] compared machine learning models that retrieve LAI from

5

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

5



several  Moderate-resolution Imaging Spectroradiometer  (MODIS) products.  [R Houborg and M McCabe,

2018] found that combining random forest and the Cubist model is able to derive LAI and key phenophases

well from satellite-derived indexes. While satellite-based studies provide valuable time series of LAI data for

retrospective analysis, it is pivot to improve our ability on predicting the LAI time series and seasonal cycles

via meteorological variables so as to subsequently improve terrestrial  ecosystem models and land surface

models. Note that there are challenges when using machine learning models to predict LAI time series based

on daily or weekly meteorological variables directly, because day-to-day variation of vegetation LAI is much

lower  than  of  meteorological  variables  and  because  vegetation  has  lagged  responses  to  environmental

conditions. 

The main goals of this research are to: 1) develop a machining learning-based scheme to simulate LAI and

GPP time series via meteorological variables; 2) compare the simulated results between machine learning

models and a process-based model, so as to advance our understanding on the uncertainties of the current

terrestrial ecosystem model and discover the potential of improvements. In this research, we implement two

machine learning models, including support vector regression (SVR) and random forest (RF), and the process-

based model of Biome-BGC to simulate both LAI and GPP time series across North America.
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2. Study materials and preprocessing

The study area covers the entire continent of North America. Due to large latitude gradients across North

America,  vegetation  types  are  rich  and  diverse  under  varied  natural  factors,  such  as  solar  radiation,

temperature, precipitation, and topography (Fig.1). Owing to the availability of the flux tower data, vegetation

that we studied includes four natural plant functional types, i.e., deciduous broadleaf forest (DBF), evergreen

needleleaf forest (ENF), grassland (GRA), and mixed forest (MIF), according to the International Geosphere-

Biosphere Programme (IGBP) classification scheme.

To develop and evaluate the machine learning models and the process-based model,  we used large-scale

climate data, satellite-based products, and the flux tower dataset. The Daymet dataset  [P E Thornton et al.,

2016] is a 1-km gridded daily meteorological data product derived from a collection of algorithms designed to

interpolate  and  extrapolate  daily  meteorological  observations.  We downloaded  the  third  version  Daymet

dataset  from  the  Oak  Ridge  National  Laboratory  Distributed  Active  Archive  Center  website

(http://daymet.ornl.gov/).  The  1  km Daymet  data  were  re-projected  to  the  sinusoidal  projection.  As  the

Daymet dataset does not contain the variable of vapor pressure deficit (VPD), it is calculated as follows:

VPD=
1
2
0.6108∗(e

17.269∗Tmax
237.3+Tmax +e

17.269∗Tmin
237.3+Tmin )−VP (1)

where VPD and VP denote vapor pressure deficit and vapor pressure, respectively (kPa); and T max and Tmin

denote daily maximum and minimum air temperature, respectively (°C).
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Fig.  1. The spatial distributions of modeling sample points and flux tower sites on a backdrop of the land
cover  map  across  North  America.  Colorful  pentagon  points  denote  flux  tower  sites  in  different  plant
functional  types,  and  black  and  red  points  denote  randomly  selected  training  and  validation  samples,
respectively.

The satellite-based products we used include the 8-day composite MODIS LAI product at 500-m resolution

(MOD15A2H), the 8-day composite MODIS GPP product at 500-m resolution (MOD17A2H), and the annual

MODIS land cover product at 500-m resolution (MCD12Q1). As remote sensing data often have data quality
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issues such as cloud cover and aerosol contamination, we used the quality control layer in the MODIS LAI

data product to filter  pixels with poor qualities and then interpolated the missing values using the three-

window moving median filtering method. We screened out outliers in the time series with the Hampel filter

and obtained 8-day smoothed LAI time series by applying the Savitzky-Golay fitting method. Because the

MODIS GPP data cannot be simply smoothed, we only used the quality control data to filter pixels with poor

qualities and then interpolated the missing values using the three-window moving median filtering method.

The MCD12Q1 data were used as the land cover mask to derive the spatial distribution of four studied plant

functional types, namely DBF, ENF, GRA, and MIF. The processed 500 m MODIS data were resampled to 1

km in the sinusoidal projection.

We used the elevation data from Global Multi-resolution Terrain Elevation Data (GMTED)  [J J Danielson

and  D B  Gesch,  2011],  which  is  a  global  DEM data  and  has  three  resolution  levels:  30-arc-second  (1

kilometer),  15-arc-second  (450  meters),  and  7.5-arc-second  (225  meters).  The  soil  particle-size   data  is

derived from the Global Soil Dataset for use in Earth System Models (GSDE) [W Shangguan et al., 2014] that

provides global gridded soil information, such as soil particle-size distribution, organic carbon, and nutrients,

and quality control information, with a 30-arc-second (1 kilometer) resolution and for eight vertical layers to a

depth of 2.3m. Both products on a global scale we used are in 1 km spatial resolution and were clipped to the

region of North American in the sinusoidal projection.

