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ROSSENDORF
The precession dynamo experiment at HZDR | |Inertial waves & amplitudes Kinematic dynamos
Motivated by the idea of a precession-driven flow as energy source for the Quantitative analysis by decomposing U, in axial modes o sin(mzk/H ) with The time-averaged velocity fields obtained from hydrodynamic simulations
early geodynamo or the ancient lunar magnetic field, a large precession axial wavenumber £ and Fourier transformation in azimuth and time constitute the basis for kinematic dynamo models. The magnetic induction

dynamo experiment is under development at HZDR. ] [ 1| | equation is solved numerically using pseudo-vacuum boundary conditions.
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m natural forcing allows efficient flow driving without propellers or pumps
m Gans' experiments in the 70's yield field amplification by a factor of 3

m precession dynamos are found in simulations around Rm ~O (10°%) Structure of axisym metric mode £ \-

Fig. 8: Structure of the magnetic field at 12.5,25,50% of its maximum value. From left to right:
® double roll structure in the meridional plane (similar to mean flow in VKS) | | B., B, B.. The field structure propagates around the cylinder axis.
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