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Introduction

This supplement contains further descriptions of the metrics that we use to characterise

our cloud field pattern distribution (Text S1). Specifically, we elaborate upon details of

and justify choices made in their computation. Code that evaluates these metrics given

input scenes of cloud mask, cloud water path and cloud top height can be found in our ac-

companying GitHub repository (https://github.com/martinjanssens/cloudmetrics)

and Figshare copy of this repository at the time of publication https://figshare.com/

projects/Cloud field organisation description with metrics/86303. The supple-

ment also contains five figures, that quantify i) the sensitivity of our metric distribution

to field resolution, object segmentation strategy and minimum cloud size, ii) the abso-

lute Pearson correlation between all metrics, iii) the fraction of variance in each metric

explained by every PC, iv) an estimate of the quality of our metric-based approach to

approximating cloud field patterns and v) the sensitivity to free parameters of approxi-

mating principal components with a subset of metrics through sparse principal component

analysis.
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Text S1. - Details of metrics

Statistical moments of cloud field properties

We quantify several statistics of the extracted cloud field products. Some of these are

straightforward computations that do not feature design choices (cloud fraction, total

cloud water, standard deviation of cloud water over cloudy pixels). The other metrics

require further qualification.

Mean and standard deviation of cloud top height (CTH and St(CTH) respectively) i)

explicitly ignore clouds higher than 5km, as cirrus wisps were found to disproportionately

affect the results otherwise and ii) only consider cloudy pixels. Higher-order moments of

these fields were small and are therefore not included.

Cloud water variance ratio R (CWP var. ratio) is directly adopted from Bretherton and

Blossey (2017), but instead of being applied to the total, vertically integrated moisture

field, it is here only applied to the cloud water:

R =
Std

(
CWPb − CWP

)
Std(CWP )

(1)

In this relation, · denotes a domain average and CWPb indicates the cloud water contained

in blocks of 16x16 pixels.

Object-based metrics

Object-based metrics follow from segmenting the cloud mask field into No objects ac-

cording to their 4-connectivity. To avoid artefacts at the grid scale, we only consider

objects with areas larger than 4 pixels. Each extracted object covers an area Ai, such

that a typical length scale for that object is li =
√
Ai.
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Mean object size is defined as 1
No

∑
i li

Max object size is defined as max li.

Mean perimeter is derived by extracting the perimeter of each object Pi and defining

the mean perimeter P = 1
No

∑
i Pi.

The Simple Convective Aggregation Index (SCAI) (Tobin et al., 2012) is defined as:

SCAI =
NoD0

Nmax

(2)

Where Nmax is the number of pixels in a scene, D0 =
Np

√∏Np

i di is the geometric mean

of Euclidian pairwise distance between all object centroids di and Np = No(No − 1)/2.

The Convective Organisation Potential (COP) (White et al., 2018) is:

COP =
1

Np

No∑
i=0

No∑
j=i+1

li + lj√
πdij

(3)

Where dij now explicitly represents the distance between two object centroids.

Max RDF is the maximum value of the radial distribution function RDF(r) as proposed

in Rasp, Selz, and Craig (2018):

RDF(r) =
1

Ni

∑
i

∑
r≤ri<r+dr 1

L
(
π (r + dr)2 − r2

) (4)

Where ri are pairwise distances from the ith centroid to all other centroids, dr denotes the

width of a radial annulus over which we sum such distances, L is the length of the scene’s

side, and Ni are the number of centroids that lie within a distance rmax from the domain

edges. We only consider coordinates within a radius rmax from any original centroid. We
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set rmax = 20 pixels, as in practice arg max RDF(r) < 20 always, and use dr = 1 (the

results are not sensitive to these parameters).

Degree variance of nearest-neighbour network representations of the scenes are quan-

tified by constructing a Voronoi tessellation from the computed object centroids and

measuring the variance in the degree (number of neighbours) distribution of the identified

Voronoi cells.