The FLUXNET2015 Tier  1  FULLSET dataset  (https://fluxnet.org/data/fluxnet2015-dataset/)  was used for

model development and evaluation. The used data include 8 DBF sites, 22 ENF sites, 7 GRA sites, and 3 MIF

sites (in total 71, 118, 43, and 32 site-years data, respectively) in North America. The FLUXNET2015 dataset

contains daily and half-hour or hourly meteorological and canopy flux data. Daily maximum and minimum

temperatures are derived from half-hour or hourly temperature data. The latitude, longitude, elevation, and
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soil  particle-size information related to each site is  obtained from site description in the FLUXNET2015

dataset. The LAI time series are extracted from the corresponding pixel in MOD15A2H according to the

latitude and longitude of the study site. The extracted LAI time series were pre-processed similar to that for

the entire North America. 

3. Methods

We test two machine learning models, i.e., SVR and RF, on simulating vegetation LAI and GPP. The basic

idea is that we firstly treat meteorological variables as input features and satellite-derived LAI as target for

model training and validating. However, due to large fluctuations in daily or 8-day meteorological variables,

direct training and prediction using the machine learning models would lead to unrealistic variation in the

predicted LAI time series. We adopt a time smoothing method that has proven effective in reducing noises and

buffering fluctuation to process daily vegetation LAI time series predicted directly by the machine learning

models.  Secondly,  we  treat  meteorological  variables  and  the  simulated  LAI  as  input  features  and  field-

measured GPP as target for model training and validating, and use the trained model for simulating the GPP

time series. The details regarding to our method are described in the following sections.

3.1 Brief introduction of the machine learning methods

Support Vector Regression (SVR), a branch of the regression fitting method in support vector machine, is a

machine  learning model  based on mathematical  theories.  The principle  of  SVR is  to  search  the  optimal

hyperplane that minimizes the geometric distance of samples furthest from the hyperplane. SVR combines

geometric distance minimization and tube regression constraint condition, and introduces slack variables to

construct  a  convex  quadratic  programming  problem  with  global  optimal  solutions,  and  the  quadratic

programming problems can be solved by the Lagrange multiplier method and its duality.
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The core of the SVR algorithm is  to introduce the kernel  function  K (x i , x ) to replace the inner  product

operation  in  a  low-dimensional  space,  which  implicitly  map  the  linear  inseparable  problem in  the  low-

dimensional feature space to the high-dimensional feature space. The fitting function of SVR can be described

as follows:

f SVR (x )=∑
i=1

m

(α̂ i−α i )K (x i , x)+b (2)

where f SVR (x ) denotes the fitting function of SVR, m denotes the number of training samples, x i denotes the ith

support vector sample, α i and α̂ i respectively denote the upper and lower limits of the Lagrange multipliers,

K (x i , x ) denotes kernel function, b denotes the intercept of the fitting function.

As SVR can use a small number of sparse samples for model training and handle high-dimensional feature

data,  it  can  avoid  the  dimensional  curse  problem while  computing  in  high-dimensional  space.  SVR has

convenient operability and powerful nonlinear fitting capability. For more details about SVR, please refer to

[N Cristianini and J Shawe-Taylor, 2000] and [F Yang et al., 2006].

RF is a machine learning method based on the ensemble learning idea and it integrates multiple independent

weak learners to improve the overall fitting and classification capability. RF utilizes the Bagging strategy to

randomly select training samples and features while constructing the fitting decision trees and iteratively finds

the optimal segmentation feature and segmentation point from the selected dataset at each regression decision

tree. RF adopts the average prediction of all regression decision trees and verifies the trained model using the

unselected samples as out-of-bag samples. The function used in RF to find the optimal segmentation feature

and point is as follows:

f RF (x)=min
j , s [minc 1

∑
xi∈ R1 ( j ,s )

(x i−c1)
2
+min

c 2
∑

x i∈R2 ( j , s)

(x i−c2)
2

] (3)

where f RF ( x ) denotes the fitting function of RF, x i denotes the ith training sample, j and s denote the selected
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optimal segmented feature and position, respectively, R1 ( j , s )=(x|x ( j)≤ s) and R2 ( j , s )=( x∨x( j)≥s), and c1 and

c2 denote the input sample mean of the R1 and R2 datasets, respectively.

RF uses  an integrated strategy and it  is  suitable  for  processing  high-dimensional  feature  space  data.  RF

utilizes independent out-of-bag samples to evaluate models during the training phase and provides unbiased

estimations. RF is widely applied in the regression fitting studies because the model has the anti-noise and

anti-overfitting ability and is insensitive to parameter settings [Chen et al., 2017; L Mareike et al., 2012; R A V

Rossel and T Behrens, 2010].

