Darien Florez

and 6 more

Darien Florez1,2, Christian Huber1, Susana Hoyos2, Matej Pec2, E.M. Parmentier1, James A. D. Connolly3, Greg Hirth11Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA2Department of the Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA3Department of Earth Sciences, ETH Zurich, Zürich, SwitzerlandCorresponding author: Darien Florez ([email protected])Key Points:Continuum model fits repacking experiments data of Hoyos et al.(2022) despite their stochastic nature.At intermediate melt fractions, mechanical repacking of particles may contribute significantly to the resistance of mushes to compaction.Particle-particle friction, rather than hydrodynamic effects, dominates viscous resistance associated with mechanical repacking.AbstractBefore large volumes of crystal poor rhyolites are mobilized as melt, they are extracted through the reduction of pore space within their corresponding crystal matrix (compaction). Petrological and mechanical models suggest that a significant fraction of this process occurs at intermediate melt fractions (ca. 0.3 – 0.6). The timescales associated with such extraction processes have important ramifications for volcanic hazards. However, it remains unclear how melt is redistributed at the grain-scale and whether using continuum scale models for compaction is suitable to estimate extraction timescales at these melt fractions. To explore these issues, we develop and apply a two-phase continuum model of compaction to two suites of analog phase separation experiments – one conducted at low and the other at high temperatures, T, and pressures, P. We characterize the ability of the crystal matrix to resist porosity change using parameterizations of granular phenomena and find that repacking explains both datasets well. Furthermore, repacking may explain the difference in compaction rates inferred from high T + P experiments and measured in previous deformation experiments. When upscaling results to magmatic systems at intermediate melt fractions, repacking may provide an efficient mechanism to redistribute melt. Finally, outside nearly instantaneous force chain disruption events occasionally recorded in the low T + P experiments, melt loss is continuous, and two-phase dynamics can be solved at the continuum scale with an effective matrix viscosity. Further work, however, must be done to develop a framework to parameterize the effect of particle size and shape distributions on compaction.

Peter B Kelemen

and 22 more

This paper provides an overview of research on core from Oman Drilling Project Hole BT1B and the surrounding area, plus new data and calculations, constraining processes in the Tethyan subduction zone beneath the Samail ophiolite. The area is underlain by gently dipping, broadly folded layers of allochthonous Hawasina pelagic sediments, the metamorphic sole of the Samail ophiolite, and Banded Unit peridotites at the base of the Samail mantle section. Despite reactivation of some faults during uplift of the Jebel Akdar and Saih Hatat domes, the area preserves the tectonic “stratigraphy” of the Cretaceous subduction zone. Gently dipping listvenite bands, parallel to peridotite banding and to contacts between the peridotite and the metamorphic sole, replace peridotite at and near the basal thrust. Listvenites formed at less than 200°C and (poorly constrained) depths of 25 to 40 km by reaction with CO2-rich, aqueous fluids migrating from greater depths, derived from devolatilization of subducting sediments analogous to clastic sediments in the Hawasina Formation, at 400-500°. Such processes could form important reservoirs for subducted CO2. Listvenite formation was accompanied by ductile deformation of serpentinites and listvenites – perhaps facilitated by fluid-rock reaction – in a process that could lead to aseismic subduction in some regions. Addition of H2O and CO2 to the mantle wedge, forming serpentinites and listvenites, caused large increases in the solid mass and volume of the rocks. This may have been accommodated by fractures formed as a result of volume changes, perhaps mainly at a serpentinization front.

JUNLIN HUA

and 4 more

The origin of widespread volcanism far from plate boundaries and mantle plumes remains a fundamental unsolved question. An example of this puzzle is the Anatolian region, where abundant intraplate volcanism has occurred since 10 Ma, but a nearby underlying plume structure in the deep mantle is lacking. We employed a combination of seismic and geochemical data to link intraplate volcanism in Anatolia to a trail of magmatic centers leading back to East Africa and its mantle plume, consistent with northward asthenospheric transport of over ~2500 km distance. Joint modeling of seismic imaging and petrological data indicates that the east Anatolian mantle potential temperature is higher than the ambient mantle (~1420C). Based on multiple seismic tomography models, the Anatolian upper mantle is likely connected to East Africa by an asthenospheric channel with low seismic velocities. Along the channel, isotopic signatures among volcanoes are consistent with a common mantle source, and petrological data demonstrate similar elevated mantle temperatures, consistent with little cooling in the channel during the long-distance transport. Horizontal asthenospheric pressure gradients originating from mantle plume upwelling beneath East Africa provide a mechanism for high lateral transport rates that match the relatively constant mantle potential temperatures along the channel. Rapid long-distance asthenospheric flow helps explain the widespread occurrence of global intraplate magmatism in regions far from deeply-rooted mantle plumes throughout Earth history.

Joshua B. Russell

and 7 more

Seismic anisotropy produced by aligned olivine in oceanic lithosphere offers a window into mid-ocean ridge dynamics. Yet, interpreting anisotropy in the context of grain-scale deformation processes and strain observed in laboratory experiments and natural olivine samples has proven challenging due to incomplete seismological constraints and length scale differences spanning orders of magnitude. To bridge this observational gap, we estimate an in situ elastic tensor for oceanic lithosphere using co-located compressional- and shear-wavespeed anisotropy observations at the NoMelt experiment located on ~70 Ma seafloor. The elastic model for the upper 7 km of the mantle, NoMelt_SPani7, is characterized by a fast azimuth parallel to the fossil-spreading direction, consistent with corner-flow deformation fabric. We compare this model with a database of 123 petrofabrics from the literature to infer olivine crystallographic orientations and shear strain accumulated within the lithosphere. Direct comparison to olivine deformation experiments indicates strain accumulation of 250–400% in the shallow mantle. We find evidence for D-type olivine lattice-preferred orientation (LPO) with fast [100] parallel to the shear direction and girdled [010] and [001] crystallographic axes perpendicular to shear. D-type LPO implies similar amounts of slip on the (010)[100] and (001)[100] easy slip systems during mid-ocean ridge spreading; we hypothesize that grain-boundary sliding during dislocation creep relaxes strain compatibility, allowing D-type LPO to develop in the shallow lithosphere. Deformation dominated by dislocation-accommodated grain-boundary sliding (disGBS) has implications for in situ stress and grain size during mid-ocean ridge spreading and implies grain-size dependent deformation, in contrast to pure dislocation creep.