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ABSTRACT 
 

Understanding root traits is essential to improve water uptake, increase nitrogen capture and raise carbon 

sequestration from the atmosphere. However, high-throughput phenotyping to quantify root traits for deeper 

field-grown roots remain a challenge. Recently developed open-source methods use image-based 3D 

reconstruction algorithms to build 3D models of plant roots from multiple 2D images and can extract root 

traits and phenotypes. Most of these methods rely on automated image orientation (Structure from 

Motion)[1] and dense image matching (Multiple View Stereo) algorithms to produce a 3D point cloud or 

mesh model from 2D images. Until now it is not known how the performance of these methods compares 

to each other when applied to field-grown roots. We investigate commonly used open-source pipelines on 

a test panel of twelve contrasting maize genotypes grown in real field conditions in this comparison study 

[2-6]. We compare 3D point clouds in terms of number of points, computation time and model surface 

density. This comparison study will provide insight into the performance of different open-source pipelines 

for maize root phenotyping and illuminates trade-offs between 3D model quality and performance cost for 

future high-throughput 3D root phenotyping. 
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1. INTRODUCTION 
Root phenotyping is essential to improve water uptake, nitrogen capture and carbon sequestration[7] [8-12] 

However, root phenotyping requires advanced methods to measure and quantify complex root architectures. 

With the development of computer vision techniques, image-based root phenotyping with commodity 

cameras has emerged as a cost efficient and accessible alternative to high-end imaging devices.  

2D image-based root phenotyping methods provide abundant trait measurements [13]. Examples for such 

2D approaches are  DIRT [14], archiDART [15], EZ-Root-VIS [16], GiA Roots [17] and RhizoVision [18]. 

Unfortunately, 2D images can only record partial information of a dense and highly occluded 3D maize 

root structure. Therefore, quantifying important traits such as whorl number and the distance, and number 

of crown roots is  challenging [19].    

Methods for 3D phenotyping  are promising to resolve even highly occluded branching structures [20] [21-

23]. One of the key challenges in 3D root phenotyping method is to reconstruct a 3D representation of the 



root [19]. The available open-source image-based 3D reconstruction pipelines can process large sets of 

unordered and diverse images and generate a dense colored point cloud model or a triangulated textured 

mesh [24]. However, the performance of each pipeline varies dependent on the computing environment and 

object complexity. Therefore, we asked the question which pipeline produces the need model detail in the 

shortest time for field-grown maize root. 

In this study, we compared commonly used open-source pipelines on a test panel of twelve contrasting 

genotypes of field-grown maize roots. These methods include COLMAP [1] [2], VisualSFM [3], 

OpenMVG [4], Meshroom [5] and Multi-View Environment (MVE) [6]. We compare the 3D point cloud 

model in their visual quality, density, number of points, and computation time.  

 

2. MATERIAL AND METHODS 
2.1   Image dataset 

Plants were grown at The Pennsylvania State University’s Russell E. Larson Agricultural Research Center 

(40° 42’40.915” N, 77°, 57’11.120’’W) which has a Hagerstown silt loam soil (fine, mixed, semi-active, 

mesic Typic Hapludalf). Twelve genotypes were selected, including six inbred lines (B101, B112, 

DKIB014, LH123HT, Pa762, PHZ51) and six hybrid lines (DKPB80 x 3IIH6, H96 x 3IIH6, LH59 x 

PHG29, Pa762 x 3IIH6, PHG50 x PHG47, PHZ51 x LH59). These genotypes represent the extremes of 

dense vs. sparse, large vs. small, and maximum and minimum number of whorls selected from a full 

diversity panel published in [7]. We selected one plant for each genotype, in total 12 root samples for this 

initial comparison.  

We captured images for each genotype by a prototype of the imaging chamber that was conceptually 

introduced in [25] (Fig. 1). Images were captured by ten imaging cameras (Image Source DFK 33ux183 

USB 3.0, 12mm focal length V1228-MPY2 12 Megapixel Machine Vision Lens). A computing cluster of 

ten Raspberry Pi 4 synchronizes the image capture of the ten cameras using a server-client design. For each 

genotype, between 301 and 360 images with image resolution at 5,472×3,648 per maize root were captured 

using a manual rotation stand. Sample images for each genotype was shown in Figure. 1.  