3.2 Implementation of the machine learning methods on modeling LAI and GPP

There  have  tremendous  efforts  to  develop numerical  models  and machine  learning models  that  simulate

vegetation GPP using LAI as the variable representing vegetation cover and meteorological variables at the

corresponding  time.  Note  that  vegetation  LAI  changes  in  response  to  meteorological  conditions  and  the

current phenology models still have considerable uncertainties, one key issue is how to accurately simulate

LAI time series via daily meteorological data. Once robust models are developed to predict vegetation LAI

using meteorological variables, we can incorporate the predicted LAI as well as the meteorological variables

into the vegetation photosynthesis  model,  such that  terrestrial  ecosystem models no longer  require  field-

measured or satellite-derived LAI data and our abilities on modeling the vegetation processes are greatly

improved.

Our idea to simulate LAI time series is to treat meteorological variables as the input features and satellite-

derived LAI as the target to train machine learning models such as SVR and RF. Inputs and targets to the

machine learning models need to be normalized for model training and the modeled data from the trained

machine learning models are denormalized to obtain the predicted LAI. Note that vegetation LAI predicted

from the above method has lags and unrealistic fluctuations in the time series as compared with the observed
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ones. In the study, we use the simple moving average method to buffer the fluctuations and account for the

time lagging effect in the modeled LAI time series. The equation of the simple moving average method is as

follows:

LAI=SMA (LAI s , nday) (4)

where LAI s denotes LAI modeled by the machine learning models and nday denotes the number of days in the

moving windows. Here we set nday as 25 for the daily time scale based on previous studies.

Eventually, the LAI time series obtained from Equation 7 are considered as the predicted LAI in our study. We

use normalized LAI and meteorological variables as input features and normalized GPP as the target to train

the  machine  learning models,  and then  use the  trained machine  learning models  to  make predictions  of

vegetation GPP.

In the continental studies, we randomly selected 1000 pixels for each of the four plant functional types and

using the time series data in the entire year as the training and validation samples. As each plant functional

type in each pixel contains 46 points per year in the 8-day composite data, there are 46000 samples for each

plant functional type. We used 70% samples for model training and 30% samples for model validation. The

testing samples used to test the model accuracy independently comes from randomly selected 50 pixels for

each plant functional type for each 8-day composite data, resulting in 2300 testing samples in total. In the site

scale studies, we selected 2/3 of the site-year flux tower data as training and validation samples, and the

remaining as the testing samples. The number of decision trees in the RF model was set as 500. We adopted

radial  basis  function  regression  in  the  SVR model.  We used  the  grid  8-fold  cross-validation  method  to

optimize the penalty factor and the parameter in gamma function of kernel function so as to minimize the root

mean square error (RMSE) between modeled results and validation samples.
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3.3 Comparative studies using the Biome-BGC model

The Biome-BGC model is a process-based terrestrial ecosystem model based on the sun-shade two-leaf model

that simulates the states and fluxes of carbon, nitrogen, and water, in the composition of vegetation and soil

within terrestrial ecosystems [P Thornton and B Law, 2002; Q Wang et al., 2005]. Biome-BGC is composed

of a variety of physical and biological process modules, where the physical modules mainly include solar

radiation,  precipitation  and  water  cycle  processes  and  the  biological  process  modules  mainly  include

autotrophic  and  heterotrophic  respiration,  photosynthesis,  microbial  decomposition,  carbon  and  nitrogen

cycles, etc. In the phenology module, Biome-BGC first simulates the timing of vegetation key phenophases,

such as spring onset and autumn offset,  based on the climate forcing data,  and then uses the carbon and

nitrogen cycle module to simulate LAI time series for a specific vegetation type. The input climate forcing

data  consist  of  daily  maximum  and  minimum  temperature,  daylight  average  temperature,  daily  total

precipitation,  daylight  average  partial  pressure  of  water  vapor,  daylight  average  shortwave  radiant  flux

density, and day length. Biome-BGC has a number of physical and eco-physiological parameters, where the

eco-physiological parameters mainly depend on the plant functional type and the physical parameters contain

latitude,  elevation,  soil  particle-size,  and so on.  We use the empirical  physio-ecological  parameterization

schemes in [M A White, Thornton, P. E. , Running, S. W. , & Nemani, R. R. . , 2000] and [F A Tatarinov and E

Cienciala,  2006] for different  plant  functional  types.  As we found no physio-ecological  parameterization

schemes for the MIF type in literatures, we utilize the grid optimization algorithm based on flux tower data to

optimize key eco-physiological parameters for MIF, including  maximum stomatal conductance, the ratio of

new fine root C to new leaf C, canopy average specific leaf area, fraction of leaf nitrogen in Rubisco, the ratio

of carbon to nitrogen in leaves, annual leaf and fine root turnover fraction. The 4.2 version of the Biome-BGC

model is unable to perform regional grid simulation directly. We extracted 100 × 100 pixels of the climate

forcing datasets in each MODIS tile based on equal interval sampling, and then interpolated the modeled

results into each MODIS tile using the spline function interpolation method as the continental results modeled
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by Biome-BGC.