Iorg (Weger et al., 1992) is included in two flavours. The first is the original metric,

which integrates the area under the curve defined by the NNCDF, the cumulative density

function of nearest neighbour distances dN between object centroids (y axis) and the

corresponding Weibull distribution (x axis):

W = 1− exp

(
No

L2
πd2N

)
(5)

If the object centroids are scattered as a Poisson point process, they should follow W

exactly, resulting in Iorg = 0.5. Iorg < 0.5 if they are regularly spaced; if they appear

in clusters, Iorg > 0.5. As pointed out by Benner and Curry (1998), this overestimates

the regularity of the cloud field, because in reality separate cloud objects are inhibited

from forming within the area covered by another object. To account for this, we also

include a second version of Iorg, which we name I∗org. This metric compares the cloud

field NNCDF to an inhibition NNCDF, which is constructed by randomly scattering No

objects throughout the scene, provided that they do not fall within the circular area of

an object that has already been placed. The computer-generated random positions of

this approach are less robust than the Weibull distribution (Weger et al., 1992), but we
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find that repeating the computations 3 times does not impact the resulting I∗org below the

third significant digit.

Scale decomposition metrics

Size exponent b is computed by counting all cloud sizes Nc in bins of exponentially

increasing width, and fitting the resulting cloud size distribution with a power law:

logNc ∝ b log l (6)

The average coefficient of determination R2 of fitting this relation to all scenes is good:

0.923. We also investigated a fit according to subcritical percolation theory that incorpo-

rates an exponential term. However, undersampling of large cloud structures make such

fits quite unrealistic on a per-scene basis, even though the fit converges when sampling

a large number of scenes at similar cloud fraction (not shown). It is therefore likely that

these cloud fields obey the rules of subcritical percolation. Yet, the parameters of the

corresponding fit cannot reliably be identified on a per scene basis.

The box-counting dimension Df (fractal dim.) of each cloud mask field is derived by

counting the number of square boxes Nc of dimension lb that are neither fully cloud-

free nor fully cloudy (i.e. boxes that contain cloud borders). Df is then computed by

least-squares fitting the following relation over a range of lb:

logNc ∝ Df log lb (7)

The average R2 of this fit is 0.997, indicating an excellent goodness of fit.
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The Spectral Length Scale (Spectral length) Λ is derived from the field’s Fourier trans-

form. Computing this value requires several design choices. First, the scenes are tilt-

compensated by subtracting a scene’s best-fit plane. Next, one would normally apply a

radially symmetric window function to account for the scenes’ aperiodicity. However, we

find that the application of such a function occludes so much spatial information that

our scenes are ordered much less coherently. Hence, we refrain from applying window

functions. Next, we Fourier transform the scenes and construct their 1D PSD S(k) by

averaging the transform’s power signals over shells of radial wavenumber k. The validity

of this approach rests on the assumption that the satellite scenes are spatially isotropic,

which they are often not. Yet, we find that on a scale from 0-1 (0 representing a 2D PSD

where the power is equally distributed over the azimuthal direction and 1 representing

the case where all power is concentrated in a single direction), the average anisotropy

of all scenes is 0.104. We judge that this justifies the use of the 1D PSD. Finally, Λ is

computed from the distribution’s first moment, as suggested in Jonker, Duynkerke, and

Cuijpers (1999):

Λ−a =

∫ kNy

0
kaS(k)dk∫ kNy

0
S(k)dk

; a 6= 0 (8)

Where kNy is the Nyquist wavenumber and we choose to set a = 1.

We compute Wavelet-based Organisation Indices (WOIs) following Brune, Kapp, and

Friederichs (2018). These metrics are based on the domain-averaged, squared coefficients

of the 2D stationary wavelet transform (SWT) of each scene’s cloud water path (CWP)

field, ECWP . We use the Haar wavelet as our basis. ECWP contains a scale decomposition
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over three (horizontal, vertical, diagonal) directions, with each scale representing a power

of 2 that exactly fits the 512 pixel field. Using ECWP , we derive the metrics proposed by

(Brune et al., 2018):

WOI1 =
El

CWP

ECWP

(9)

WOI2 =
ECWP

Nc

(10)

WOI3 =
1

3

√√√√∑
d

(
El

CWPd
− El

CWP

El
CWP

)2

+

(
Es

CWPd
− Es

CWP

Es
CWP

)2

(11)

Where ·l and ·s indicate total energy contained in the large scales (resolution 21−25) and

small scales (resolution 26−29) respectively, · indicates averaging over all three directions

and Nc is the number of cloudy pixels in a scene. These metrics measure the fraction

of cloud water contained in the scene’s large scales (WOI1), the average cloud water

in cloudy pixels (WOI2) and the anisotropy in the spectrum’s three directions (WOI3).

