Forearc evolution in Complex Subduction Settings - Mesozoic and Cenozoic Examples from SE Asia.
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Overview of subduction settings in SE Asia: Forearc development in oblique systems - New Guinea Sedimentary provenance of accretionary wedges - Nicobar Fan

o l T 20n] The Cenozoic geological evolution of New Guinea is complex; the island has experienced multiple periods of island arc accretion, continental arc High sedimentation rates, rapid uplift, and extensive subduction systems mean that accretionary wedges have played an important role in the geologic
7 magmatism, and orogenesis. Rocks recording the effects of these processes can be correlated along much of central and eastern New Guinea through history of SE Asia. Our recent study on the Nicobar Fan showcases the role large accretionary wedge systems have in providing sediment fill to these

y R_Kthpme ¢ Pacific the New Guinea fold and thrust belt, the New Guinea mobile belt, and the Maramuni arc (Baldwin et al., 2012; Davies, 2012). However, due to a basins and how sedimentary provenance can be used to track this. The Bengal-Nicobar Fan System is among the largest submarine fans on Earth and
il LA s HioRan comparative lack of detailed geological study these terranes have not previously been correlated into New Guinea’s westernmost peninsula (the Bird’s  previous studies have shown that the fan has acted as a major sink for eroded Himalayan sediment throughout the Cenozoic (Blum et al., 2018; Pickering

Southeast Asia displays a full range of subduction settings and
styles, including: steep, shallow, and oblique subduction, divergent
double subduction, and subduction polarity reversal. Rapid uplift,
collision, and sedimentation rates throughout the Cenozoic have
made it possible to study these subduction zones and their eroded
products in the field. Continued outcrop studies of fossil and modern
subduction zones in SE Asia, combined with geochemisty, |
geochronology, and seismic tomography, provide an invaluable |7
resource for deciphering ancient subduction zones that have since [}
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PHILIPPINE Head). Recent field, geochronology, and geochemistry studies of Cenozoic volcanic rocks in the Bird's Head have revealed a complex history of arc- et al., 2020), however, additional sources do exist. To test this, we compared U-Pb detrital zircon ages and heavy mineral compositions of Plio-Pleistocene
SEA PLATE continent collision, short-lived subduction and subduction polarity reversal, and strike-slip movement (Webb et al., 2020; 2021). The complexity of this sediments from the Nicobar Fan with potential sources to determine sedimentary depositional pathways. The data shows that whilst a large proportion of

' part of New Guinea is in part due to the obliquity of the subducting margin, with the Philippine Sea Plate butting against a promontory of thick Australian the detrital zircon ages correlate with magmatic and metamorphic sources in the Himalaya, the heavy mineral compositions indicate a greater complexity
continental crust throughout much of the Cenozoic. Volcanic rocks in the Bird’s Head reveal three distinct stages of Cenozoic magmatism: 1. Eocene to in source regions. Heavy mineral data from the Ayeyarwady River in Myanmar can be correlated with those from the Nicobar Fan (notably high %
Oligocene island arc volcanism during northwards subduction of the Australian Plate, terminated during initial Oligo-Miocene arc-continent collision; 2. amphibole, apatite, and garnet with reduced ultra-stable minerals). The Ayeyarwady River sediments themselves are derived from Triassic accretionary
Middle Miocene continental arc magmatism through previously accreted sediments, following a flip in subduction polarity (resulting in southwards wedge and ophiolitic material from the Indo-Myanmar Ranges (McNeil et al., 2021), which have experienced extensive uplift since the Oligocene along
subduction of the Philippine Sea Plate); 3. Plio-Pleistocene eruption of crustally-contaminated mantle-derived melts in strike-slip settings following with other accretionary wedge material along the Sunda Arc (including the Andaman-Nicobar Accretionary Ridge; Allen et al., 2008). Ultimately this study
terminal arc-continent collision. Finally, isotopic fingerprinting of these distinct phases of magmatism has been used to map their relationship to specific displays that whilst the Nicobar Fan remains a dominant sink for Himalayan sediment, it can also be used to track the erosion of accretionary wedge
New Guinea terranes furthering our understanding of the island as a whole. material in the eastern Indian Ocean.

been overprinted by collision, burial, and metamorphsim.
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This poster summaries three ongoing projects from SEARG that
focus on subduction zone dynamics in different settings and times
throughout SE Asia. The first examines Palaeo-Pacific Plate
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