4. Results

4.1 Continental-scale modeling of leaf area index

Fig. 2 compares the spatial distribution of modeled and satellite-derived annual average LAI in 2010. Both the

SVR and RF models predicted annual average LAI consistent with satellite observations. Annual average LAI

modeled by Biome-BGC are largely different from satellite data. Biome-BGC generally overestimates LAI in

the NEF and GRA types and underestimates LAI in both the DBF and MIF types. Fig. 2e indicates that

latitudinal average of annual average LAI derived from both the machine learning models and remote sensing

data gradually increase from north to south and Biome-BGC has large overestimation around about 50 to 60

degrees north latitude. The latitudinal average of annual average LAI modeled by the SVR and RF models

have strong correlations with the MODIS data (R = 0.985 and 0.987, respectively), and the corresponding

correlation between Biome-BGC and the MODIS data is much lower (R=0.703).
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Fig. 2. The spatial distributions of annual average LAI derived from a) the MODIS data, b) the Biome-BGC
model, c) the support vector regression (SVR) model, and d) the random forests (RF) model, and e) their
latitudinal averages in 2010 across North America. The units for LAI are m2 (leaf area) per m2 (ground area).

Fig. 3 shows the error analysis between modeled and satellite-derived LAI time series. The LAI time series

modeled by both SVR and RF are consistent with the MODIS data with only slight underestimates in the

south. RMSE between machine learning-modeled and satellite-derived annual LAI are generally lower than

1.5 m2
/m2 and the correlation coefficient is greater than 0.9 for most of the areas except the GRA areas in the

north and the ENF areas near the coast of northwestern United States. Compared with satellite data, Biome-

BGC underestimates annual average LAI in many DBF areas with negative Bias lower than -1.0 m2
/m2 and
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RMSE greater than 1.5 m2
/m2, and largely underestimates in most MIF areas with negative Bias lower than -

1.5  m2
/m2 and RMSE greater than 2.0  m2

/m2. For the ENF type, Biome-BGC largely overestimates annual

average LAI compared with satellite data. For the GRA type, LAI time series modeled by Biome-BGC have

low correlation with satellite data in most areas (R < 0.6) as well as positive Bias greater than 1 m2
/m2). In

general, the machine learning-based approaches make accurate predictions of the LAI time series in most of

the areas with small errors.
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Fig.  3.  The  spatial  distributions  of  the  metrics  for  the  assessment  of  model  performance,  including  the
correlation coefficient (top row), RMSE (middle row), and Bias (top row) of 8-day LAI time series in 2010 as
derived between the Biome-BGC model and MODIS (left column), between the SVR model and MODIS
(middle column), and between the RF model and MODIS (right column), respectively, across North America.

Different pixels are shown as examples (Fig.4) to illustrate the model performance on simulating the LAI time

series. The machine learning-based approaches are able to capture the seasonal dynamics of LAI accurately,
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and the Biome-BGC model produces large errors. The Biome-BGC model is able to make predictions on key

phenophases,  such as  onset  and offset,  in  the  DBF and MIF types,  but  the  amplitudes  of  the  simulated

seasonal LAI time series do not match the observed ones. In addition, the Biome-BGC model assumes zero

LAI in the non-growing period but the assumption is inconsistent with satellite observation. Because Biome-

BGC does not distinguish seasonal cycles in a year when simulating the phenology of evergreen forests, the

simulated LAI time series in ENF do not have obvious seasonal cycles and do not match the satellite data. For

the GRA type, Biome-BGC does not accurately capture the timing of key phenophases during a vegetation

growing season, resulting in large overestimation or underestimation of LAI in the time series. 
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Fig. 4. Comparisons between modeled and satellite-derived 8-day LAI time series for four different example
pixels (each column) in deciduous broadleaf forests (top row), evergreen needleleaf forests (the second row),
grasslands (the third row), and mixed forests (bottom row).

Fig.5 shows the comparisons between model simulation and satellite observations for the independent test

dataset. The regression analysis suggests that the simulation results of the RF model, among three methods,
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have the highest positive linear correlation (R = 0.944, 0.819, 0.972, and 0.933 for DBF, ENF, GRA, MIF,

respectively), and the smallest RMSE (RMSE = 0.639, 0.604, 0.289, and 0.658 m2
/m2 for DBF, ENF, GRA,

MIF, respectively) with the MODIS observations. The model performance of RF is close to that of SVR. The

correlation of between Biome-BGC modeled and satellite-derived LAI is insufficient (R=0.742, 0.091, 0.474,

and 0.583 for DBF, ENF, GRA, and MIF, respectively) and the RMSEs are larger than 1 m2
/m2.
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Fig. 5. Scatter plots are shown for comparisons between Biome-BGC-modeled and MODIS-derived LAI (left
column), comparisons between SVR-modeled and MODIS-derived LAI (middle column), and comparisons
between RF-modeled and MODIS-derived LAI (right column) for the plant functional types of deciduous
broadleaf forests (top row), evergreen needleleaf forests (the second row), grasslands (the third row), and
mixed  forests  (bottom row),  respectively.  Each  subplot  contains  the  time  series  data  from 50  randomly
selected pixels in each plant functional type. The solid lines denote the 1:1 lines and the dotted lines denote
the regression lines.
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4.2 Continental-scale modeling of gross primary productivity

