Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

loading page

Multigenetic Origin of the X-discontinuity Below Continents: Insights from African Receiver Functions
  • +2
  • Stephen Pugh,
  • Alistair Boyce,
  • Ian David Bastow,
  • Cynthia Ebinger,
  • Sanne Cottaar
Stephen Pugh
University of Cambridge

Corresponding Author:[email protected]

Author Profile
Alistair Boyce
University of Cambridge
Author Profile
Ian David Bastow
Imperial College London
Author Profile
Cynthia Ebinger
Tulane University
Author Profile
Sanne Cottaar
University of Cambridge
Author Profile

Abstract

Constraints on chemical heterogeneities in the upper mantle may be derived from studying the seismically observable impedance contrasts that they produce. Away from subduction zones, several causal mechanisms are possible to explain the intermittently observed X-discontinuity (X) at 230-350km depth: the coesite-stishovite phase transition, the enstatite to clinoenstatite phase transition and/or carbonated silicate melting, all requiring a local enrichment of basalt. Africa hosts a broad range of terranes, from Precambrian cores to Cenozoic hotspots with or without lowermost mantle origins. With the absence of subduction below the margins of the African plate for >0.5Ga, Africa presents an ideal study locale to explore the origins of the X.
Traditional receiver function (RF) approaches used to map seismic discontinuities, like common conversion-point stacking, ignore slowness information crucial for discriminating converted upper mantle phases from surface multiples. By manually assessing depth and slowness stacks for 1° radius overlapping bins, normalized vote mapping of RF stacks is used to robustly assess the spatial distribution of converted upper mantle phases. The X is mapped beneath Africa at 233-340km depth, revealing patches of heterogeneity proximal to mantle upwellings in Afar, Canaries, Cape Verde, East Africa, Hoggar, and Réunion with further observations beneath Cameroon, Madagascar, and Morocco. There is a lack of an X beneath southern Africa, and strikingly, the magmatic eastern rift branch of the southern East African Rift. With no relationships existing between depth and amplitudes of observed X and estimated mantle temperatures, multiple causal mechanisms are required across a range of continental geodynamic settings.