
Initialize publisher class

Style and create a pipeline

Publish
Could also be plain JSON

(used by web-based UI)

IN45C-0469 Creare LLC
J. Bieszczad

M. Ueckermann

• Decision makers need current data to make timely

decisions for weather and climate-related

vulnerabilities

• Geospatial information needs to be easily shared and

communicated to stakeholders

• To date, geospatial data is distributed using

monolithic storage architectures and formats best-

suited for traditional research applications

• Everyday decision-makers face significant barriers

when trying to access, explore, and modify vast

historical archives and real-time data feeds

• Develop server architecture for rapidly creating and

publishing geospatial data products

• Privileged users can publish new or update existing

geospatial products by combining multiple disparate

data sources together, post-processing, and styling

results

• Users can consume these products using OGC-

compliant WMS/WCS clients such as ArcGIS, QGIS,

or Leaflet

• Server architecture is containerized, making it easy to

deploy on various architectures including local

networks or serverless cloud architectures

• Server architecture is fully functional and containerized

• Development of web-based interface of product

creation is in progress

• The code has not yet been published

• Our server is built using PODPAC, which is open-

source software available at https://podpac.org

• This research is supported by the US Army ERDC

under SBIR Phase II Contract No. W9132V19C0002

• Jupyterlab to build interactive, customizable UIs

• Leaflet + custom web development for UI that requires

no software installation to create data products

• Open-source scientific Python stack

ipyleaflet

Traitlets
Rasterio

• Our server leverages the open-source PODPAC

Python library’s automated data wrangling and “Node”

serialization features

• PODPAC describes geospatial processing pipelines

using a light-weight JSON format

• This JSON description is sent to the server using an

HTTP POST request by a privileged user and this

definition is saved along with a product name

• Users can then request products using the same

name, and the server will recreate the data product

from its definition, serving the results to the user

Creating a node using our custom web interface

Product name
WMS styling

Product type specification

Attributes specific

to product type

Publishes new product to server

P
re

v
ie

w

E
d
it

D
e
le

te

Creating a node using SoilMAP and PODPAC (Python)

QGIS used as a WMS/WCS client

• Our server automatically creates an

OGC-compliant endpoint that is updated

dynamically as new data products are

created

• Users point their OGC client to the server

endpoint and available products are

automatically discovered

• Users select desired data product to

browse it (WMS endpoint), or further

modify the results (WCS endpoint) and

our server fetches and processes data

on-the fly with optional server-side

caching

Geospatial CRS and

Projections

Data Structures

Gridded dataData along

a path

Data at points

Disparate Data

Sources

Data Processing

Algorithms

(e.g., convolution,

statistics, point-wise

arithmetic, custom, …)

Automatic Data

Wrangling

Styling WMS Outputs

Capabilities available when creating new products

publish = Publish(
source="https://example-server.com/api", # Server API endpoint
secret_key="<user-secret-token>", # Privileged user’s credentials
name="<my-node-name>", # OGS “Layer” name
expiration_date=None, # Optional expiration date

)

style = podpac.style.Style(
colormap="terrain", clim=(800**2, 1000**2))

dem_data = podpac.datalib.TerrainTiles (zoom=3)
Limit DEM between 800 and 1000 m, and compute the square
node = podpac.algorithm.Arithmetic(

eqn="(dem > 800) * (dem < 1000) * dem**2",
dem=dem_data,
style=style,

)

publish(node)

https://podpac.org/

