loading page

Wave-Telescope Analysis for Multipoint Observatories: Impact of Timing and Spatial Uncertainties
  • +1
  • Kristopher Gregory Klein,
  • Theodore Broeren,
  • Owen Roberts,
  • Leonard Schulz
Kristopher Gregory Klein
University of Arizona

Corresponding Author:[email protected]

Author Profile
Theodore Broeren
University of Arizona
Author Profile
Owen Roberts
Department of Physics, Aberystwyth University
Author Profile
Leonard Schulz
Institute of Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig
Author Profile

Abstract

The wave telescope technique is used to reconstruct spatial power distributions of space plasmas from multipoint spacecraft missions. This study aims to quantify the impact of uncalibrated uncertainties in the time synchronization and the spatial position on the accuracy of the wave telescope method for observatories with more than four spacecraft, e.g. HelioSwarm a nine-spacecraft NASA observatory currently in Phase B. We simulate synthetic data with systemic timing and spatial errors modeled using geometries drawn from HelioSwarm’s Design Reference Mission, applying the wave telescope technique to estimate wavevectors for two characteristic ion-scale waves. By carefully selecting optimal polyhedral configurations from the overall geometry, and combining signals from multiple polyhedra, the impact of systematic uncertainties and spatial aliasing can be significantly reduced, leading to more accurate wavevector identification for future multipoint missions.
16 Oct 2024Submitted to ESS Open Archive
16 Oct 2024Published in ESS Open Archive