Figure 6 shows the spatial distribution of annual total GPP in 2010 derived from the MODIS GPP product and

different models across North America. When compared with the MODIS GPP product, the machine learning-

based approaches outperform the Biome-BGC model.  For the DBF type,  the spatial  distributions of GPP

derived from both the RF model and the SVR model are consistent with derived from MODIS, whereas

Biome-BGC has underestimates in the north and overestimates in the south. For the MIF type, the RF model

performs  better  than  both  the  SVR  model  and  the  Biome-BGC  model  and  Biome-BGC  shows  large

underestimates as compared with the MODIS GPP product. For the ENF type, both the machine learning-

based models have underestimates of annual total GPP along the coastal area in northwestern United States.

Compared with the MODIS product, the Biome-BGC model nearly overestimates annual total GPP of the

ENF type across the study region and underestimates annual total GPP of the GRA type in southwestern

United  States.  The  latitudinal  average  of  annual  total  GPP derived  from  both  machine  learning-based

approaches  have  high  correlation  with  the  MODIS  observations  (R=0.961  and  0.987  for  SVR and  RF,

respectively). The correlation coefficient between latitudinal average of annual total GPP derived from the

Biome-BGC model and that derived from the MODIS data is 0.830 (Figure 6e).
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Fig. 6. The spatial distributions of annual total GPP derived from a) the MODIS product, b) the Biome-BGC
model, c) the support vector regression (SVR) model, and d) the random forests (RF) model, and e) their
latitudinal averages in 2010 across North America. The units for GPP are gC per m2 per year.

Figure 7 shows the spatial distribution of error metrics for the model assessment on modeling 8-day GPP time

series  in  2010. The machine learning-based approaches  produce results  consistent  with the MODIS GPP

product in most areas with high correlation (R > 0.9) and low errors (RMSE < 1 gC/m^2/year). Compared

with the MODIS 8-day GPP product, Biome-BGC has correlation coefficient less than 0.6 and RMSE greater

than 3 gC/m^2/year for many areas. Both machine learning models produce satisfactory simulation results for

the DBF, MIF, and GRA types across the study region but have underestimation in ENF along the coasts of
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northwestern United States. The Biome-BGC model generally has large overestimation in ENF with Bias

greater than 500 gC/m^2/year and underestimation in MIF and GRA.

Fig.  7.  The  spatial  distributions  of  the  metrics  for  the  assessment  of  model  performance,  including  the
correlation coefficient (top row), RMSE (middle row), and Bias (top row) of 8-day LAI time series in 2010 as
derived between the Biome-BGC model and MODIS (left column), between the SVR model and MODIS
(middle column), and between the RF model and MODIS (right column), respectively, across North America.
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Figure 8 shows the 8-day time series of both modeled and satellite-derived GPP for four example pixels for

each  plant  functional  type.  The  machine  learning  models  can  well  capture  the  seasonal  cycles  of  GPP.

Compared with the remote sensing product, the Biome-BGC model has the best performance in the DBF type,

but unstable performance in the ENF type and large underestimation in the GRA type. Figure 9 shows the

regression analysis of modeled and satellite-derived GPP for different plant functional types. The SVR model

has strong correlation with the MODIS GPP data for four studied vegetation types (R = 0.936, 0.927, 0.878,

and 0.960, for DBF, ENF, GRA, and MIF, respectively)and so does the RF model (R = 0.967, 0.952, 0.885,

and 0.982,  for  DBF, ENF,  GRA,  and MIF,  respectively).  The RMSE values  between SVR-modeled  and

satellite-derived  GPP are  1.215,  1.038,  0.671,  and  0.913  gC /m2/day ,  for  DBF,  ENF,  GRA,  and  MIF,

respectively. By comparison, the RMSE values between RF-modeled and satellite-derived GPP are 0.882,

0.840, 0.649, and 0.621gC /m2/day, for DBF, ENF, GRA, and MIF, respectively. The Biome-BGC model has

considerable errors on modeling GPP in different plant functional types.  There are large underestimation of

Biome-BGC  in  the  GRA and  MIF  types  (Bias  =  -0.497  and  -0.771  gC /m2 /day for  GRA and  MIF,

respectively). In general, Biome-BGC underperforms the machine learning-based models, probably because