 

 
Figure 1. 3D root imaging chamber. 

 
 

2.2   Methods 

We tested the performance of the pipelines and its combination, including COLMAP, COLMAP+PMVS 

(Patch-based Multi-view Stereo), VisualSFM, Meshroom and OpenMVG+MVE [1, 2, 6, 24, 26-35]. 3D 

root models were computed by the five different pipelines on a Dell Workstation. (OptiPlex 7080, 10th 

Generation Intel® Core™ i9-10900K, 20 MB Cache, 10 Cores, 20 Threads, 3.7 GHz to 5.3 GHz, 125 W, 

64 GB RAM, 4 x 16 GB, DDR4, M.2 2280, 1 TB hard drive, Gen 3 PCIe x4 NVMe, Class 40 SSD). In 

addition, we use GPU to facilitate the computation if the pipeline supported. The GPU model with the 

DELL workstation was (GeForce RTX 2070 SUPER, NVIDIA Corporation TU104, nvcc: NVIDIA (R) 

Cuda compiler driver). 

 

3. RESULTS AND DISCUSSION 



We compared the performance of five 3D reconstruction pipelines and combinations thereof. The tested 

puipelines include COLMAP, COLMAP+PMVS (Patch-based Multi-view Stereo), VisualSFM, Meshroom 

and OpenMVG+MVE. We computed overall 60 point clouds models of field-grown maize roots.  

We selected four genotypes and 

visually compare the model quality 

in Figure 2. COLMAP and 

COLMAP+PMVS both achieve 

good visual quality and models are 

complete. VisualSFM did not 

achieve good quality and lost details 

due to the limited number of input 

images. Meshroom failed to 

generate complete models. 

OpenMVG+MVE captures some 

details compared with VisualSFM, 

but the color information was not 

stored.  

In addition to visual quality, we 

compare 3D model quality by 

computing total number of points 

and surface density of all sixty root 

models, as well as recordings the 

computation time, as shown in 

Figure 3. COLMAP consumed 

almost 29 times the average time 

OpenMVG+MVE, 5 times of 

Meshroom in average, while 

COLMAP+PMVS consumed only 3 

times of OpenMVG+MVE in 

average. COLMAP+PMVS 

required runtimes similar to 

VisualSFM. We use CloudCompare 

[36] to load each point cloud model 

and record its number of points in its 

“Properties” items. We also use a tool for computing geometric features provided by CloudCompare to 

estimates the density of point cloud models. Surface density is defined here as the number of neighbors 

within spherical neighborhood radius R, divided (normalized?) by the neighborhood surface = N / (Pi. *R2). 

We use the constant R = 0.005118 to compute the surface density for each model. The comparison of 

number of points and surface density are shown in Figure 3 and 4 respectively. COLMAP and 

OpenMVG+MVE produced the largest point sets, achieving on average 94 and 49 times of Meshroom 

respectively. Meshroom produced the smallest point clouds. COLMAP+PMVS and VisualSFM also 

averaged 14 and 9 times more points than Meshroom, respectively. COLAMP and VisualSFM produced 

models with the greatest surface density, however, COLAMP, OpenMVG+MVE, COLMAP+PMVS and 

Meshroom achieves 94, 31, 14, 8 times of VisualSFM in average.  

 

 

4. CONCLUSION 
By comparing the performance of all the 3D reconstruction pipelines and its combination in this study, we 

found out that COLMAP, COLMAP+PMVS and VisualSFM are the three pipelines which can generate 

colored 3d root models directly. Although the computation time of COLMAP is 12-times slower than the 

VisualSFM, COLMAP achieved 10 times greater number of points, and a 94 times higher surface density 

 

    Figure 2. Visual comparison of four genotypes of models 
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in our test dataset. A combination of COLMAP+PMVS resulted in similar computation time with 

VisualSFM, but the model quality achieved 2 and 14 times of VisualSFM in term of number of points and 

surface density.  

Our initial study is a good indicator, however further experiments are needed evaluate the quality of root 

traits and whole root descriptors to a manually measured ground-truth for a larger amount of 3D models. 

In that way, we will gain insight into the dependency of trait measurements on method accuracy.  
 

 

 
 

 

 

Figure 3. Comparison of time cost, number of points and surface density of 3D models 
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