Since WOI1 and WOI2 are almost exact mirrors of R (eq. 1) and cloud water variance in

cloudy pixels respectively, respectively, we choose to only include WOI3 in our analysis.

Our simple Clear Sky metric extracts the scene’s largest rectangular area spanned by the

horizontal and vertical lines drawn through any cloud-free pixel whose ends are the first

cloudy pixel encountered along those lines. This rectangle is normalised by the domain

size, to arrive at a fraction that represents the largest, contiguous, clear sky area.
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Figure S1. Gaussian kernel density estimates of the ratio D = fA
fA−fB

, which is constructed from

high-dimensional kernel density estimates of the reference metric distribution used in the main

text (fA) and three separately perturbed metric distributions (fB). An identical distribution

to the original would yield a Dirac pulse centred at 0.5 (dashed line); deviations from this

line quantify the contrast between the original and perturbed distributions. Sensitivities are

quantified with respect to i) scenes that are downsampled to half the original resolution (most

sensitive), ii) object segmentation based on 8-connectivity rather than 4-connectivity and iii) not

including a lower bound to the minimum cloud size that is considered an object (least sensitive).

All perturbed distributions are narrow and have an expected value around 0.5, indicating the

robustness of the distribution presented in the main text. Furthermore, the visual relation

between metrics is largely unaffected (not shown).
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Figure S2. Standardised metric correlation matrix, with squares sized and coloured according

to absolute Pearson correlation between a metric pair. Many metrics closely correlate, indicating

that their cumulative information can be captured by a smaller number of effective indicators.

Several closely correlating metrics follow well-known relationships, e.g. perimeter and mean

length (any combination yields approximately constant fractal dim.), or cloud number and nu-

merous aggregation metrics (this relation is similar for deep convective organisation (Brueck et

al., 2020)). Others follow rather trivial ones, e.g. max length and cloud fraction, or the Spectral

Length and size exponent. Several strong correlations are at first sight not trivial. For instance,

Iorg (both versions) and Fractal dim. are highly similar (up to a factor -1). Hence, highly concen-

trated shallow cloud clusters in rather empty scenes (high I∗org) tend towards “lines” (low fractal

dimension, approaching 1 from above); I∗org = 0.5 and fractal dim.=2 both indicate random

scattering of points. Finally, while some effort has been invested in contrasting and improving

aggregation/clustering measures (e.g. SCAI, Iorg and max RDF (van Laar, 2019)), these are

extremely similar. Instead, shifting focus to metrics that are comparatively uncorrelated might

be more more fruitful to further develop our understanding of shallow cloud field organisation.
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Figure S3. Gaussian kernel density estimate of S = 1 − ‖xai−xni‖2
‖xai−xri‖2

compiled from 0 ≤

i < 3951 scenes, where xai is the vector of the metrics for an “anchor scene”, xni
are the

metrics of a “neighbour scene” that overlaps with half the area of the anchor scene and xri

are the average metrics of 100 randomly sampled scenes. S measures how much the metrics

minimise the Euclidian distance between an anchor and its half-overlapping scene, relative to

the average Euclidian distance to a randomly sampled scene. If S = 0, the metrics estimate

that a half-overlapping scene is equally similarly organised as a randomly sampled scene; if