Biome-BGC needs better representation of the phenology model for modeling the LAI time series accurately.
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Fig. 8. Comparisons between modeled and satellite-derived 8-day GPP time series for four different example
pixels (each column) in deciduous broadleaf forests (top row), evergreen needleleaf forests (the second row),
grasslands (the third row), and mixed forests (bottom row). 
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Fig. 9. Scatter plots are shown for comparisons between Biome-BGC-modeled and MODIS-derived GPP (left
column), comparisons between SVR-modeled and MODIS-derived GPP (middle column), and comparisons
between RF-modeled and MODIS-derived GPP (right column) for the plant functional types of deciduous
broadleaf forests (top row), evergreen needleleaf forests (the second row), grasslands (the third row), and
mixed  forests  (bottom row),  respectively.  Each  subplot  contains  the  time  series  data  from 50  randomly
selected pixels in each plant functional type. The solid lines denote the 1:1 lines and the dotted lines denote
the regression lines.
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4.3 Site-scale modeling of leaf area index

Figure  10  shows  both  modeled  and  satellite-derived  LAI  time  series  at  four  different  flux  tower  sites.

Compared with remote sensing data, the machine learning models have accurate simulation and Biome-BGC

still  has  room for  improvements,  especially  in  the  ENF and GRA types.  In  the  ENF type,  Biome-BGC

assumes no apparent growing season and produces nearly stable LAI in the time series, while both remote

sensing data and the machine learning models have distinctive seasonal cycles. In the GRA type, the machine

learning-based approaches can well capture irregular intra-year variation in LAI derived from the MODIS

observations. The timings of phenology metrics such as onset and offset modeled by Biome-BGC do not

match satellite data, resulting large differences in seasonal LAI dynamics between Biome-BGC and MODIS

data. For both the DBF and MIF types, the machine learning models are able to make accurate predictions on

the time series of LAI. Biome-BGC could predict accurate estimates on the onset of the growing season but

lagged estimates on the offset of the growing season. In addition, maximum LAI predicted by Biome-BGC is

largely different from that derived from satellite data.
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Fig. 10. Comparisons between modeled and satellite-derived 8-day LAI time series for the flux tower sites of
US-Ha1 (deciduous broadleaf forest), CA-TP1 (evergreen needleleaf forest), US-Var (grasslands), and CA-
Gro (mixed forests).

30

445

446
447
448
30



Figure 11 shows the regression analysis between modeled and satellite-derived 8-day LAI for sites of different

vegetation types. Based on all the test dataset, the results predicted by SVR have strong correlation (R =

0.961, 0.809, 0.900, and 0.928, for DBF, ENF, GRA, and MIF, respectively) and low errors (RMSE = 0.594,

0.697,  0.445,  and 0.678  m2
/m2,  for  DBF, ENF, GRA, and MIF,  respectively)  as  compared with  satellite

observations. RF has the model performance similar to SVR and is able to simulate the seasonal cycles of LAI

accurately with low biases (Bias = 0.101, 0.042, 0.038, and 0.008  m2
/m2, for DBF, ENF, GRA, and MIF,

respectively) . Both SVR and RF have underestimation in the ENF and GRA types when LAI is large. The

LAI time series modeled by Biome-BGC have low correlation coefficients (R=0.681, 0.105, 0.474, and 0.657,

for DBF, ENF, GRA, and MIF, respectively) and large errors (RMSE = 1.681, 1.256, 0.990, and 1.417 m2
/m2,

for DBF, ENF, GRA, and MIF, respectively) as compared with satellite data.
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Fig.  11.  Scatter plots are shown for comparisons between Biome-BGC-modeled and MODIS-derived 8-day
LAI (left column), comparisons between SVR-modeled and MODIS-derived 8-day LAI (middle column), and
comparisons between RF-modeled and MODIS-derived 8-day LAI (right column) for the plant functional
types of deciduous broadleaf forests (top row), evergreen needleleaf forests (the second row), grasslands (the
third row), and mixed forests (bottom row), respectively. Each subplot contains the entire time series data
from flux towers. The solid lines denote the 1:1 lines and the dotted lines denote the regression lines.
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The modeled and satellite-derived annual average LAI are compared for each individual site-year data in

Figure 12. The regression analysis indicates that both machine learning models could well predict has annual

average LAI with high correlation coefficients (R = 0.811 and 0.839 for SVR and RF, respectively) and low

errors  (RMSE = 0.425 and 0.392  m2
/m2 for SVR and RF,  respectively)  as compared with satellite  data.

Biome-BGC has considerable errors on predicting annual average LAI where RMSE is 0.803 m2
/m2 and Bias

is -0.060 m2
/m2 as compared with the MODIS data.

Fig.  12.  Scatter  plots  are  shown for  comparisons  a)  between  Biome-BGC-modeled  and  MODIS-derived
annual average LAI, b) between SVR-modeled and MODIS-derived annual average LAI, and c) between RF-
modeled and MODIS-derived annual average LAI using all site-year flux tower data. The blue, green, orange
and purple points denote the site-year data from the DBF, ENF, GRA and MIF types, respectively. The solid
lines denote the 1:1 lines and the dotted lines denote the regression lines.

