Josh P. Murphy

and 1 more

We investigate the geodynamic and melting history of Mars using 3D spherical shell models of mantle convection, constrained by the recent InSight mission results. The Martian mantle must have produced sufficient melt to emplace the Tharsis rise by the end of the Noachian–requiring on the order of 1–3×109 km3 of melt after accounting for limited (~10\%) melt extraction. Thereafter, melting declined, but abundant evidence for limited geologically recent volcanism necessitates some melt even in the cool present-day mantle inferred from InSight data. We test models with two mantle activation energies, and a range of crustal Heat Producing Element (HPE) enrichment factors and initial core-mantle boundary temperatures. We also test the effect of including a hemispheric (spherical harmonic degree-1) step in lithospheric thickness to model the Martian dichotomy. We find that a higher activation energy (350 kJ mol−1) rheology produces present-day geotherms consistent with InSight results, and of those the cases with HPE enrichment factors of 5–10x produce localized melting near or up to present-day. 10x crustal enrichment is consistent with both InSight and geochemical results, and those models also produce present-day geoid power spectra consistent with Mars. However, it is very difficult to produce sufficient melt to form Tharsis in a mantle that also matches the present-day geotherm, without assuming extremely efficient extraction of melt to the surface. The addition of a degree-1 hemispheric dichotomy, as an equatorial step in lithospheric thickness, does not significantly improve upon melt production or the geoid.

Ana-Catalina Plesa

and 15 more

The InSight mission [1] landed in November 2018 in the Elysium Planitia region [2] bringing the first geophysical observatory to Mars. Since February 2019 the seismometer SEIS [3] has continuously recorded Mars’ seismic activity, and a list of the seismic events is available in the InSight Marsquake Service catalog [4]. In this study, we predict present-day seismic velocities in the Martian interior using the 3D thermal evolution models of [5]. We then use the 3D velocity distributions to interpret seismic observations recorded by InSight. Our analysis is focused on the two high quality events S0173a and S0235b. Both have distinguishable P- and S-wave arrivals and are thought to originate in Cerberus Fossae [6], a potentially active fault system [7]. Our results show that models with a crust containing more than half of the total amount of heat producing elements (HPE) of the bulk of Mars lead to large variations of the seismic velocities in the lithosphere. A seismic velocity pattern similar to the crustal thickness structure is observed at depths larger than 400 km for cases with cold and thick lithospheres. Models, with less than 20% of the total HPE in the crust have thinner lithospheres with shallower but more prominent low velocity zones. The latter, lead to shadow zones that are incompatible with the observed P- and S-wave arrivals of seismic events occurring in Cerberus Fossae, in 20° - 40° epicentral distance. We therefore expect that future high-quality seismic events have the potential to further constrain the amount of HPE in the Martian crust. Future work will combine the seismic velocities distribution calculated in this study with modeling of seismic wave propagation [8, 9]. This will help to assess the effects of a 3D thermal structure on the waveforms and provide a powerful framework for the interpretation of InSight’s seismic data. [1] Banerdt et al., Nat. Geo. 2020; [2] Golombek et al., Nat. Comm. 2020, [3] Lognnoné et al., Nat. Geo. 2020, [4] InSight MQS, Mars Seismic Catalogue, InSight Mission V3, 2020, https://doi.org/10.12686/A8, [5] Plesa et al., GRL 2018, [6] Giardini et al., Nat. Geo. 2020, [7] Taylor et al., JGR 2013, [8] Bozdag et al., SSR 2017, [9] Komatitsch & Tromp, GJI 2002.

Maureen D. Long

and 12 more

The eastern margin of North America has been shaped by a series of tectonic events including the Paleozoic Appalachian Orogeny and the breakup of Pangea during the Mesozoic. For the past ~200 Ma, eastern North America has been a passive continental margin; however, there is evidence in the Central Appalachian Mountains for post-rifting modification of lithospheric structure. This evidence includes two co-located pulses of magmatism that post-date the rifting event (at 152 Ma and 47 Ma) along with low seismic velocities, high seismic attenuation, and high electrical conductivity in the upper mantle. Here, we synthesize and evaluate constraints on the lithospheric evolution of the Central Appalachian Mountains. These include tomographic imaging of seismic velocities, seismic and electrical conductivity imaging along the MAGIC array, gravity and heat flow measurements, geochemical and petrological examination of Jurassic and Eocene magmatic rocks, and estimates of erosion rates from geomorphological data. We discuss and evaluate a set of possible mechanisms for lithospheric loss and intraplate volcanism beneath the region. Taken together, recent observations provide compelling evidence for lithospheric loss beneath the Central Appalachians; while they cannot uniquely identify the processes associated with this loss, they narrow the range of plausible models, with important implications for our understanding of intraplate volcanism and the evolution of continental lithosphere. Our preferred models invoke a combination of (perhaps episodic) lithospheric loss via Rayleigh-Taylor instabilities and subsequent small-scale mantle flow in combination with shear-driven upwelling that maintains the region of thin lithosphere and causes partial melting in the asthenosphere.