S = 1, the anchor and half-overlapping scene are estimated to be identically organised. Since

half-overlapping scenes share numerous spatial features, they should usually be more similarly

organised than random scenes (S > 0) - a feature we expect the metrics to capture. As 96%

of the distribution exceeds S = 0, this inspires confidence in this ability. The dashed line

indicates the mean, S = 0.47. While this lies significantly below 1, we expect the desired upper

bound of S to also lie below 1, since half-overlapping scenes are (by visual inspection) rarely

identically organised. Estimating this bound requires knowing how far a typical pattern extends

beyond a scene’s boundaries; this demands a better characterisation of the relation between the

measurement scale (“scene”) and the true scale of a pattern. However, even without an explicit

upper bound on S < 1, this distribution shows that our metrics on average come closer to that

bound than to being random. Proficiency of a cloud field description can also be assessed by

comparing S across approaches. A version of S already served as cost function for a machine-

learned pattern description (Denby, 2020). One could also compile statistics on how similar

humans find half-overlapping scenes compared to random scene pairs. Comparing both resulting

S to our metrics could more objectively assess which approach to pattern description (human,

metrics or machine) is best.
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Figure S4. Fraction of variance (colour) in each metric (vertical axis) explained by each PC

(horizontal axis). Sizes of squares are scaled by the total dataset’s explained variance fraction in

each PC (top horizontal axis). 17/21 metrics have more than 70% of their variance captured by

the first two PCs; the remaining 4/21 metrics reach this threshold after four PCs.
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Figure S5. Sensitivity of Sparse Principal Component Analysis (SPCA, Zou et al., 2006).

SPCA encourages sparsity in the weighting of metrics that form each of the four main, approxi-

mate PCs (“loadings”) by casting the PCA as a regression problem, whose cost function contains

at least i) a least squares error term of the PCA fit and ii) a penalty (in the L0 or L1 norm) on

the magnitude of the regression coefficients (the loadings). This penalty is weighted by a regular-

isation parameter λ. We solve the resulting non-convex optimisation problem using the approach

developed by Erichson et al. (2020) and refer to that paper for further details. This figure shows

the optimal sparsity structure in the loadings identified by SPCA under four combinations of

two free parameters: The magnitude of the sparsity penalty λ (top row vs bottom row) and the

omission of a single, seemingly redundant, metric (SCAI, left column vs right column). Unfortu-

nately, the optimal sparsity structure i) is rather sensitive and ii) reacts relatively unpredictably

to changes in these free parameters. This is true also when other metrics are excluded, when

a different sparsity-inducing algorithm is used or when the sparsity penalty is in the L0 norm,

rather than the L1 norm as displayed here. These considerations curb SPCA’s utility for metric

selection and prevent us from recommending its use.
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Table S1. Metrics quantified for initial analysis. Selection for paper is guaranteed by meeting

either criteria 1 or 2, and separately meeting criterion 3, as presented in section 2.2. This excludes

the lower portion of the table. Two metrics in the table’s middle section meet the criteria, but

are still excluded: WOI1, WOI2 (see Text S1). Metrics annotated with (*) are not included in

the coded library.

Metric Criterion 1 Criterion 2 Criterion 3
Unique Recurrent/recent Interpretable

Cloud fraction No Yes Yes
Cloud water Yes Yes Yes
Max length No Yes Yes
Perimeter No Yes Yes
CTH Yes Yes Yes
Size exponent Yes Yes Yes
Mean length No Yes Yes
Spectral length scale No Yes Yes
COP No Yes Yes
SCAI No Yes Yes
Cloud number No Yes Yes
Max RDF No Yes Yes
Degree var. Yes Yes Yes
Iorg No Yes Yes
Fractal dimension Yes Yes Yes
I∗org Yes No Yes
Open sky Yes No Yes
CWP var ratio Yes Yes Yes
St(CTH) Yes Yes Yes
St(CWP) Yes Yes Yes
WOI3 Yes Yes Yes
WOI1 No Yes Yes
WOI2 No Yes Yes
Multifractality index (*) Yes Yes No
Multifractal intermittency (*) Yes Yes No
Object eccentricity No No Yes
Covariance-based orientation No No Yes
Raw moment-based orientation No No Yes
borg in small clouds (Neggers et al., 2019) Yes Yes No
Skewness/kurtosis of CTH, CWP Yes Yes No
Geometric mean nearest neighbour distance No No Yes
Variance of CTH, CWP in largest cloud No No Yes
1D PSD slope No No Yes
Variance in azimuthal PSD No No Yes
Aboav-Wearie fit (Glassmeier & Feingold, 2017) Yes Yes No
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