4.4 Site-scale modeling of gross primary productivity

Figure 13 shows the 8-day GPP time series simulated by different models and measured from the eddy-

covariance flux tower data at four different sites. The machine learning approaches perform well on modeling

8-day GPP time series across sites. For the GRA sites, the machine learning models are capable of capturing

seasonal GPP fluctuations with slight underestimation near the peaks and the Biome-BGC model has large

underestimation  on  GPP as  compared  with  the  flux  tower  data.  For  the  ENF  sites,  Biome-BGC  has

underestimation  during  the  summer  growing period.  For  the  DBF and MIF types,  the  machine  learning
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models are able to simulate both the amplitude and the phase of the 8-day GPP time series accurately, and the

Biome-BGC  model  has  large  fluctuation  and  overestimation  in  DBF  as  compared  to  the  flux  tower

measurements.
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Fig. 13. Site 8-day time series comparison between modeled and measured of GPP in each PFTs, respectively.
The reference GPP time series (black line) are derived from the MODIS data. a) line denotes modeled and
MODIS GPP in US-Ha1 site (DBF), b) line denotes modeled and MODIS GPP in CA-TP1 site (ENF), c) line
denotes modeled and MODIS GPP in US-Var site (GRA), d) line denotes modeled and MODIS GPP in CA-
Gro site (MIF).
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Figure 14 compares the modeled and field-measured GPP data for different plant functional types using all the

8-day test data. RF gives results with high correlation coefficients (R = 0.962, 0.882, 0.906, and 0.919 for

DBF, ENF, GRA, and MIF, respectively) and low errors (RMSE = 1.354, 1.663, 1.303, and 1.397 gC /m2/day

for DBF, ENF, GRA, and MIF, respectively) with flux tower observation. SVR has the model performance

similar to RF as indicated by the assessment metrics. Both RF and SVR are able to accurately simulate the 8-

day GPP data but have underestimation when GPP is high during the summer growing period, particular for

the ENF and MIF sites. Biome-BGC has considerable negative biases (Bias = -0.660, -1.593, -1.200, and -

0.510gC /m2/day, for DBF, ENF, GRA, MIF, respectively) and large RMSE values (RMSE = 3.179, 3.109,

2.848, and 2.570  gC /m2/day)  on simulating GPP as compared with flux tower measurements.  Note that

Biome-BGC has large underestimates in the GRA type.
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Fig.  14. Scatter plots are shown for comparisons  between Biome-BGC-modeled and field-measured 8-day
GPP (left column), comparisons between SVR-modeled and field-measured 8-day GPP (middle column), and
comparisons between RF-modeled and field-measured 8-day GPP (right  column) for  the plant  functional
types of deciduous broadleaf forests (top row), evergreen needleleaf forests (the second row), grasslands (the
third row), and mixed forests (bottom row), respectively.  Each subplot contains the entire time series data
from flux towers. The solid lines denote the 1:1 lines and the dotted lines denote the regression lines.
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Figure 15 compares the modeled and field-measured annual total GPP using all available site-year data. The

regression  analysis  suggests  that  both  SVR and RF outperform Biome-BGC. Compared with flux  tower

observations,  results  modeled  by  RF have  high  correlations  (R  =  0.805),  low errors  (RMSE = 327.835

gC /m2/ year), and low biases (Bias = -50.378 gC /m2 / year). The model performance of SVR is comparable

to but slightly lower than that of RF. The correlation coefficient between Biome-BGC-modeled and field-

measured annual total GPP is only 0.378 with the RMSE value of 837.7 gC /m2 / year.

Fig. 15. Scatter plots are shown for comparisons a) between Biome-BGC-modeled and flux tower annual total
GPP, b) between SVR-modeled and flux tower annual total GPP, and c) between RF-modeled and flux tower
annual total  GPP using all site-year flux tower data.  The blue, green, orange, and purple  points denote  the
DBF, ENF, GRA and MIF types, respectively. The solid lines denote the 1:1 lines and the dotted lines denote
the regression lines.
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5. Discussion

Existing studies have used the machine learning approaches to simulate GPP with remote sensing data, such

as vegetation index, reflectance, and LAI, as input variables, and these studies are not capable of predicting

vegetation GPP under future scenarios. This research explores the possibilities of using the machine learning

models  on  predicting  vegetation  GPP with  only  meteorological  variables  as  inputs.  Our  approach  first

simulates time series of vegetation LAI using meteorological variables and then uses the modeled time series

of vegetation LAI as well as meteorological variables as model inputs to simulate time series of vegetation

GPP. One question is how the modeling of the LAI time series affects subsequent GPP time series. In Figure

16b, we conduct comparative studies and develop the machine learning models that directly predict vegetation

