INA5C-0469

A #~1 | FALL
M\ MEETING

General Server for Rapid Publishing of Creare LLC
s | QGC-Compliant Earth Science Data Products

J. Bieszczad
M. Ueckermann

Motivation

* Decision makers need current data to make timely
decisions for weather and climate-related
vulnerabilities

» Geospatial information needs to be easily shared and
communicated to stakeholders

* To date, geospatial data Is distributed using
monolithic storage architectures and formats best-
suited for traditional research applications

* Everyday decision-makers face significant barriers
when trying to access, explore, and modify vast
historical archives and real-time data feeds

Project Objectives

* Develop server architecture for rapidly creating and
publishing geospatial data products

* Privileged users can publish new or update existing
geospatial products by combining multiple disparate
data sources together, post-processing, and styling
results

» Users can consume these products using OGC-
compliant WMS/WCS clients such as ArcGIS, QGIS,
or Leaflet

» Server architecture is containerized, making It easy to
deploy on various architectures including local
networks or serverless cloud architectures

Project Status

» Server architecture is fully functional and containerized

» Development of web-based interface of product
creation IS In progress

* The code has not yet been published

Open-Source Development

» Our server is built using PODPAC, which is open-
source software available at https://podpac.org

Acknowledgment

* This research Is supported by the US Army ERDC
under SBIR Phase |l Contract No. W9132V19C0002

Geospatial Data Product Creation Workflow

Capabilities available when creating new products

Geospatial CRS and
Projection

Data along
a path

Data Structures
@)

L

Data at points

0000
0000
0000
0000
0000

O00O0O0

Gridded data

Disparate Data

Sources

Automatic Data

Wrangling

Data Processing
Algorithms

(e.g., convolution,
statistics, point-wise
arithmetic, custom, ...)

Styling WMS Outputs

900

Creating a node using our custom web interface

Pipeline Name:‘ TerrainTiles4 |4 Product name

Colormapy terrain V‘clim:‘ﬂ |2[}[}0 ‘ < WMS Sty“ng
Category:| datalib V‘ - i
Node! TerrainTiles o] Product type specification
Optional Attributes:
Input bucket Input interpolation |In|:}ut output |Input outputs ‘ Attributes s peC|f| C
Input source_coordinates [Input tile format |Input units |Input urls ‘ {o P roduct type
1
g o
' . > D
< Publishes new product to server o O
o O
[]

w0 Edit

C
|

n AnotherNode

u TerrainTiles
u TerrainTiles2

u TerrainTiles4

ILL. IND. OHIO

United States

KY. VA.

.
ooooo " TENN.
: ‘.Ko

MISS. ALA.

Leaflet | Map data © OpenStreetMap contributors, Imagery © Mapbox

Product Consumption Workflow

QGIS used as a WMS/WCS client

(2} *Untitled Project — QGIS

& THO
- G WMS/WMTS

* = SoilMAP UDP
+ &M GeoWATCH Soil Moisture

@ demo

&% TestLayer

Layers
o [l ® T [= g

* | # demo

0.0

T Toh W -
B & (O

Q, Type to locate (Ctrl+)

Project Edit View Layer Settings Plugins Vector Raster Database Web Mesh Processing Help

= = F. I =4 ! [| i
&= L4 Oy ¢ g & b b

it
~

“ | » Qur server automatically creates an

dynamically as new data products are
created

endpoint and available products are
automatically discovered

» Users select desired data product to
browse it (WMS endpoint), or further
modify the results (WCS endpoint) and
our server fetches and processes data
on-the fly with optional server-side
caching

OGC-compliant endpoint that Is updated

» Users point their OGC client to the server

Creating a node using SoilMAP and PODPAC (Python)

. , Initialize publisher class
publish = Publish(

source="https://example-server.com/api”, # Server API endpoint
secret key="<user-secret-token>", # Privileged user’s credentials
name="<my-node-name>", # OGS “Layer” name

expiration date=None, # Optional expiration date

)
Style and create a pipeline

style = podpac.style.Style(
colormap="terrain", clim=(800**2, 1000**2))

dem _data = podpac.datalib.TerrainTiles (zoom=3)
Limit DEM between 800 and 1000 m, and compute the square
node = podpac.algorithm.Arithmetic(
egn="(dem > 800) * (dem < 1000) * dem**2",
dem=dem_data,
style=style,

) Publish
. Could also be plain JSON
Qd
publish(node9 (used by web-based U)

How Does it Work?

* Our server leverages the open-source PODPAC
Python library’s automated data wrangling and "Node”
serialization features

 PODPAC describes geospatial processing pipelines
using a light-weight JSON format

* This JSON description Is sent to the server using an
HTTP POST request by a privileged user and this
definition Is saved along with a product name

» Users can then request products using the same
name, and the server will recreate the data product
from its definition, serving the results to the user

Technology

» Jupyterlab to build interactive, customizable Uls

» Leaflet + custom web development for Ul that requires
no software installation to create data products

* Open-source scientific Python stack

ipyleaflet WHIAMEEES Rasterio
Traitlets ﬁmﬂet

— Jupyterlab

matpl:tlib

| gi ’ xarray

https://podpac.org/

