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Motivation

* Decision makers need current data to make timely
decisions for weather and climate-related
vulnerabilities

» Geospatial information needs to be easily shared and
communicated to stakeholders

* To date, geospatial data Is distributed using
monolithic storage architectures and formats best-
suited for traditional research applications

* Everyday decision-makers face significant barriers
when trying to access, explore, and modify vast
historical archives and real-time data feeds

Project Objectives

* Develop server architecture for rapidly creating and
publishing geospatial data products

* Privileged users can publish new or update existing
geospatial products by combining multiple disparate
data sources together, post-processing, and styling
results

» Users can consume these products using OGC-
compliant WMS/WCS clients such as ArcGIS, QGIS,
or Leaflet

» Server architecture is containerized, making It easy to
deploy on various architectures including local
networks or serverless cloud architectures

Project Status

» Server architecture is fully functional and containerized

» Development of web-based interface of product
creation IS In progress

* The code has not yet been published

Open-Source Development

» Our server is built using PODPAC, which is open-
source software available at https://podpac.org
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Geospatial Data Product Creation Workflow

Capabilities available when creating new products
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Styling WMS Outputs
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Creating a node using our custom web interface
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Product Consumption Workflow

QGIS used as a WMS/WCS client
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“ | » Qur server automatically creates an

dynamically as new data products are
created

endpoint and available products are
automatically discovered

» Users select desired data product to
browse it (WMS endpoint), or further
modify the results (WCS endpoint) and
our server fetches and processes data
on-the fly with optional server-side
caching

OGC-compliant endpoint that Is updated

» Users point their OGC client to the server

Creating a node using SoilMAP and PODPAC (Python)

. , Initialize publisher class
publish = Publish(

source="https://example-server.com/api”, # Server API endpoint
secret key="<user-secret-token>", # Privileged user’s credentials
name="<my-node-name>", # OGS “Layer” name

expiration date=None, # Optional expiration date

)
Style and create a pipeline

style = podpac.style.Style(
colormap="terrain", clim=(800**2, 1000**2))

dem _data = podpac.datalib.TerrainTiles (zoom=3)
# Limit DEM between 800 and 1000 m, and compute the square
node = podpac.algorithm.Arithmetic(
egn="(dem > 800) * (dem < 1000) * dem**2",
dem=dem_data,
style=style,

) Publish
. Could also be plain JSON
Qd
publish(node9 (used by web-based U)

How Does it Work?

* Our server leverages the open-source PODPAC
Python library’s automated data wrangling and "Node”
serialization features

 PODPAC describes geospatial processing pipelines
using a light-weight JSON format

* This JSON description Is sent to the server using an
HTTP POST request by a privileged user and this
definition Is saved along with a product name

» Users can then request products using the same
name, and the server will recreate the data product
from its definition, serving the results to the user

Technology

» Jupyterlab to build interactive, customizable Uls

» Leaflet + custom web development for Ul that requires
no software installation to create data products

* Open-source scientific Python stack
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