GPP  via  meteorological  variables  without  predicting  intermediate  LAI  variables.  Compared  with  our

developed  approach  (Fig.  16a),  the  machine  learning  models  that  directly  predict  vegetation  GPP via

meteorological  variables have reduced correlation coefficient  (R = 0.950) and increased errors (RMSE =

1.551 gC /m2/day) as evaluated using the flux tower data. It implies that accurate modeling of the LAI time

series helps improve the model ability on simulating GPP. Another implication is that canopy LAI tend to

have a seasonal cycle similar to the carbon sequestration process. Fig. 16c evaluates the RF model that takes

Biome-BGC-modeled LAI as inputs using flux tower data. It is found that the performance of the machine

learning model  on predicting GPP is  dramatically  reduced when using inaccurate  LAI time series  in  the

model,  resulting in low correlation coefficient (R = 0.803) and high errors (RMSE = 3.000  gC /m2/day)

between modeled and observed GPP. It indicates that accurate simulation of LAI is crucial to the modeling of

vegetation GPP.
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Fig. 16. Scatter plots for the comparisons a) between RF-modeled GPP and flux tower GPP, b) between RF-
modeled GPP using meteorological data without predicting intermediate LAI variables and flux tower GPP,
and c) between RF-modeled GPP using Biome-BGC-modeled LAI as inputs and flux tower GPP. The solid
lines denote the 1:1 lines and the dotted lines denote the regression lines.

Note that all models, particularly the Biome-BGC model, have better performance on modeling GPP than LAI

when considering the metrics of correlation coefficients between modeled and observed data. The day-to-day

variation of vegetation LAI is much smaller than that of the meteorological variables and vegetation LAI has

lagged responses up to months to meteorological variation. By comparisons, vegetation GPP responds rapidly

to daily fluctuations in the meteorological conditions. It is therefore challenging to simulate LAI directly on

the daily or weekly basis using the machine learning approaches via meteorological variables. We hence adopt

the simple moving average method to buffer the impacts of day-to-day variation in meteorological variables

on modeling LAI. Biome-BGC first uses meteorological variables to predict the timing of vegetation key

phenophases such as the onset and offset of the growing season and then simulates the LAI time series and

canopy  photosynthesis  by  modeling  the  allocation  processes  of  chemical  materials  such  as  carbon  and

nitrogen. Given LAI is  a crucial  factor that affects  vegetation carbon fluxes, the Biome-BGC model still

requires substantial improvements on the phenology sub-models based on our tests. Our findings are in line

with [A D Richardson et al., 2012] and suggest that better understanding on vegetation phenology is necessary

in future researches.
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Note that the machine learning models are essentially data-driven approaches and it is difficult to interpret the

underlying physiological  and ecological  mechanisms in the models.  Hence,  the machine learning models

should not be viewed as surrogates to the process-based models. Instead, the machine learning models provide

benchmarking accuracies that we aim to achieve when developing the process-based models. The machine

learning approaches also provide intermediate solutions when our scientific knowledge on a particular process

like vegetation phenology is still limited.  Another potential use of the machine learning models is to identify

the most  relevant  meteorological  variables  that  affect  vegetation phenology and provide references  when

developing the process-based models. 
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6. Conclusions

Vegetation  plays  a  key  role  in  regulating  the  material  and  energy  exchanges  among  the  biosphere,  the

atmosphere,  and  the  pedosphere.  Predicting  vegetation-related  variables  such  as  LAI  and  GPP under  a

changing climate is  a core task in understanding the processes of vegetation growth and its  responses to

external  environmental  changes.  While  a  number  of  existing  studies  has  developed  models  to  simulate

vegetation GPP using satellite-derived LAI, the requirement of satellite-based model inputs largely limits the

predicting  power  of  these  developed models.  In  this  study,  we attempt  to  develop the  machine  learning

models,  including both  support  vector  regression (SVR) and random forests  (RF),  which  are  capable  of

modeling LAI and GPP time series using only meteorological variables. We tested our methods for four main

plant  functional  types  across  North  America.  The  results  demonstrate  that  the  machine  learning  models

perform well on simulating the time series of both LAI and GPP. The spatial distributions of both LAI and

GPP modeled using the developed machine learning models are consistent to those derived from satellite data.

We also found that there is a need to improve the phenology representation in the Biome-BGC model for

improving the modeling of vegetation LAI and GPP. Our modeling approaches provide an alternative way to

predict time series of vegetation LAI and GPP using only meteorological variables across large geographic

regions.
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Tier 1 FULLSET dataset are available via the website: https://fluxnet.org/data/fluxnet2015-dataset/. The SVR

and  RF  model  codes  are  available  respectively  from  link:  https://github.com/cjlin1/libsvm and

https://code.google.com/archive/p/randomforest-matlab/. And we also thank  [M A White,  Thornton, P. E. ,

Running,  S.  W.  ,  &  Nemani,  R.  R.  .  ,  2000] for  providing  Biome-BGC  model  code  through  the  site:

https://github.com/bpbond/Biome-BGC. 
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